// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/frames.h"
#include <sstream>
#include "src/ast/ast.h"
#include "src/ast/scopeinfo.h"
#include "src/base/bits.h"
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/full-codegen/full-codegen.h"
#include "src/register-configuration.h"
#include "src/safepoint-table.h"
#include "src/string-stream.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
ReturnAddressLocationResolver
StackFrame::return_address_location_resolver_ = NULL;
// Iterator that supports traversing the stack handlers of a
// particular frame. Needs to know the top of the handler chain.
class StackHandlerIterator BASE_EMBEDDED {
public:
StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
: limit_(frame->fp()), handler_(handler) {
// Make sure the handler has already been unwound to this frame.
DCHECK(frame->sp() <= handler->address());
}
StackHandler* handler() const { return handler_; }
bool done() {
return handler_ == NULL || handler_->address() > limit_;
}
void Advance() {
DCHECK(!done());
handler_ = handler_->next();
}
private:
const Address limit_;
StackHandler* handler_;
};
// -------------------------------------------------------------------------
#define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate,
bool can_access_heap_objects)
: isolate_(isolate),
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
frame_(NULL), handler_(NULL),
can_access_heap_objects_(can_access_heap_objects) {
}
#undef INITIALIZE_SINGLETON
StackFrameIterator::StackFrameIterator(Isolate* isolate)
: StackFrameIteratorBase(isolate, true) {
Reset(isolate->thread_local_top());
}
StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
: StackFrameIteratorBase(isolate, true) {
Reset(t);
}
void StackFrameIterator::Advance() {
DCHECK(!done());
// Compute the state of the calling frame before restoring
// callee-saved registers and unwinding handlers. This allows the
// frame code that computes the caller state to access the top
// handler and the value of any callee-saved register if needed.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
// Unwind handlers corresponding to the current frame.
StackHandlerIterator it(frame_, handler_);
while (!it.done()) it.Advance();
handler_ = it.handler();
// Advance to the calling frame.
frame_ = SingletonFor(type, &state);
// When we're done iterating over the stack frames, the handler
// chain must have been completely unwound.
DCHECK(!done() || handler_ == NULL);
}
void StackFrameIterator::Reset(ThreadLocalTop* top) {
StackFrame::State state;
StackFrame::Type type = ExitFrame::GetStateForFramePointer(
Isolate::c_entry_fp(top), &state);
handler_ = StackHandler::FromAddress(Isolate::handler(top));
frame_ = SingletonFor(type, &state);
}
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type,
StackFrame::State* state) {
StackFrame* result = SingletonFor(type);
DCHECK((!result) == (type == StackFrame::NONE));
if (result) result->state_ = *state;
return result;
}
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: \
return &field##_;
switch (type) {
case StackFrame::NONE: return NULL;
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default: break;
}
return NULL;
#undef FRAME_TYPE_CASE
}
// -------------------------------------------------------------------------
JavaScriptFrameIterator::JavaScriptFrameIterator(Isolate* isolate,
StackFrame::Id id)
: iterator_(isolate) {
while (!done()) {
Advance();
if (frame()->id() == id) return;
}
}
void JavaScriptFrameIterator::Advance() {
do {
iterator_.Advance();
} while (!iterator_.done() && !iterator_.frame()->is_java_script());
}
void JavaScriptFrameIterator::AdvanceToArgumentsFrame() {
if (!frame()->has_adapted_arguments()) return;
iterator_.Advance();
DCHECK(iterator_.frame()->is_arguments_adaptor());
}
// -------------------------------------------------------------------------
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
: iterator_(isolate) {
if (!done() && !IsValidFrame(iterator_.frame())) Advance();
}
void StackTraceFrameIterator::Advance() {
do {
iterator_.Advance();
} while (!done() && !IsValidFrame(iterator_.frame()));
}
bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) const {
if (frame->is_java_script()) {
JavaScriptFrame* jsFrame = static_cast<JavaScriptFrame*>(frame);
if (!jsFrame->function()->IsJSFunction()) return false;
Object* script = jsFrame->function()->shared()->script();
// Don't show functions from native scripts to user.
return (script->IsScript() &&
Script::TYPE_NATIVE != Script::cast(script)->type());
}
// apart from javascript, only wasm is valid
return frame->is_wasm();
}
// -------------------------------------------------------------------------
SafeStackFrameIterator::SafeStackFrameIterator(
Isolate* isolate,
Address fp, Address sp, Address js_entry_sp)
: StackFrameIteratorBase(isolate, false),
low_bound_(sp),
high_bound_(js_entry_sp),
top_frame_type_(StackFrame::NONE),
external_callback_scope_(isolate->external_callback_scope()) {
StackFrame::State state;
StackFrame::Type type;
ThreadLocalTop* top = isolate->thread_local_top();
if (IsValidTop(top)) {
type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
top_frame_type_ = type;
} else if (IsValidStackAddress(fp)) {
DCHECK(fp != NULL);
state.fp = fp;
state.sp = sp;
state.pc_address = StackFrame::ResolveReturnAddressLocation(
reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp)));
// StackFrame::ComputeType will read both kContextOffset and kMarkerOffset,
// we check only that kMarkerOffset is within the stack bounds and do
// compile time check that kContextOffset slot is pushed on the stack before
// kMarkerOffset.
STATIC_ASSERT(StandardFrameConstants::kFunctionOffset <
StandardFrameConstants::kContextOffset);
Address frame_marker = fp + StandardFrameConstants::kFunctionOffset;
if (IsValidStackAddress(frame_marker)) {
type = StackFrame::ComputeType(this, &state);
top_frame_type_ = type;
} else {
// Mark the frame as JAVA_SCRIPT if we cannot determine its type.
// The frame anyways will be skipped.
type = StackFrame::JAVA_SCRIPT;
// Top frame is incomplete so we cannot reliably determine its type.
top_frame_type_ = StackFrame::NONE;
}
} else {
return;
}
frame_ = SingletonFor(type, &state);
if (frame_) Advance();
}
bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const {
Address c_entry_fp = Isolate::c_entry_fp(top);
if (!IsValidExitFrame(c_entry_fp)) return false;
// There should be at least one JS_ENTRY stack handler.
Address handler = Isolate::handler(top);
if (handler == NULL) return false;
// Check that there are no js frames on top of the native frames.
return c_entry_fp < handler;
}
void SafeStackFrameIterator::AdvanceOneFrame() {
DCHECK(!done());
StackFrame* last_frame = frame_;
Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
// Before advancing to the next stack frame, perform pointer validity tests.
if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) {
frame_ = NULL;
return;
}
// Advance to the previous frame.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
frame_ = SingletonFor(type, &state);
if (!frame_) return;
// Check that we have actually moved to the previous frame in the stack.
if (frame_->sp() < last_sp || frame_->fp() < last_fp) {
frame_ = NULL;
}
}
bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
}
bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
StackFrame::State state;
if (frame->is_entry() || frame->is_entry_construct()) {
// See EntryFrame::GetCallerState. It computes the caller FP address
// and calls ExitFrame::GetStateForFramePointer on it. We need to be
// sure that caller FP address is valid.
Address caller_fp = Memory::Address_at(
frame->fp() + EntryFrameConstants::kCallerFPOffset);
if (!IsValidExitFrame(caller_fp)) return false;
} else if (frame->is_arguments_adaptor()) {
// See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
// the number of arguments is stored on stack as Smi. We need to check
// that it really an Smi.
Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
GetExpression(0);
if (!number_of_args->IsSmi()) {
return false;
}
}
frame->ComputeCallerState(&state);
return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
SingletonFor(frame->GetCallerState(&state)) != NULL;
}
bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const {
if (!IsValidStackAddress(fp)) return false;
Address sp = ExitFrame::ComputeStackPointer(fp);
if (!IsValidStackAddress(sp)) return false;
StackFrame::State state;
ExitFrame::FillState(fp, sp, &state);
return *state.pc_address != NULL;
}
void SafeStackFrameIterator::Advance() {
while (true) {
AdvanceOneFrame();
if (done()) break;
ExternalCallbackScope* last_callback_scope = NULL;
while (external_callback_scope_ != NULL &&
external_callback_scope_->scope_address() < frame_->fp()) {
// As long as the setup of a frame is not atomic, we may happen to be
// in an interval where an ExternalCallbackScope is already created,
// but the frame is not yet entered. So we are actually observing
// the previous frame.
// Skip all the ExternalCallbackScope's that are below the current fp.
last_callback_scope = external_callback_scope_;
external_callback_scope_ = external_callback_scope_->previous();
}
if (frame_->is_java_script()) break;
if (frame_->is_exit()) {
// Some of the EXIT frames may have ExternalCallbackScope allocated on
// top of them. In that case the scope corresponds to the first EXIT
// frame beneath it. There may be other EXIT frames on top of the
// ExternalCallbackScope, just skip them as we cannot collect any useful
// information about them.
if (last_callback_scope) {
frame_->state_.pc_address =
last_callback_scope->callback_entrypoint_address();
}
break;
}
}
}
// -------------------------------------------------------------------------
Code* StackFrame::GetSafepointData(Isolate* isolate,
Address inner_pointer,
SafepointEntry* safepoint_entry,
unsigned* stack_slots) {
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
isolate->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
if (!entry->safepoint_entry.is_valid()) {
entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer);
DCHECK(entry->safepoint_entry.is_valid());
} else {
DCHECK(entry->safepoint_entry.Equals(
entry->code->GetSafepointEntry(inner_pointer)));
}
// Fill in the results and return the code.
Code* code = entry->code;
*safepoint_entry = entry->safepoint_entry;
*stack_slots = code->stack_slots();
return code;
}
#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* object, Address addr);
#endif
void StackFrame::IteratePc(ObjectVisitor* v, Address* pc_address,
Address* constant_pool_address, Code* holder) {
Address pc = *pc_address;
DCHECK(GcSafeCodeContains(holder, pc));
unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
Object* code = holder;
v->VisitPointer(&code);
if (code != holder) {
holder = reinterpret_cast<Code*>(code);
pc = holder->instruction_start() + pc_offset;
*pc_address = pc;
if (FLAG_enable_embedded_constant_pool && constant_pool_address) {
*constant_pool_address = holder->constant_pool();
}
}
}
void StackFrame::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver resolver) {
DCHECK(return_address_location_resolver_ == NULL);
return_address_location_resolver_ = resolver;
}
static bool IsInterpreterFramePc(Isolate* isolate, Address pc) {
Code* interpreter_entry_trampoline =
isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline);
Code* interpreter_bytecode_dispatch =
isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
Code* interpreter_baseline_on_return =
isolate->builtins()->builtin(Builtins::kInterpreterMarkBaselineOnReturn);
return (pc >= interpreter_entry_trampoline->instruction_start() &&
pc < interpreter_entry_trampoline->instruction_end()) ||
(pc >= interpreter_bytecode_dispatch->instruction_start() &&
pc < interpreter_bytecode_dispatch->instruction_end()) ||
(pc >= interpreter_baseline_on_return->instruction_start() &&
pc < interpreter_baseline_on_return->instruction_end());
}
StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator,
State* state) {
DCHECK(state->fp != NULL);
#if defined(USE_SIMULATOR)
MSAN_MEMORY_IS_INITIALIZED(
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset,
kPointerSize);
#endif
Object* marker = Memory::Object_at(
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset);
if (!iterator->can_access_heap_objects_) {
// TODO(titzer): "can_access_heap_objects" is kind of bogus. It really
// means that we are being called from the profiler, which can interrupt
// the VM with a signal at any arbitrary instruction, with essentially
// anything on the stack. So basically none of these checks are 100%
// reliable.
#if defined(USE_SIMULATOR)
MSAN_MEMORY_IS_INITIALIZED(
state->fp + StandardFrameConstants::kFunctionOffset, kPointerSize);
#endif
Object* maybe_function =
Memory::Object_at(state->fp + StandardFrameConstants::kFunctionOffset);
if (!marker->IsSmi()) {
if (maybe_function->IsSmi()) {
return NONE;
} else if (FLAG_ignition && IsInterpreterFramePc(iterator->isolate(),
*(state->pc_address))) {
return INTERPRETED;
} else {
return JAVA_SCRIPT;
}
}
} else {
// Look up the code object to figure out the type of the stack frame.
Code* code_obj =
GetContainingCode(iterator->isolate(), *(state->pc_address));
if (code_obj != nullptr) {
switch (code_obj->kind()) {
case Code::BUILTIN:
if (marker->IsSmi()) break;
if (code_obj->is_interpreter_trampoline_builtin()) {
return INTERPRETED;
}
if (code_obj->is_turbofanned()) {
// TODO(bmeurer): We treat frames for BUILTIN Code objects as
// OptimizedFrame for now (all the builtins with JavaScript
// linkage are actually generated with TurboFan currently, so
// this is sound).
return OPTIMIZED;
}
return BUILTIN;
case Code::FUNCTION:
return JAVA_SCRIPT;
case Code::OPTIMIZED_FUNCTION:
return OPTIMIZED;
case Code::WASM_FUNCTION:
return WASM;
case Code::WASM_TO_JS_FUNCTION:
return WASM_TO_JS;
case Code::JS_TO_WASM_FUNCTION:
return JS_TO_WASM;
default:
// All other types should have an explicit marker
break;
}
} else {
return NONE;
}
}
DCHECK(marker->IsSmi());
StackFrame::Type candidate =
static_cast<StackFrame::Type>(Smi::cast(marker)->value());
switch (candidate) {
case ENTRY:
case ENTRY_CONSTRUCT:
case EXIT:
case STUB:
case STUB_FAILURE_TRAMPOLINE:
case INTERNAL:
case CONSTRUCT:
case ARGUMENTS_ADAPTOR:
case WASM_TO_JS:
case WASM:
return candidate;
case JS_TO_WASM:
case JAVA_SCRIPT:
case OPTIMIZED:
case INTERPRETED:
default:
// Unoptimized and optimized JavaScript frames, including
// interpreted frames, should never have a StackFrame::Type
// marker. If we find one, we're likely being called from the
// profiler in a bogus stack frame.
return NONE;
}
}
#ifdef DEBUG
bool StackFrame::can_access_heap_objects() const {
return iterator_->can_access_heap_objects_;
}
#endif
StackFrame::Type StackFrame::GetCallerState(State* state) const {
ComputeCallerState(state);
return ComputeType(iterator_, state);
}
Address StackFrame::UnpaddedFP() const {
return fp();
}
Code* EntryFrame::unchecked_code() const {
return isolate()->heap()->js_entry_code();
}
void EntryFrame::ComputeCallerState(State* state) const {
GetCallerState(state);
}
void EntryFrame::SetCallerFp(Address caller_fp) {
const int offset = EntryFrameConstants::kCallerFPOffset;
Memory::Address_at(this->fp() + offset) = caller_fp;
}
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
const int offset = EntryFrameConstants::kCallerFPOffset;
Address fp = Memory::Address_at(this->fp() + offset);
return ExitFrame::GetStateForFramePointer(fp, state);
}
Code* EntryConstructFrame::unchecked_code() const {
return isolate()->heap()->js_construct_entry_code();
}
Object*& ExitFrame::code_slot() const {
const int offset = ExitFrameConstants::kCodeOffset;
return Memory::Object_at(fp() + offset);
}
Code* ExitFrame::unchecked_code() const {
return reinterpret_cast<Code*>(code_slot());
}
void ExitFrame::ComputeCallerState(State* state) const {
// Set up the caller state.
state->sp = caller_sp();
state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
if (FLAG_enable_embedded_constant_pool) {
state->constant_pool_address = reinterpret_cast<Address*>(
fp() + ExitFrameConstants::kConstantPoolOffset);
}
}
void ExitFrame::SetCallerFp(Address caller_fp) {
Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp;
}
void ExitFrame::Iterate(ObjectVisitor* v) const {
// The arguments are traversed as part of the expression stack of
// the calling frame.
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
v->VisitPointer(&code_slot());
}
Address ExitFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
if (fp == 0) return NONE;
Address sp = ComputeStackPointer(fp);
FillState(fp, sp, state);
DCHECK(*state->pc_address != NULL);
return EXIT;
}
Address ExitFrame::ComputeStackPointer(Address fp) {
#if defined(USE_SIMULATOR)
MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kPointerSize);
#endif
return Memory::Address_at(fp + ExitFrameConstants::kSPOffset);
}
void ExitFrame::FillState(Address fp, Address sp, State* state) {
state->sp = sp;
state->fp = fp;
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize));
// The constant pool recorded in the exit frame is not associated
// with the pc in this state (the return address into a C entry
// stub). ComputeCallerState will retrieve the constant pool
// together with the associated caller pc.
state->constant_pool_address = NULL;
}
Address StandardFrame::GetExpressionAddress(int n) const {
const int offset = StandardFrameConstants::kExpressionsOffset;
return fp() + offset - n * kPointerSize;
}
Address InterpretedFrame::GetExpressionAddress(int n) const {
const int offset = InterpreterFrameConstants::kExpressionsOffset;
return fp() + offset - n * kPointerSize;
}
int StandardFrame::ComputeExpressionsCount() const {
Address base = GetExpressionAddress(0);
Address limit = sp() - kPointerSize;
DCHECK(base >= limit); // stack grows downwards
// Include register-allocated locals in number of expressions.
return static_cast<int>((base - limit) / kPointerSize);
}
void StandardFrame::ComputeCallerState(State* state) const {
state->sp = caller_sp();
state->fp = caller_fp();
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(ComputePCAddress(fp())));
state->constant_pool_address =
reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp()));
}
void StandardFrame::SetCallerFp(Address caller_fp) {
Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) =
caller_fp;
}
void StandardFrame::IterateCompiledFrame(ObjectVisitor* v) const {
// Make sure that we're not doing "safe" stack frame iteration. We cannot
// possibly find pointers in optimized frames in that state.
DCHECK(can_access_heap_objects());
// Compute the safepoint information.
unsigned stack_slots = 0;
SafepointEntry safepoint_entry;
Code* code = StackFrame::GetSafepointData(
isolate(), pc(), &safepoint_entry, &stack_slots);
unsigned slot_space = stack_slots * kPointerSize;
// Determine the fixed header and spill slot area size.
int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp;
Object* marker =
Memory::Object_at(fp() + CommonFrameConstants::kContextOrFrameTypeOffset);
if (marker->IsSmi()) {
StackFrame::Type candidate =
static_cast<StackFrame::Type>(Smi::cast(marker)->value());
switch (candidate) {
case ENTRY:
case ENTRY_CONSTRUCT:
case EXIT:
case STUB_FAILURE_TRAMPOLINE:
case ARGUMENTS_ADAPTOR:
case STUB:
case INTERNAL:
case CONSTRUCT:
case JS_TO_WASM:
case WASM_TO_JS:
case WASM:
frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp;
break;
case JAVA_SCRIPT:
case OPTIMIZED:
case INTERPRETED:
case BUILTIN:
// These frame types have a context, but they are actually stored
// in the place on the stack that one finds the frame type.
UNREACHABLE();
break;
case NONE:
case NUMBER_OF_TYPES:
case MANUAL:
UNREACHABLE();
break;
}
}
slot_space -=
(frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp);
Object** frame_header_base = &Memory::Object_at(fp() - frame_header_size);
Object** frame_header_limit =
&Memory::Object_at(fp() - StandardFrameConstants::kCPSlotSize);
Object** parameters_base = &Memory::Object_at(sp());
Object** parameters_limit = frame_header_base - slot_space / kPointerSize;
// Visit the parameters that may be on top of the saved registers.
if (safepoint_entry.argument_count() > 0) {
v->VisitPointers(parameters_base,
parameters_base + safepoint_entry.argument_count());
parameters_base += safepoint_entry.argument_count();
}
// Skip saved double registers.
if (safepoint_entry.has_doubles()) {
// Number of doubles not known at snapshot time.
DCHECK(!isolate()->serializer_enabled());
parameters_base += RegisterConfiguration::Crankshaft()
->num_allocatable_double_registers() *
kDoubleSize / kPointerSize;
}
// Visit the registers that contain pointers if any.
if (safepoint_entry.HasRegisters()) {
for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
if (safepoint_entry.HasRegisterAt(i)) {
int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
v->VisitPointer(parameters_base + reg_stack_index);
}
}
// Skip the words containing the register values.
parameters_base += kNumSafepointRegisters;
}
// We're done dealing with the register bits.
uint8_t* safepoint_bits = safepoint_entry.bits();
safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
// Visit the rest of the parameters.
if (!is_js_to_wasm() && !is_wasm()) {
// Non-WASM frames have tagged values as parameters.
v->VisitPointers(parameters_base, parameters_limit);
}
// Visit pointer spill slots and locals.
for (unsigned index = 0; index < stack_slots; index++) {
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
v->VisitPointer(parameters_limit + index);
}
}
// Visit the return address in the callee and incoming arguments.
IteratePc(v, pc_address(), constant_pool_address(), code);
if (!is_wasm() && !is_wasm_to_js()) {
// Visit the context in stub frame and JavaScript frame.
// Visit the function in JavaScript frame.
v->VisitPointers(frame_header_base, frame_header_limit);
}
}
void StubFrame::Iterate(ObjectVisitor* v) const {
IterateCompiledFrame(v);
}
Code* StubFrame::unchecked_code() const {
return static_cast<Code*>(isolate()->FindCodeObject(pc()));
}
Address StubFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
int StubFrame::GetNumberOfIncomingArguments() const {
return 0;
}
void OptimizedFrame::Iterate(ObjectVisitor* v) const {
IterateCompiledFrame(v);
}
void JavaScriptFrame::SetParameterValue(int index, Object* value) const {
Memory::Object_at(GetParameterSlot(index)) = value;
}
bool JavaScriptFrame::IsConstructor() const {
Address fp = caller_fp();
if (has_adapted_arguments()) {
// Skip the arguments adaptor frame and look at the real caller.
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
return IsConstructFrame(fp);
}
bool JavaScriptFrame::HasInlinedFrames() const {
List<JSFunction*> functions(1);
GetFunctions(&functions);
return functions.length() > 1;
}
int JavaScriptFrame::GetArgumentsLength() const {
// If there is an arguments adaptor frame get the arguments length from it.
if (has_adapted_arguments()) {
return ArgumentsAdaptorFrame::GetLength(caller_fp());
} else {
return GetNumberOfIncomingArguments();
}
}
Code* JavaScriptFrame::unchecked_code() const {
return function()->code();
}
int JavaScriptFrame::GetNumberOfIncomingArguments() const {
DCHECK(can_access_heap_objects() &&
isolate()->heap()->gc_state() == Heap::NOT_IN_GC);
return function()->shared()->internal_formal_parameter_count();
}
Address JavaScriptFrame::GetCallerStackPointer() const {
return fp() + StandardFrameConstants::kCallerSPOffset;
}
void JavaScriptFrame::GetFunctions(List<JSFunction*>* functions) const {
DCHECK(functions->length() == 0);
functions->Add(function());
}
void JavaScriptFrame::Summarize(List<FrameSummary>* functions,
FrameSummary::Mode mode) const {
DCHECK(functions->length() == 0);
Code* code = LookupCode();
int offset = static_cast<int>(pc() - code->instruction_start());
AbstractCode* abstract_code = AbstractCode::cast(code);
FrameSummary summary(receiver(), function(), abstract_code, offset,
IsConstructor(), mode);
functions->Add(summary);
}
JSFunction* JavaScriptFrame::function() const {
return JSFunction::cast(function_slot_object());
}
Object* JavaScriptFrame::receiver() const { return GetParameter(-1); }
int JavaScriptFrame::LookupExceptionHandlerInTable(
int* stack_depth, HandlerTable::CatchPrediction* prediction) {
Code* code = LookupCode();
DCHECK(!code->is_optimized_code());
HandlerTable* table = HandlerTable::cast(code->handler_table());
int pc_offset = static_cast<int>(pc() - code->entry());
return table->LookupRange(pc_offset, stack_depth, prediction);
}
void JavaScriptFrame::PrintFunctionAndOffset(JSFunction* function, Code* code,
Address pc, FILE* file,
bool print_line_number) {
PrintF(file, "%s", function->IsOptimized() ? "*" : "~");
function->PrintName(file);
int code_offset = static_cast<int>(pc - code->instruction_start());
PrintF(file, "+%d", code_offset);
if (print_line_number) {
SharedFunctionInfo* shared = function->shared();
int source_pos = code->SourcePosition(code_offset);
Object* maybe_script = shared->script();
if (maybe_script->IsScript()) {
Script* script = Script::cast(maybe_script);
int line = script->GetLineNumber(source_pos) + 1;
Object* script_name_raw = script->name();
if (script_name_raw->IsString()) {
String* script_name = String::cast(script->name());
base::SmartArrayPointer<char> c_script_name =
script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
PrintF(file, " at %s:%d", c_script_name.get(), line);
} else {
PrintF(file, " at <unknown>:%d", line);
}
} else {
PrintF(file, " at <unknown>:<unknown>");
}
}
}
void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args,
bool print_line_number) {
// constructor calls
DisallowHeapAllocation no_allocation;
JavaScriptFrameIterator it(isolate);
while (!it.done()) {
if (it.frame()->is_java_script()) {
JavaScriptFrame* frame = it.frame();
if (frame->IsConstructor()) PrintF(file, "new ");
PrintFunctionAndOffset(frame->function(), frame->unchecked_code(),
frame->pc(), file, print_line_number);
if (print_args) {
// function arguments
// (we are intentionally only printing the actually
// supplied parameters, not all parameters required)
PrintF(file, "(this=");
frame->receiver()->ShortPrint(file);
const int length = frame->ComputeParametersCount();
for (int i = 0; i < length; i++) {
PrintF(file, ", ");
frame->GetParameter(i)->ShortPrint(file);
}
PrintF(file, ")");
}
break;
}
it.Advance();
}
}
void JavaScriptFrame::SaveOperandStack(FixedArray* store) const {
int operands_count = store->length();
DCHECK_LE(operands_count, ComputeOperandsCount());
for (int i = 0; i < operands_count; i++) {
store->set(i, GetOperand(i));
}
}
namespace {
bool CannotDeoptFromAsmCode(Code* code, JSFunction* function) {
return code->is_turbofanned() && function->shared()->asm_function() &&
!FLAG_turbo_asm_deoptimization;
}
} // namespace
FrameSummary::FrameSummary(Object* receiver, JSFunction* function,
AbstractCode* abstract_code, int code_offset,
bool is_constructor, Mode mode)
: receiver_(receiver, function->GetIsolate()),
function_(function),
abstract_code_(abstract_code),
code_offset_(code_offset),
is_constructor_(is_constructor) {
DCHECK(abstract_code->IsBytecodeArray() ||
Code::cast(abstract_code)->kind() != Code::OPTIMIZED_FUNCTION ||
CannotDeoptFromAsmCode(Code::cast(abstract_code), function) ||
mode == kApproximateSummary);
}
FrameSummary FrameSummary::GetFirst(JavaScriptFrame* frame) {
List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
frame->Summarize(&frames);
return frames.first();
}
void FrameSummary::Print() {
PrintF("receiver: ");
receiver_->ShortPrint();
PrintF("\nfunction: ");
function_->shared()->DebugName()->ShortPrint();
PrintF("\ncode: ");
abstract_code_->ShortPrint();
if (abstract_code_->IsCode()) {
Code* code = abstract_code_->GetCode();
if (code->kind() == Code::FUNCTION) PrintF(" UNOPT ");
if (code->kind() == Code::OPTIMIZED_FUNCTION) {
if (function()->shared()->asm_function()) {
DCHECK(CannotDeoptFromAsmCode(code, *function()));
PrintF(" ASM ");
} else {
PrintF(" OPT (approximate)");
}
}
} else {
PrintF(" BYTECODE ");
}
PrintF("\npc: %d\n", code_offset_);
}
void OptimizedFrame::Summarize(List<FrameSummary>* frames,
FrameSummary::Mode mode) const {
DCHECK(frames->length() == 0);
DCHECK(is_optimized());
// Delegate to JS frame in absence of turbofan deoptimization.
// TODO(turbofan): Revisit once we support deoptimization across the board.
Code* code = LookupCode();
if (code->kind() == Code::BUILTIN ||
CannotDeoptFromAsmCode(code, function())) {
return JavaScriptFrame::Summarize(frames);
}
DisallowHeapAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* const data = GetDeoptimizationData(&deopt_index);
if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
DCHECK(data == nullptr);
if (mode == FrameSummary::kApproximateSummary) {
return JavaScriptFrame::Summarize(frames, mode);
}
FATAL("Missing deoptimization information for OptimizedFrame::Summarize.");
}
FixedArray* const literal_array = data->LiteralArray();
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode frame_opcode =
static_cast<Translation::Opcode>(it.Next());
DCHECK_EQ(Translation::BEGIN, frame_opcode);
it.Next(); // Drop frame count.
int jsframe_count = it.Next();
// We create the summary in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
bool is_constructor = IsConstructor();
while (jsframe_count != 0) {
frame_opcode = static_cast<Translation::Opcode>(it.Next());
if (frame_opcode == Translation::JS_FRAME ||
frame_opcode == Translation::INTERPRETED_FRAME) {
jsframe_count--;
BailoutId const bailout_id = BailoutId(it.Next());
SharedFunctionInfo* const shared_info =
SharedFunctionInfo::cast(literal_array->get(it.Next()));
it.Next(); // Skip height.
// The translation commands are ordered and the function is always
// at the first position, and the receiver is next.
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
// Get the correct function in the optimized frame.
JSFunction* function;
if (opcode == Translation::LITERAL) {
function = JSFunction::cast(literal_array->get(it.Next()));
} else {
CHECK_EQ(opcode, Translation::STACK_SLOT);
function = JSFunction::cast(StackSlotAt(it.Next()));
}
DCHECK_EQ(shared_info, function->shared());
// If we are at a call, the receiver is always in a stack slot.
// Otherwise we are not guaranteed to get the receiver value.
opcode = static_cast<Translation::Opcode>(it.Next());
// Get the correct receiver in the optimized frame.
Object* receiver;
if (opcode == Translation::LITERAL) {
receiver = literal_array->get(it.Next());
} else if (opcode == Translation::STACK_SLOT) {
receiver = StackSlotAt(it.Next());
} else {
// The receiver is not in a stack slot nor in a literal. We give up.
it.Skip(Translation::NumberOfOperandsFor(opcode));
// TODO(3029): Materializing a captured object (or duplicated
// object) is hard, we return undefined for now. This breaks the
// produced stack trace, as constructor frames aren't marked as
// such anymore.
receiver = isolate()->heap()->undefined_value();
}
AbstractCode* abstract_code;
unsigned code_offset;
if (frame_opcode == Translation::JS_FRAME) {
Code* code = shared_info->code();
DeoptimizationOutputData* const output_data =
DeoptimizationOutputData::cast(code->deoptimization_data());
unsigned const entry =
Deoptimizer::GetOutputInfo(output_data, bailout_id, shared_info);
code_offset = FullCodeGenerator::PcField::decode(entry);
abstract_code = AbstractCode::cast(code);
} else {
DCHECK_EQ(frame_opcode, Translation::INTERPRETED_FRAME);
// BailoutId points to the next bytecode in the bytecode aray. Subtract
// 1 to get the end of current bytecode.
code_offset = bailout_id.ToInt() - 1;
abstract_code = AbstractCode::cast(shared_info->bytecode_array());
}
FrameSummary summary(receiver, function, abstract_code, code_offset,
is_constructor);
frames->Add(summary);
is_constructor = false;
} else if (frame_opcode == Translation::CONSTRUCT_STUB_FRAME) {
// The next encountered JS_FRAME will be marked as a constructor call.
it.Skip(Translation::NumberOfOperandsFor(frame_opcode));
DCHECK(!is_constructor);
is_constructor = true;
} else {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(frame_opcode));
}
}
DCHECK(!is_constructor);
}
int OptimizedFrame::LookupExceptionHandlerInTable(
int* stack_slots, HandlerTable::CatchPrediction* prediction) {
Code* code = LookupCode();
HandlerTable* table = HandlerTable::cast(code->handler_table());
int pc_offset = static_cast<int>(pc() - code->entry());
if (stack_slots) *stack_slots = code->stack_slots();
return table->LookupReturn(pc_offset, prediction);
}
DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
int* deopt_index) const {
DCHECK(is_optimized());
JSFunction* opt_function = function();
Code* code = opt_function->code();
// The code object may have been replaced by lazy deoptimization. Fall
// back to a slow search in this case to find the original optimized
// code object.
if (!code->contains(pc())) {
code = isolate()->inner_pointer_to_code_cache()->
GcSafeFindCodeForInnerPointer(pc());
}
DCHECK(code != NULL);
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
*deopt_index = safepoint_entry.deoptimization_index();
if (*deopt_index != Safepoint::kNoDeoptimizationIndex) {
return DeoptimizationInputData::cast(code->deoptimization_data());
}
return nullptr;
}
void OptimizedFrame::GetFunctions(List<JSFunction*>* functions) const {
DCHECK(functions->length() == 0);
DCHECK(is_optimized());
// Delegate to JS frame in absence of turbofan deoptimization.
// TODO(turbofan): Revisit once we support deoptimization across the board.
Code* code = LookupCode();
if (code->kind() == Code::BUILTIN ||
CannotDeoptFromAsmCode(code, function())) {
return JavaScriptFrame::GetFunctions(functions);
}
DisallowHeapAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationInputData* const data = GetDeoptimizationData(&deopt_index);
DCHECK_NOT_NULL(data);
DCHECK_NE(Safepoint::kNoDeoptimizationIndex, deopt_index);
FixedArray* const literal_array = data->LiteralArray();
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
DCHECK_EQ(Translation::BEGIN, opcode);
it.Next(); // Skip frame count.
int jsframe_count = it.Next();
// We insert the frames in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
while (jsframe_count != 0) {
opcode = static_cast<Translation::Opcode>(it.Next());
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
if (opcode == Translation::JS_FRAME ||
opcode == Translation::INTERPRETED_FRAME) {
jsframe_count--;
// The translation commands are ordered and the function is always at the
// first position.
opcode = static_cast<Translation::Opcode>(it.Next());
// Get the correct function in the optimized frame.
Object* function;
if (opcode == Translation::LITERAL) {
function = literal_array->get(it.Next());
} else {
CHECK_EQ(Translation::STACK_SLOT, opcode);
function = StackSlotAt(it.Next());
}
functions->Add(JSFunction::cast(function));
}
}
}
int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) {
return StandardFrameConstants::kCallerSPOffset -
((slot_index + 1) * kPointerSize);
}
Object* OptimizedFrame::StackSlotAt(int index) const {
return Memory::Object_at(fp() + StackSlotOffsetRelativeToFp(index));
}
int InterpretedFrame::LookupExceptionHandlerInTable(
int* context_register, HandlerTable::CatchPrediction* prediction) {
BytecodeArray* bytecode = function()->shared()->bytecode_array();
HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
int pc_offset = GetBytecodeOffset() + 1; // Point after current bytecode.
return table->LookupRange(pc_offset, context_register, prediction);
}
int InterpretedFrame::GetBytecodeOffset() const {
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
int raw_offset = Smi::cast(GetExpression(index))->value();
return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
}
void InterpretedFrame::PatchBytecodeOffset(int new_offset) {
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
int raw_offset = new_offset + BytecodeArray::kHeaderSize - kHeapObjectTag;
SetExpression(index, Smi::FromInt(raw_offset));
}
BytecodeArray* InterpretedFrame::GetBytecodeArray() const {
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeArrayFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
return BytecodeArray::cast(GetExpression(index));
}
void InterpretedFrame::PatchBytecodeArray(BytecodeArray* bytecode_array) {
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeArrayFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
SetExpression(index, bytecode_array);
}
Object* InterpretedFrame::ReadInterpreterRegister(int register_index) const {
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kRegisterFileFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
return GetExpression(index + register_index);
}
void InterpretedFrame::WriteInterpreterRegister(int register_index,
Object* value) {
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kRegisterFileFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
return SetExpression(index + register_index, value);
}
void InterpretedFrame::Summarize(List<FrameSummary>* functions,
FrameSummary::Mode mode) const {
DCHECK(functions->length() == 0);
AbstractCode* abstract_code =
AbstractCode::cast(function()->shared()->bytecode_array());
FrameSummary summary(receiver(), function(), abstract_code,
GetBytecodeOffset(), IsConstructor());
functions->Add(summary);
}
int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const {
return Smi::cast(GetExpression(0))->value();
}
int ArgumentsAdaptorFrame::GetLength(Address fp) {
const int offset = ArgumentsAdaptorFrameConstants::kLengthOffset;
return Smi::cast(Memory::Object_at(fp + offset))->value();
}
Code* ArgumentsAdaptorFrame::unchecked_code() const {
return isolate()->builtins()->builtin(
Builtins::kArgumentsAdaptorTrampoline);
}
void BuiltinFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
// TODO(bmeurer)
}
int BuiltinFrame::GetNumberOfIncomingArguments() const {
return Smi::cast(GetExpression(0))->value();
}
Address InternalFrame::GetCallerStackPointer() const {
// Internal frames have no arguments. The stack pointer of the
// caller is at a fixed offset from the frame pointer.
return fp() + StandardFrameConstants::kCallerSPOffset;
}
Code* InternalFrame::unchecked_code() const {
const int offset = InternalFrameConstants::kCodeOffset;
Object* code = Memory::Object_at(fp() + offset);
DCHECK(code != NULL);
return reinterpret_cast<Code*>(code);
}
void StackFrame::PrintIndex(StringStream* accumulator,
PrintMode mode,
int index) {
accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
}
void WasmFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
accumulator->Add("wasm frame");
}
Code* WasmFrame::unchecked_code() const {
return static_cast<Code*>(isolate()->FindCodeObject(pc()));
}
void WasmFrame::Iterate(ObjectVisitor* v) const { IterateCompiledFrame(v); }
Address WasmFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
Object* WasmFrame::wasm_obj() {
FixedArray* deopt_data = LookupCode()->deoptimization_data();
DCHECK(deopt_data->length() == 2);
return deopt_data->get(0);
}
uint32_t WasmFrame::function_index() {
FixedArray* deopt_data = LookupCode()->deoptimization_data();
DCHECK(deopt_data->length() == 2);
Object* func_index_obj = deopt_data->get(1);
if (func_index_obj->IsUndefined(isolate())) return static_cast<uint32_t>(-1);
if (func_index_obj->IsSmi()) return Smi::cast(func_index_obj)->value();
DCHECK(func_index_obj->IsHeapNumber());
uint32_t val = static_cast<uint32_t>(-1);
func_index_obj->ToUint32(&val);
DCHECK(val != static_cast<uint32_t>(-1));
return val;
}
namespace {
void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo* shared,
Code* code) {
if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
std::ostringstream os;
os << "--------- s o u r c e c o d e ---------\n"
<< SourceCodeOf(shared, FLAG_max_stack_trace_source_length)
<< "\n-----------------------------------------\n";
accumulator->Add(os.str().c_str());
}
}
} // namespace
void JavaScriptFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
DisallowHeapAllocation no_gc;
Object* receiver = this->receiver();
JSFunction* function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
Code* code = NULL;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
// Get scope information for nicer output, if possible. If code is NULL, or
// doesn't contain scope info, scope_info will return 0 for the number of
// parameters, stack local variables, context local variables, stack slots,
// or context slots.
SharedFunctionInfo* shared = function->shared();
ScopeInfo* scope_info = shared->scope_info();
Object* script_obj = shared->script();
if (script_obj->IsScript()) {
Script* script = Script::cast(script_obj);
accumulator->Add(" [");
accumulator->PrintName(script->name());
Address pc = this->pc();
if (code != NULL && code->kind() == Code::FUNCTION &&
pc >= code->instruction_start() && pc < code->instruction_end()) {
int offset = static_cast<int>(pc - code->instruction_start());
int source_pos = code->SourcePosition(offset);
int line = script->GetLineNumber(source_pos) + 1;
accumulator->Add(":%d] [pc=%p]", line, pc);
} else if (is_interpreted()) {
const InterpretedFrame* iframe =
reinterpret_cast<const InterpretedFrame*>(this);
BytecodeArray* bytecodes = iframe->GetBytecodeArray();
int offset = iframe->GetBytecodeOffset();
int source_pos = bytecodes->SourcePosition(offset);
int line = script->GetLineNumber(source_pos) + 1;
accumulator->Add(":%d] [bytecode=%p offset=%d]", line, bytecodes, offset);
} else {
int function_start_pos = shared->start_position();
int line = script->GetLineNumber(function_start_pos) + 1;
accumulator->Add(":~%d] [pc=%p]", line, pc);
}
}
accumulator->Add("(this=%o", receiver);
// Print the parameters.
int parameters_count = ComputeParametersCount();
for (int i = 0; i < parameters_count; i++) {
accumulator->Add(",");
// If we have a name for the parameter we print it. Nameless
// parameters are either because we have more actual parameters
// than formal parameters or because we have no scope information.
if (i < scope_info->ParameterCount()) {
accumulator->PrintName(scope_info->ParameterName(i));
accumulator->Add("=");
}
accumulator->Add("%o", GetParameter(i));
}
accumulator->Add(")");
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
if (is_optimized()) {
accumulator->Add(" {\n// optimized frame\n");
PrintFunctionSource(accumulator, shared, code);
accumulator->Add("}\n");
return;
}
accumulator->Add(" {\n");
// Compute the number of locals and expression stack elements.
int stack_locals_count = scope_info->StackLocalCount();
int heap_locals_count = scope_info->ContextLocalCount();
int expressions_count = ComputeExpressionsCount();
// Print stack-allocated local variables.
if (stack_locals_count > 0) {
accumulator->Add(" // stack-allocated locals\n");
}
for (int i = 0; i < stack_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(scope_info->StackLocalName(i));
accumulator->Add(" = ");
if (i < expressions_count) {
accumulator->Add("%o", GetExpression(i));
} else {
accumulator->Add("// no expression found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Try to get hold of the context of this frame.
Context* context = NULL;
if (this->context() != NULL && this->context()->IsContext()) {
context = Context::cast(this->context());
}
while (context->IsWithContext()) {
context = context->previous();
DCHECK(context != NULL);
}
// Print heap-allocated local variables.
if (heap_locals_count > 0) {
accumulator->Add(" // heap-allocated locals\n");
}
for (int i = 0; i < heap_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(scope_info->ContextLocalName(i));
accumulator->Add(" = ");
if (context != NULL) {
int index = Context::MIN_CONTEXT_SLOTS + i;
if (index < context->length()) {
accumulator->Add("%o", context->get(index));
} else {
accumulator->Add(
"// warning: missing context slot - inconsistent frame?");
}
} else {
accumulator->Add("// warning: no context found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Print the expression stack.
int expressions_start = stack_locals_count;
if (expressions_start < expressions_count) {
accumulator->Add(" // expression stack (top to bottom)\n");
}
for (int i = expressions_count - 1; i >= expressions_start; i--) {
accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
}
PrintFunctionSource(accumulator, shared, code);
accumulator->Add("}\n\n");
}
void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
int actual = ComputeParametersCount();
int expected = -1;
JSFunction* function = this->function();
expected = function->shared()->internal_formal_parameter_count();
PrintIndex(accumulator, mode, index);
accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
accumulator->Add(" {\n");
// Print actual arguments.
if (actual > 0) accumulator->Add(" // actual arguments\n");
for (int i = 0; i < actual; i++) {
accumulator->Add(" [%02d] : %o", i, GetParameter(i));
if (expected != -1 && i >= expected) {
accumulator->Add(" // not passed to callee");
}
accumulator->Add("\n");
}
accumulator->Add("}\n\n");
}
void EntryFrame::Iterate(ObjectVisitor* v) const {
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
const int offset = StandardFrameConstants::kLastObjectOffset;
Object** base = &Memory::Object_at(sp());
Object** limit = &Memory::Object_at(fp() + offset) + 1;
v->VisitPointers(base, limit);
}
void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
IterateExpressions(v);
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
void InternalFrame::Iterate(ObjectVisitor* v) const {
// Internal frames only have object pointers on the expression stack
// as they never have any arguments.
IterateExpressions(v);
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
void StubFailureTrampolineFrame::Iterate(ObjectVisitor* v) const {
Object** base = &Memory::Object_at(sp());
Object** limit = &Memory::Object_at(
fp() + StubFailureTrampolineFrameConstants::kFixedHeaderBottomOffset);
v->VisitPointers(base, limit);
base = &Memory::Object_at(fp() + StandardFrameConstants::kFunctionOffset);
const int offset = StandardFrameConstants::kLastObjectOffset;
limit = &Memory::Object_at(fp() + offset) + 1;
v->VisitPointers(base, limit);
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
Address StubFailureTrampolineFrame::GetCallerStackPointer() const {
return fp() + StandardFrameConstants::kCallerSPOffset;
}
Code* StubFailureTrampolineFrame::unchecked_code() const {
Code* trampoline;
StubFailureTrampolineStub(isolate(), NOT_JS_FUNCTION_STUB_MODE).
FindCodeInCache(&trampoline);
if (trampoline->contains(pc())) {
return trampoline;
}
StubFailureTrampolineStub(isolate(), JS_FUNCTION_STUB_MODE).
FindCodeInCache(&trampoline);
if (trampoline->contains(pc())) {
return trampoline;
}
UNREACHABLE();
return NULL;
}
// -------------------------------------------------------------------------
JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
DCHECK(n >= 0);
for (int i = 0; i <= n; i++) {
while (!iterator_.frame()->is_java_script()) iterator_.Advance();
if (i == n) return JavaScriptFrame::cast(iterator_.frame());
iterator_.Advance();
}
UNREACHABLE();
return NULL;
}
// -------------------------------------------------------------------------
static Map* GcSafeMapOfCodeSpaceObject(HeapObject* object) {
MapWord map_word = object->map_word();
return map_word.IsForwardingAddress() ?
map_word.ToForwardingAddress()->map() : map_word.ToMap();
}
static int GcSafeSizeOfCodeSpaceObject(HeapObject* object) {
return object->SizeFromMap(GcSafeMapOfCodeSpaceObject(object));
}
#ifdef DEBUG
static bool GcSafeCodeContains(HeapObject* code, Address addr) {
Map* map = GcSafeMapOfCodeSpaceObject(code);
DCHECK(map == code->GetHeap()->code_map());
Address start = code->address();
Address end = code->address() + code->SizeFromMap(map);
return start <= addr && addr < end;
}
#endif
Code* InnerPointerToCodeCache::GcSafeCastToCode(HeapObject* object,
Address inner_pointer) {
Code* code = reinterpret_cast<Code*>(object);
DCHECK(code != NULL && GcSafeCodeContains(code, inner_pointer));
return code;
}
Code* InnerPointerToCodeCache::GcSafeFindCodeForInnerPointer(
Address inner_pointer) {
Heap* heap = isolate_->heap();
// Check if the inner pointer points into a large object chunk.
LargePage* large_page = heap->lo_space()->FindPage(inner_pointer);
if (large_page != NULL) {
return GcSafeCastToCode(large_page->GetObject(), inner_pointer);
}
if (!heap->code_space()->Contains(inner_pointer)) {
return nullptr;
}
// Iterate through the page until we reach the end or find an object starting
// after the inner pointer.
Page* page = Page::FromAddress(inner_pointer);
DCHECK_EQ(page->owner(), heap->code_space());
heap->mark_compact_collector()->sweeper().SweepOrWaitUntilSweepingCompleted(
page);
Address addr = page->skip_list()->StartFor(inner_pointer);
Address top = heap->code_space()->top();
Address limit = heap->code_space()->limit();
while (true) {
if (addr == top && addr != limit) {
addr = limit;
continue;
}
HeapObject* obj = HeapObject::FromAddress(addr);
int obj_size = GcSafeSizeOfCodeSpaceObject(obj);
Address next_addr = addr + obj_size;
if (next_addr > inner_pointer) return GcSafeCastToCode(obj, inner_pointer);
addr = next_addr;
}
}
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
isolate_->counters()->pc_to_code()->Increment();
DCHECK(base::bits::IsPowerOfTwo32(kInnerPointerToCodeCacheSize));
uint32_t hash = ComputeIntegerHash(ObjectAddressForHashing(inner_pointer),
v8::internal::kZeroHashSeed);
uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
InnerPointerToCodeCacheEntry* entry = cache(index);
if (entry->inner_pointer == inner_pointer) {
isolate_->counters()->pc_to_code_cached()->Increment();
DCHECK(entry->code == GcSafeFindCodeForInnerPointer(inner_pointer));
} else {
// Because this code may be interrupted by a profiling signal that
// also queries the cache, we cannot update inner_pointer before the code
// has been set. Otherwise, we risk trying to use a cache entry before
// the code has been computed.
entry->code = GcSafeFindCodeForInnerPointer(inner_pointer);
entry->safepoint_entry.Reset();
entry->inner_pointer = inner_pointer;
}
return entry;
}
// -------------------------------------------------------------------------
int NumRegs(RegList reglist) { return base::bits::CountPopulation(reglist); }
struct JSCallerSavedCodeData {
int reg_code[kNumJSCallerSaved];
};
JSCallerSavedCodeData caller_saved_code_data;
void SetUpJSCallerSavedCodeData() {
int i = 0;
for (int r = 0; r < kNumRegs; r++)
if ((kJSCallerSaved & (1 << r)) != 0)
caller_saved_code_data.reg_code[i++] = r;
DCHECK(i == kNumJSCallerSaved);
}
int JSCallerSavedCode(int n) {
DCHECK(0 <= n && n < kNumJSCallerSaved);
return caller_saved_code_data.reg_code[n];
}
#define DEFINE_WRAPPER(type, field) \
class field##_Wrapper : public ZoneObject { \
public: /* NOLINT */ \
field##_Wrapper(const field& original) : frame_(original) { \
} \
field frame_; \
};
STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
#undef DEFINE_WRAPPER
static StackFrame* AllocateFrameCopy(StackFrame* frame, Zone* zone) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: { \
field##_Wrapper* wrapper = \
new(zone) field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
return &wrapper->frame_; \
}
switch (frame->type()) {
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default: UNREACHABLE();
}
#undef FRAME_TYPE_CASE
return NULL;
}
Vector<StackFrame*> CreateStackMap(Isolate* isolate, Zone* zone) {
ZoneList<StackFrame*> list(10, zone);
for (StackFrameIterator it(isolate); !it.done(); it.Advance()) {
StackFrame* frame = AllocateFrameCopy(it.frame(), zone);
list.Add(frame, zone);
}
return list.ToVector();
}
} // namespace internal
} // namespace v8