// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_CCTEST_COMPILER_CODEGEN_TESTER_H_
#define V8_CCTEST_COMPILER_CODEGEN_TESTER_H_
#include "src/compiler/instruction-selector.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/raw-machine-assembler.h"
#include "src/simulator.h"
#include "test/cctest/compiler/call-tester.h"
namespace v8 {
namespace internal {
namespace compiler {
template <typename ReturnType>
class RawMachineAssemblerTester : public HandleAndZoneScope,
public CallHelper<ReturnType>,
public RawMachineAssembler {
public:
RawMachineAssemblerTester(MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None(),
MachineType p4 = MachineType::None())
: HandleAndZoneScope(),
CallHelper<ReturnType>(
main_isolate(),
CSignature::New(main_zone(), MachineTypeForC<ReturnType>(), p0, p1,
p2, p3, p4)),
RawMachineAssembler(
main_isolate(), new (main_zone()) Graph(main_zone()),
Linkage::GetSimplifiedCDescriptor(
main_zone(),
CSignature::New(main_zone(), MachineTypeForC<ReturnType>(), p0,
p1, p2, p3, p4),
true),
MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags()) {}
virtual ~RawMachineAssemblerTester() {}
void CheckNumber(double expected, Object* number) {
CHECK(this->isolate()->factory()->NewNumber(expected)->SameValue(number));
}
void CheckString(const char* expected, Object* string) {
CHECK(
this->isolate()->factory()->InternalizeUtf8String(expected)->SameValue(
string));
}
void GenerateCode() { Generate(); }
Handle<Code> GetCode() {
Generate();
return code_.ToHandleChecked();
}
protected:
virtual byte* Generate() {
if (code_.is_null()) {
Schedule* schedule = this->Export();
CallDescriptor* call_descriptor = this->call_descriptor();
Graph* graph = this->graph();
CompilationInfo info(ArrayVector("testing"), main_isolate(), main_zone());
code_ = Pipeline::GenerateCodeForTesting(&info, call_descriptor, graph,
schedule);
}
return this->code_.ToHandleChecked()->entry();
}
private:
MaybeHandle<Code> code_;
};
template <typename ReturnType>
class BufferedRawMachineAssemblerTester
: public RawMachineAssemblerTester<int32_t> {
public:
BufferedRawMachineAssemblerTester(MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None())
: BufferedRawMachineAssemblerTester(ComputeParameterCount(p0, p1, p2, p3),
p0, p1, p2, p3) {}
virtual byte* Generate() { return RawMachineAssemblerTester::Generate(); }
// The BufferedRawMachineAssemblerTester does not pass parameters directly
// to the constructed IR graph. Instead it passes a pointer to the parameter
// to the IR graph, and adds Load nodes to the IR graph to load the
// parameters from memory. Thereby it is possible to pass 64 bit parameters
// to the IR graph.
Node* Parameter(size_t index) {
CHECK(index < 4);
return parameter_nodes_[index];
}
// The BufferedRawMachineAssemblerTester adds a Store node to the IR graph
// to store the graph's return value in memory. The memory address for the
// Store node is provided as a parameter. By storing the return value in
// memory it is possible to return 64 bit values.
void Return(Node* input) {
Store(MachineTypeForC<ReturnType>().representation(),
RawMachineAssembler::Parameter(return_parameter_index_), input,
kNoWriteBarrier);
RawMachineAssembler::Return(Int32Constant(1234));
}
ReturnType Call() {
ReturnType return_value;
CSignature::VerifyParams(test_graph_signature_);
CallHelper<int32_t>::Call(reinterpret_cast<void*>(&return_value));
return return_value;
}
template <typename P0>
ReturnType Call(P0 p0) {
ReturnType return_value;
CSignature::VerifyParams<P0>(test_graph_signature_);
CallHelper<int32_t>::Call(reinterpret_cast<void*>(&p0),
reinterpret_cast<void*>(&return_value));
return return_value;
}
template <typename P0, typename P1>
ReturnType Call(P0 p0, P1 p1) {
ReturnType return_value;
CSignature::VerifyParams<P0, P1>(test_graph_signature_);
CallHelper<int32_t>::Call(reinterpret_cast<void*>(&p0),
reinterpret_cast<void*>(&p1),
reinterpret_cast<void*>(&return_value));
return return_value;
}
template <typename P0, typename P1, typename P2>
ReturnType Call(P0 p0, P1 p1, P2 p2) {
ReturnType return_value;
CSignature::VerifyParams<P0, P1, P2>(test_graph_signature_);
CallHelper<int32_t>::Call(
reinterpret_cast<void*>(&p0), reinterpret_cast<void*>(&p1),
reinterpret_cast<void*>(&p2), reinterpret_cast<void*>(&return_value));
return return_value;
}
template <typename P0, typename P1, typename P2, typename P3>
ReturnType Call(P0 p0, P1 p1, P2 p2, P3 p3) {
ReturnType return_value;
CSignature::VerifyParams<P0, P1, P2, P3>(test_graph_signature_);
CallHelper<int32_t>::Call(
reinterpret_cast<void*>(&p0), reinterpret_cast<void*>(&p1),
reinterpret_cast<void*>(&p2), reinterpret_cast<void*>(&p3),
reinterpret_cast<void*>(&return_value));
return return_value;
}
private:
BufferedRawMachineAssemblerTester(uint32_t return_parameter_index,
MachineType p0, MachineType p1,
MachineType p2, MachineType p3)
: RawMachineAssemblerTester<int32_t>(
MachineType::Pointer(),
p0 == MachineType::None() ? MachineType::None()
: MachineType::Pointer(),
p1 == MachineType::None() ? MachineType::None()
: MachineType::Pointer(),
p2 == MachineType::None() ? MachineType::None()
: MachineType::Pointer(),
p3 == MachineType::None() ? MachineType::None()
: MachineType::Pointer()),
test_graph_signature_(
CSignature::New(main_zone(), MachineType::Int32(), p0, p1, p2, p3)),
return_parameter_index_(return_parameter_index) {
parameter_nodes_[0] = p0 == MachineType::None()
? nullptr
: Load(p0, RawMachineAssembler::Parameter(0));
parameter_nodes_[1] = p1 == MachineType::None()
? nullptr
: Load(p1, RawMachineAssembler::Parameter(1));
parameter_nodes_[2] = p2 == MachineType::None()
? nullptr
: Load(p2, RawMachineAssembler::Parameter(2));
parameter_nodes_[3] = p3 == MachineType::None()
? nullptr
: Load(p3, RawMachineAssembler::Parameter(3));
}
static uint32_t ComputeParameterCount(MachineType p0, MachineType p1,
MachineType p2, MachineType p3) {
if (p0 == MachineType::None()) {
return 0;
}
if (p1 == MachineType::None()) {
return 1;
}
if (p2 == MachineType::None()) {
return 2;
}
if (p3 == MachineType::None()) {
return 3;
}
return 4;
}
CSignature* test_graph_signature_;
Node* parameter_nodes_[4];
uint32_t return_parameter_index_;
};
template <>
class BufferedRawMachineAssemblerTester<void>
: public RawMachineAssemblerTester<void> {
public:
BufferedRawMachineAssemblerTester(MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None())
: RawMachineAssemblerTester<void>(
p0 == MachineType::None() ? MachineType::None()
: MachineType::Pointer(),
p1 == MachineType::None() ? MachineType::None()
: MachineType::Pointer(),
p2 == MachineType::None() ? MachineType::None()
: MachineType::Pointer(),
p3 == MachineType::None() ? MachineType::None()
: MachineType::Pointer()),
test_graph_signature_(
CSignature::New(RawMachineAssemblerTester<void>::main_zone(),
MachineType::None(), p0, p1, p2, p3)) {
parameter_nodes_[0] = p0 == MachineType::None()
? nullptr
: Load(p0, RawMachineAssembler::Parameter(0));
parameter_nodes_[1] = p1 == MachineType::None()
? nullptr
: Load(p1, RawMachineAssembler::Parameter(1));
parameter_nodes_[2] = p2 == MachineType::None()
? nullptr
: Load(p2, RawMachineAssembler::Parameter(2));
parameter_nodes_[3] = p3 == MachineType::None()
? nullptr
: Load(p3, RawMachineAssembler::Parameter(3));
}
virtual byte* Generate() { return RawMachineAssemblerTester::Generate(); }
// The BufferedRawMachineAssemblerTester does not pass parameters directly
// to the constructed IR graph. Instead it passes a pointer to the parameter
// to the IR graph, and adds Load nodes to the IR graph to load the
// parameters from memory. Thereby it is possible to pass 64 bit parameters
// to the IR graph.
Node* Parameter(size_t index) {
CHECK(index < 4);
return parameter_nodes_[index];
}
void Call() {
CSignature::VerifyParams(test_graph_signature_);
CallHelper<void>::Call();
}
template <typename P0>
void Call(P0 p0) {
CSignature::VerifyParams<P0>(test_graph_signature_);
CallHelper<void>::Call(reinterpret_cast<void*>(&p0));
}
template <typename P0, typename P1>
void Call(P0 p0, P1 p1) {
CSignature::VerifyParams<P0, P1>(test_graph_signature_);
CallHelper<void>::Call(reinterpret_cast<void*>(&p0),
reinterpret_cast<void*>(&p1));
}
template <typename P0, typename P1, typename P2>
void Call(P0 p0, P1 p1, P2 p2) {
CSignature::VerifyParams<P0, P1, P2>(test_graph_signature_);
CallHelper<void>::Call(reinterpret_cast<void*>(&p0),
reinterpret_cast<void*>(&p1),
reinterpret_cast<void*>(&p2));
}
template <typename P0, typename P1, typename P2, typename P3>
void Call(P0 p0, P1 p1, P2 p2, P3 p3) {
CSignature::VerifyParams<P0, P1, P2, P3>(test_graph_signature_);
CallHelper<void>::Call(
reinterpret_cast<void*>(&p0), reinterpret_cast<void*>(&p1),
reinterpret_cast<void*>(&p2), reinterpret_cast<void*>(&p3));
}
private:
CSignature* test_graph_signature_;
Node* parameter_nodes_[4];
};
static const bool USE_RESULT_BUFFER = true;
static const bool USE_RETURN_REGISTER = false;
static const int32_t CHECK_VALUE = 0x99BEEDCE;
// TODO(titzer): use the C-style calling convention, or any register-based
// calling convention for binop tests.
template <typename CType, bool use_result_buffer>
class BinopTester {
public:
explicit BinopTester(RawMachineAssemblerTester<int32_t>* tester,
MachineType rep)
: T(tester),
param0(T->LoadFromPointer(&p0, rep)),
param1(T->LoadFromPointer(&p1, rep)),
rep(rep),
p0(static_cast<CType>(0)),
p1(static_cast<CType>(0)),
result(static_cast<CType>(0)) {}
RawMachineAssemblerTester<int32_t>* T;
Node* param0;
Node* param1;
CType call(CType a0, CType a1) {
p0 = a0;
p1 = a1;
if (use_result_buffer) {
CHECK_EQ(CHECK_VALUE, T->Call());
return result;
} else {
return static_cast<CType>(T->Call());
}
}
void AddReturn(Node* val) {
if (use_result_buffer) {
T->Store(rep.representation(), T->PointerConstant(&result),
T->Int32Constant(0), val, kNoWriteBarrier);
T->Return(T->Int32Constant(CHECK_VALUE));
} else {
T->Return(val);
}
}
template <typename Ci, typename Cj, typename Fn>
void Run(const Ci& ci, const Cj& cj, const Fn& fn) {
typename Ci::const_iterator i;
typename Cj::const_iterator j;
for (i = ci.begin(); i != ci.end(); ++i) {
for (j = cj.begin(); j != cj.end(); ++j) {
CHECK_EQ(fn(*i, *j), this->call(*i, *j));
}
}
}
protected:
MachineType rep;
CType p0;
CType p1;
CType result;
};
// A helper class for testing code sequences that take two int parameters and
// return an int value.
class Int32BinopTester : public BinopTester<int32_t, USE_RETURN_REGISTER> {
public:
explicit Int32BinopTester(RawMachineAssemblerTester<int32_t>* tester)
: BinopTester<int32_t, USE_RETURN_REGISTER>(tester,
MachineType::Int32()) {}
};
// A helper class for testing code sequences that take two int parameters and
// return an int value.
class Int64BinopTester : public BinopTester<int64_t, USE_RETURN_REGISTER> {
public:
explicit Int64BinopTester(RawMachineAssemblerTester<int32_t>* tester)
: BinopTester<int64_t, USE_RETURN_REGISTER>(tester,
MachineType::Int64()) {}
};
// A helper class for testing code sequences that take two uint parameters and
// return an uint value.
class Uint32BinopTester : public BinopTester<uint32_t, USE_RETURN_REGISTER> {
public:
explicit Uint32BinopTester(RawMachineAssemblerTester<int32_t>* tester)
: BinopTester<uint32_t, USE_RETURN_REGISTER>(tester,
MachineType::Uint32()) {}
uint32_t call(uint32_t a0, uint32_t a1) {
p0 = a0;
p1 = a1;
return static_cast<uint32_t>(T->Call());
}
};
// A helper class for testing code sequences that take two float parameters and
// return a float value.
class Float32BinopTester : public BinopTester<float, USE_RESULT_BUFFER> {
public:
explicit Float32BinopTester(RawMachineAssemblerTester<int32_t>* tester)
: BinopTester<float, USE_RESULT_BUFFER>(tester, MachineType::Float32()) {}
};
// A helper class for testing code sequences that take two double parameters and
// return a double value.
class Float64BinopTester : public BinopTester<double, USE_RESULT_BUFFER> {
public:
explicit Float64BinopTester(RawMachineAssemblerTester<int32_t>* tester)
: BinopTester<double, USE_RESULT_BUFFER>(tester, MachineType::Float64()) {
}
};
// A helper class for testing code sequences that take two pointer parameters
// and return a pointer value.
// TODO(titzer): pick word size of pointers based on V8_TARGET.
template <typename Type>
class PointerBinopTester : public BinopTester<Type*, USE_RETURN_REGISTER> {
public:
explicit PointerBinopTester(RawMachineAssemblerTester<int32_t>* tester)
: BinopTester<Type*, USE_RETURN_REGISTER>(tester,
MachineType::Pointer()) {}
};
// A helper class for testing code sequences that take two tagged parameters and
// return a tagged value.
template <typename Type>
class TaggedBinopTester : public BinopTester<Type*, USE_RETURN_REGISTER> {
public:
explicit TaggedBinopTester(RawMachineAssemblerTester<int32_t>* tester)
: BinopTester<Type*, USE_RETURN_REGISTER>(tester,
MachineType::AnyTagged()) {}
};
// A helper class for testing compares. Wraps a machine opcode and provides
// evaluation routines and the operators.
class CompareWrapper {
public:
explicit CompareWrapper(IrOpcode::Value op) : opcode(op) {}
Node* MakeNode(RawMachineAssemblerTester<int32_t>* m, Node* a, Node* b) {
return m->AddNode(op(m->machine()), a, b);
}
const Operator* op(MachineOperatorBuilder* machine) {
switch (opcode) {
case IrOpcode::kWord32Equal:
return machine->Word32Equal();
case IrOpcode::kInt32LessThan:
return machine->Int32LessThan();
case IrOpcode::kInt32LessThanOrEqual:
return machine->Int32LessThanOrEqual();
case IrOpcode::kUint32LessThan:
return machine->Uint32LessThan();
case IrOpcode::kUint32LessThanOrEqual:
return machine->Uint32LessThanOrEqual();
case IrOpcode::kFloat64Equal:
return machine->Float64Equal();
case IrOpcode::kFloat64LessThan:
return machine->Float64LessThan();
case IrOpcode::kFloat64LessThanOrEqual:
return machine->Float64LessThanOrEqual();
default:
UNREACHABLE();
}
return NULL;
}
bool Int32Compare(int32_t a, int32_t b) {
switch (opcode) {
case IrOpcode::kWord32Equal:
return a == b;
case IrOpcode::kInt32LessThan:
return a < b;
case IrOpcode::kInt32LessThanOrEqual:
return a <= b;
case IrOpcode::kUint32LessThan:
return static_cast<uint32_t>(a) < static_cast<uint32_t>(b);
case IrOpcode::kUint32LessThanOrEqual:
return static_cast<uint32_t>(a) <= static_cast<uint32_t>(b);
default:
UNREACHABLE();
}
return false;
}
bool Float64Compare(double a, double b) {
switch (opcode) {
case IrOpcode::kFloat64Equal:
return a == b;
case IrOpcode::kFloat64LessThan:
return a < b;
case IrOpcode::kFloat64LessThanOrEqual:
return a <= b;
default:
UNREACHABLE();
}
return false;
}
IrOpcode::Value opcode;
};
// A small closure class to generate code for a function of two inputs that
// produces a single output so that it can be used in many different contexts.
// The {expected()} method should compute the expected output for a given
// pair of inputs.
template <typename T>
class BinopGen {
public:
virtual void gen(RawMachineAssemblerTester<int32_t>* m, Node* a, Node* b) = 0;
virtual T expected(T a, T b) = 0;
virtual ~BinopGen() {}
};
// A helper class to generate various combination of input shape combinations
// and run the generated code to ensure it produces the correct results.
class Int32BinopInputShapeTester {
public:
explicit Int32BinopInputShapeTester(BinopGen<int32_t>* g)
: gen(g), input_a(0), input_b(0) {}
void TestAllInputShapes();
private:
BinopGen<int32_t>* gen;
int32_t input_a;
int32_t input_b;
void Run(RawMachineAssemblerTester<int32_t>* m);
void RunLeft(RawMachineAssemblerTester<int32_t>* m);
void RunRight(RawMachineAssemblerTester<int32_t>* m);
};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_CCTEST_COMPILER_CODEGEN_TESTER_H_