// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/interface-descriptors.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate, MacroAssembler* masm,
Code::Flags flags, StubCache::Table table,
Register receiver, Register name,
// The offset is scaled by 4, based on
// kCacheIndexShift, which is two bits
Register offset) {
// We need to scale up the pointer by 2 when the offset is scaled by less
// than the pointer size.
DCHECK(kPointerSize == kInt64Size
? kPointerSizeLog2 == StubCache::kCacheIndexShift + 1
: kPointerSizeLog2 == StubCache::kCacheIndexShift);
ScaleFactor scale_factor = kPointerSize == kInt64Size ? times_2 : times_1;
DCHECK_EQ(3u * kPointerSize, sizeof(StubCache::Entry));
// The offset register holds the entry offset times four (due to masking
// and shifting optimizations).
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
Label miss;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ leap(offset, Operand(offset, offset, times_2, 0));
__ LoadAddress(kScratchRegister, key_offset);
// Check that the key in the entry matches the name.
__ cmpp(name, Operand(kScratchRegister, offset, scale_factor, 0));
__ j(not_equal, &miss);
// Get the map entry from the cache.
// Use key_offset + kPointerSize * 2, rather than loading map_offset.
DCHECK(isolate->stub_cache()->map_reference(table).address() -
isolate->stub_cache()->key_reference(table).address() ==
kPointerSize * 2);
__ movp(kScratchRegister,
Operand(kScratchRegister, offset, scale_factor, kPointerSize * 2));
__ cmpp(kScratchRegister, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Get the code entry from the cache.
__ LoadAddress(kScratchRegister, value_offset);
__ movp(kScratchRegister, Operand(kScratchRegister, offset, scale_factor, 0));
// Check that the flags match what we're looking for.
__ movl(offset, FieldOperand(kScratchRegister, Code::kFlagsOffset));
__ andp(offset, Immediate(~Code::kFlagsNotUsedInLookup));
__ cmpl(offset, Immediate(flags));
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ addp(kScratchRegister, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(kScratchRegister);
__ bind(&miss);
}
void StubCache::GenerateProbe(MacroAssembler* masm, Code::Kind ic_kind,
Code::Flags flags, Register receiver,
Register name, Register scratch, Register extra,
Register extra2, Register extra3) {
Isolate* isolate = masm->isolate();
Label miss;
USE(extra); // The register extra is not used on the X64 platform.
USE(extra2); // The register extra2 is not used on the X64 platform.
USE(extra3); // The register extra2 is not used on the X64 platform.
// Make sure that code is valid. The multiplying code relies on the
// entry size being 3 * kPointerSize.
DCHECK(sizeof(Entry) == 3 * kPointerSize);
// Make sure that there are no register conflicts.
DCHECK(!scratch.is(receiver));
DCHECK(!scratch.is(name));
// Check scratch register is valid, extra and extra2 are unused.
DCHECK(!scratch.is(no_reg));
DCHECK(extra2.is(no_reg));
DCHECK(extra3.is(no_reg));
#ifdef DEBUG
// If vector-based ics are in use, ensure that scratch doesn't conflict with
// the vector and slot registers, which need to be preserved for a handler
// call or miss.
if (IC::ICUseVector(ic_kind)) {
if (ic_kind == Code::LOAD_IC || ic_kind == Code::LOAD_GLOBAL_IC ||
ic_kind == Code::KEYED_LOAD_IC) {
Register vector = LoadWithVectorDescriptor::VectorRegister();
Register slot = LoadDescriptor::SlotRegister();
DCHECK(!AreAliased(vector, slot, scratch));
} else {
DCHECK(ic_kind == Code::STORE_IC || ic_kind == Code::KEYED_STORE_IC);
Register vector = VectorStoreICDescriptor::VectorRegister();
Register slot = VectorStoreICDescriptor::SlotRegister();
DCHECK(!AreAliased(vector, slot, scratch));
}
}
#endif
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ movl(scratch, FieldOperand(name, Name::kHashFieldOffset));
// Use only the low 32 bits of the map pointer.
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xorp(scratch, Immediate(flags));
// We mask out the last two bits because they are not part of the hash and
// they are always 01 for maps. Also in the two 'and' instructions below.
__ andp(scratch, Immediate((kPrimaryTableSize - 1) << kCacheIndexShift));
// Probe the primary table.
ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch);
// Primary miss: Compute hash for secondary probe.
__ movl(scratch, FieldOperand(name, Name::kHashFieldOffset));
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xorp(scratch, Immediate(flags));
__ andp(scratch, Immediate((kPrimaryTableSize - 1) << kCacheIndexShift));
__ subl(scratch, name);
__ addl(scratch, Immediate(flags));
__ andp(scratch, Immediate((kSecondaryTableSize - 1) << kCacheIndexShift));
// Probe the secondary table.
ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64