// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/register-configuration.h"
#include "src/safepoint-table.h"
namespace v8 {
namespace internal {
const int Deoptimizer::table_entry_size_ = 10;
int Deoptimizer::patch_size() {
return Assembler::kCallSequenceLength;
}
void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
// Empty because there is no need for relocation information for the code
// patching in Deoptimizer::PatchCodeForDeoptimization below.
}
void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
// Invalidate the relocation information, as it will become invalid by the
// code patching below, and is not needed any more.
code->InvalidateRelocation();
if (FLAG_zap_code_space) {
// Fail hard and early if we enter this code object again.
byte* pointer = code->FindCodeAgeSequence();
if (pointer != NULL) {
pointer += kNoCodeAgeSequenceLength;
} else {
pointer = code->instruction_start();
}
CodePatcher patcher(isolate, pointer, 1);
patcher.masm()->int3();
DeoptimizationInputData* data =
DeoptimizationInputData::cast(code->deoptimization_data());
int osr_offset = data->OsrPcOffset()->value();
if (osr_offset > 0) {
CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset,
1);
osr_patcher.masm()->int3();
}
}
// For each LLazyBailout instruction insert a absolute call to the
// corresponding deoptimization entry, or a short call to an absolute
// jump if space is short. The absolute jumps are put in a table just
// before the safepoint table (space was allocated there when the Code
// object was created, if necessary).
Address instruction_start = code->instruction_start();
#ifdef DEBUG
Address prev_call_address = NULL;
#endif
DeoptimizationInputData* deopt_data =
DeoptimizationInputData::cast(code->deoptimization_data());
deopt_data->SetSharedFunctionInfo(Smi::FromInt(0));
// For each LLazyBailout instruction insert a call to the corresponding
// deoptimization entry.
for (int i = 0; i < deopt_data->DeoptCount(); i++) {
if (deopt_data->Pc(i)->value() == -1) continue;
// Position where Call will be patched in.
Address call_address = instruction_start + deopt_data->Pc(i)->value();
// There is room enough to write a long call instruction because we pad
// LLazyBailout instructions with nops if necessary.
CodePatcher patcher(isolate, call_address, Assembler::kCallSequenceLength);
patcher.masm()->Call(GetDeoptimizationEntry(isolate, i, LAZY),
Assembler::RelocInfoNone());
DCHECK(prev_call_address == NULL ||
call_address >= prev_call_address + patch_size());
DCHECK(call_address + patch_size() <= code->instruction_end());
#ifdef DEBUG
prev_call_address = call_address;
#endif
}
}
void Deoptimizer::SetPlatformCompiledStubRegisters(
FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
intptr_t handler =
reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
int params = descriptor->GetHandlerParameterCount();
output_frame->SetRegister(rax.code(), params);
output_frame->SetRegister(rbx.code(), handler);
}
void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
for (int i = 0; i < XMMRegister::kMaxNumRegisters; ++i) {
double double_value = input_->GetDoubleRegister(i);
output_frame->SetDoubleRegister(i, double_value);
}
}
#define __ masm()->
void Deoptimizer::TableEntryGenerator::Generate() {
GeneratePrologue();
// Save all general purpose registers before messing with them.
const int kNumberOfRegisters = Register::kNumRegisters;
const int kDoubleRegsSize = kDoubleSize * XMMRegister::kMaxNumRegisters;
__ subp(rsp, Immediate(kDoubleRegsSize));
const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int offset = code * kDoubleSize;
__ Movsd(Operand(rsp, offset), xmm_reg);
}
// We push all registers onto the stack, even though we do not need
// to restore all later.
for (int i = 0; i < kNumberOfRegisters; i++) {
Register r = Register::from_code(i);
__ pushq(r);
}
const int kSavedRegistersAreaSize = kNumberOfRegisters * kRegisterSize +
kDoubleRegsSize;
__ Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp);
// We use this to keep the value of the fifth argument temporarily.
// Unfortunately we can't store it directly in r8 (used for passing
// this on linux), since it is another parameter passing register on windows.
Register arg5 = r11;
// Get the bailout id from the stack.
__ movp(arg_reg_3, Operand(rsp, kSavedRegistersAreaSize));
// Get the address of the location in the code object
// and compute the fp-to-sp delta in register arg5.
__ movp(arg_reg_4, Operand(rsp, kSavedRegistersAreaSize + 1 * kRegisterSize));
__ leap(arg5, Operand(rsp, kSavedRegistersAreaSize + 1 * kRegisterSize +
kPCOnStackSize));
__ subp(arg5, rbp);
__ negp(arg5);
// Allocate a new deoptimizer object.
__ PrepareCallCFunction(6);
__ movp(rax, Immediate(0));
Label context_check;
__ movp(rdi, Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ JumpIfSmi(rdi, &context_check);
__ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ bind(&context_check);
__ movp(arg_reg_1, rax);
__ Set(arg_reg_2, type());
// Args 3 and 4 are already in the right registers.
// On windows put the arguments on the stack (PrepareCallCFunction
// has created space for this). On linux pass the arguments in r8 and r9.
#ifdef _WIN64
__ movq(Operand(rsp, 4 * kRegisterSize), arg5);
__ LoadAddress(arg5, ExternalReference::isolate_address(isolate()));
__ movq(Operand(rsp, 5 * kRegisterSize), arg5);
#else
__ movp(r8, arg5);
__ LoadAddress(r9, ExternalReference::isolate_address(isolate()));
#endif
{ AllowExternalCallThatCantCauseGC scope(masm());
__ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
}
// Preserve deoptimizer object in register rax and get the input
// frame descriptor pointer.
__ movp(rbx, Operand(rax, Deoptimizer::input_offset()));
// Fill in the input registers.
for (int i = kNumberOfRegisters -1; i >= 0; i--) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
__ PopQuad(Operand(rbx, offset));
}
// Fill in the double input registers.
int double_regs_offset = FrameDescription::double_registers_offset();
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
int dst_offset = i * kDoubleSize + double_regs_offset;
__ popq(Operand(rbx, dst_offset));
}
// Remove the bailout id and return address from the stack.
__ addp(rsp, Immediate(1 * kRegisterSize + kPCOnStackSize));
// Compute a pointer to the unwinding limit in register rcx; that is
// the first stack slot not part of the input frame.
__ movp(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
__ addp(rcx, rsp);
// Unwind the stack down to - but not including - the unwinding
// limit and copy the contents of the activation frame to the input
// frame description.
__ leap(rdx, Operand(rbx, FrameDescription::frame_content_offset()));
Label pop_loop_header;
__ jmp(&pop_loop_header);
Label pop_loop;
__ bind(&pop_loop);
__ Pop(Operand(rdx, 0));
__ addp(rdx, Immediate(sizeof(intptr_t)));
__ bind(&pop_loop_header);
__ cmpp(rcx, rsp);
__ j(not_equal, &pop_loop);
// Compute the output frame in the deoptimizer.
__ pushq(rax);
__ PrepareCallCFunction(2);
__ movp(arg_reg_1, rax);
__ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate()));
{
AllowExternalCallThatCantCauseGC scope(masm());
__ CallCFunction(
ExternalReference::compute_output_frames_function(isolate()), 2);
}
__ popq(rax);
__ movp(rsp, Operand(rax, Deoptimizer::caller_frame_top_offset()));
// Replace the current (input) frame with the output frames.
Label outer_push_loop, inner_push_loop,
outer_loop_header, inner_loop_header;
// Outer loop state: rax = current FrameDescription**, rdx = one past the
// last FrameDescription**.
__ movl(rdx, Operand(rax, Deoptimizer::output_count_offset()));
__ movp(rax, Operand(rax, Deoptimizer::output_offset()));
__ leap(rdx, Operand(rax, rdx, times_pointer_size, 0));
__ jmp(&outer_loop_header);
__ bind(&outer_push_loop);
// Inner loop state: rbx = current FrameDescription*, rcx = loop index.
__ movp(rbx, Operand(rax, 0));
__ movp(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
__ jmp(&inner_loop_header);
__ bind(&inner_push_loop);
__ subp(rcx, Immediate(sizeof(intptr_t)));
__ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset()));
__ bind(&inner_loop_header);
__ testp(rcx, rcx);
__ j(not_zero, &inner_push_loop);
__ addp(rax, Immediate(kPointerSize));
__ bind(&outer_loop_header);
__ cmpp(rax, rdx);
__ j(below, &outer_push_loop);
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
int code = config->GetAllocatableDoubleCode(i);
XMMRegister xmm_reg = XMMRegister::from_code(code);
int src_offset = code * kDoubleSize + double_regs_offset;
__ Movsd(xmm_reg, Operand(rbx, src_offset));
}
// Push state, pc, and continuation from the last output frame.
__ Push(Operand(rbx, FrameDescription::state_offset()));
__ PushQuad(Operand(rbx, FrameDescription::pc_offset()));
__ PushQuad(Operand(rbx, FrameDescription::continuation_offset()));
// Push the registers from the last output frame.
for (int i = 0; i < kNumberOfRegisters; i++) {
int offset = (i * kPointerSize) + FrameDescription::registers_offset();
__ PushQuad(Operand(rbx, offset));
}
// Restore the registers from the stack.
for (int i = kNumberOfRegisters - 1; i >= 0 ; i--) {
Register r = Register::from_code(i);
// Do not restore rsp, simply pop the value into the next register
// and overwrite this afterwards.
if (r.is(rsp)) {
DCHECK(i > 0);
r = Register::from_code(i - 1);
}
__ popq(r);
}
// Set up the roots register.
__ InitializeRootRegister();
// Return to the continuation point.
__ ret(0);
}
void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
// Create a sequence of deoptimization entries.
Label done;
for (int i = 0; i < count(); i++) {
int start = masm()->pc_offset();
USE(start);
__ pushq_imm32(i);
__ jmp(&done);
DCHECK(masm()->pc_offset() - start == table_entry_size_);
}
__ bind(&done);
}
void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
if (kPCOnStackSize == 2 * kPointerSize) {
// Zero out the high-32 bit of PC for x32 port.
SetFrameSlot(offset + kPointerSize, 0);
}
SetFrameSlot(offset, value);
}
void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
if (kFPOnStackSize == 2 * kPointerSize) {
// Zero out the high-32 bit of FP for x32 port.
SetFrameSlot(offset + kPointerSize, 0);
}
SetFrameSlot(offset, value);
}
void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
// No embedded constant pool support.
UNREACHABLE();
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64