// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/interface-descriptors.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate, MacroAssembler* masm,
Code::Flags flags, StubCache::Table table,
Register receiver, Register name,
// Number of the cache entry, not scaled.
Register offset, Register scratch, Register scratch2,
Register offset_scratch) {
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
ExternalReference map_offset(isolate->stub_cache()->map_reference(table));
uint32_t key_off_addr = reinterpret_cast<uint32_t>(key_offset.address());
uint32_t value_off_addr = reinterpret_cast<uint32_t>(value_offset.address());
uint32_t map_off_addr = reinterpret_cast<uint32_t>(map_offset.address());
// Check the relative positions of the address fields.
DCHECK(value_off_addr > key_off_addr);
DCHECK((value_off_addr - key_off_addr) % 4 == 0);
DCHECK((value_off_addr - key_off_addr) < (256 * 4));
DCHECK(map_off_addr > key_off_addr);
DCHECK((map_off_addr - key_off_addr) % 4 == 0);
DCHECK((map_off_addr - key_off_addr) < (256 * 4));
Label miss;
Register base_addr = scratch;
scratch = no_reg;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ add(offset_scratch, offset, Operand(offset, LSL, 1));
// Calculate the base address of the entry.
__ mov(base_addr, Operand(key_offset));
__ add(base_addr, base_addr, Operand(offset_scratch, LSL, kPointerSizeLog2));
// Check that the key in the entry matches the name.
__ ldr(ip, MemOperand(base_addr, 0));
__ cmp(name, ip);
__ b(ne, &miss);
// Check the map matches.
__ ldr(ip, MemOperand(base_addr, map_off_addr - key_off_addr));
__ ldr(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ cmp(ip, scratch2);
__ b(ne, &miss);
// Get the code entry from the cache.
Register code = scratch2;
scratch2 = no_reg;
__ ldr(code, MemOperand(base_addr, value_off_addr - key_off_addr));
// Check that the flags match what we're looking for.
Register flags_reg = base_addr;
base_addr = no_reg;
__ ldr(flags_reg, FieldMemOperand(code, Code::kFlagsOffset));
// It's a nice optimization if this constant is encodable in the bic insn.
uint32_t mask = Code::kFlagsNotUsedInLookup;
DCHECK(__ ImmediateFitsAddrMode1Instruction(mask));
__ bic(flags_reg, flags_reg, Operand(mask));
__ cmp(flags_reg, Operand(flags));
__ b(ne, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ add(pc, code, Operand(Code::kHeaderSize - kHeapObjectTag));
// Miss: fall through.
__ bind(&miss);
}
void StubCache::GenerateProbe(MacroAssembler* masm, Code::Kind ic_kind,
Code::Flags flags, Register receiver,
Register name, Register scratch, Register extra,
Register extra2, Register extra3) {
Isolate* isolate = masm->isolate();
Label miss;
// Make sure that code is valid. The multiplying code relies on the
// entry size being 12.
DCHECK(sizeof(Entry) == 12);
// Make sure that there are no register conflicts.
DCHECK(!AreAliased(receiver, name, scratch, extra, extra2, extra3));
// Check scratch, extra and extra2 registers are valid.
DCHECK(!scratch.is(no_reg));
DCHECK(!extra.is(no_reg));
DCHECK(!extra2.is(no_reg));
DCHECK(!extra3.is(no_reg));
#ifdef DEBUG
// If vector-based ics are in use, ensure that scratch, extra, extra2 and
// extra3 don't conflict with the vector and slot registers, which need
// to be preserved for a handler call or miss.
if (IC::ICUseVector(ic_kind)) {
Register vector, slot;
if (ic_kind == Code::STORE_IC || ic_kind == Code::KEYED_STORE_IC) {
vector = VectorStoreICDescriptor::VectorRegister();
slot = VectorStoreICDescriptor::SlotRegister();
} else {
vector = LoadWithVectorDescriptor::VectorRegister();
slot = LoadWithVectorDescriptor::SlotRegister();
}
DCHECK(!AreAliased(vector, slot, scratch, extra, extra2, extra3));
}
#endif
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1, extra2,
extra3);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ ldr(scratch, FieldMemOperand(name, Name::kHashFieldOffset));
__ ldr(ip, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ add(scratch, scratch, Operand(ip));
uint32_t mask = kPrimaryTableSize - 1;
// We shift out the last two bits because they are not part of the hash and
// they are always 01 for maps.
__ mov(scratch, Operand(scratch, LSR, kCacheIndexShift));
// Mask down the eor argument to the minimum to keep the immediate
// ARM-encodable.
__ eor(scratch, scratch, Operand((flags >> kCacheIndexShift) & mask));
// Prefer and_ to ubfx here because ubfx takes 2 cycles.
__ and_(scratch, scratch, Operand(mask));
// Probe the primary table.
ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch, extra,
extra2, extra3);
// Primary miss: Compute hash for secondary probe.
__ sub(scratch, scratch, Operand(name, LSR, kCacheIndexShift));
uint32_t mask2 = kSecondaryTableSize - 1;
__ add(scratch, scratch, Operand((flags >> kCacheIndexShift) & mask2));
__ and_(scratch, scratch, Operand(mask2));
// Probe the secondary table.
ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch, extra,
extra2, extra3);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1, extra2,
extra3);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM