// Copyright 2014 the V8 project authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/crankshaft/s390/lithium-codegen-s390.h"
#include "src/base/bits.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/crankshaft/hydrogen-osr.h"
#include "src/crankshaft/s390/lithium-gap-resolver-s390.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
class SafepointGenerator final : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
virtual ~SafepointGenerator() {}
void BeforeCall(int call_size) const override {}
void AfterCall() const override {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
DCHECK(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// NONE indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::NONE);
return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
GenerateJumpTable() && GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
DCHECK(is_done());
code->set_stack_slots(GetTotalFrameSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
void LCodeGen::SaveCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ std(DoubleRegister::from_code(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ ld(DoubleRegister::from_code(save_iterator.Current()),
MemOperand(sp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
DCHECK(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
// r3: Callee's JS function.
// cp: Callee's context.
// fp: Caller's frame pointer.
// lr: Caller's pc.
// ip: Our own function entry (required by the prologue)
}
int prologue_offset = masm_->pc_offset();
if (prologue_offset) {
// Prologue logic requires its starting address in ip and the
// corresponding offset from the function entry. Need to add
// 4 bytes for the size of AHI/AGHI that AddP expands into.
prologue_offset += sizeof(FourByteInstr);
__ AddP(ip, ip, Operand(prologue_offset));
}
info()->set_prologue_offset(prologue_offset);
if (NeedsEagerFrame()) {
if (info()->IsStub()) {
__ StubPrologue(StackFrame::STUB, ip, prologue_offset);
} else {
__ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset);
}
frame_is_built_ = true;
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
__ lay(sp, MemOperand(sp, -(slots * kPointerSize)));
if (FLAG_debug_code) {
__ Push(r2, r3);
__ mov(r2, Operand(slots * kPointerSize));
__ mov(r3, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ StoreP(r3, MemOperand(sp, r2, kPointerSize));
__ lay(r2, MemOperand(r2, -kPointerSize));
__ CmpP(r2, Operand::Zero());
__ bne(&loop);
__ Pop(r2, r3);
}
}
if (info()->saves_caller_doubles()) {
SaveCallerDoubles();
}
return !is_aborted();
}
void LCodeGen::DoPrologue(LPrologue* instr) {
Comment(";;; Prologue begin");
// Possibly allocate a local context.
if (info()->scope()->num_heap_slots() > 0) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is in r3.
int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
if (info()->scope()->is_script_scope()) {
__ push(r3);
__ Push(info()->scope()->GetScopeInfo(info()->isolate()));
__ CallRuntime(Runtime::kNewScriptContext);
deopt_mode = Safepoint::kLazyDeopt;
} else if (slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(isolate(), slots);
__ CallStub(&stub);
// Result of FastNewContextStub is always in new space.
need_write_barrier = false;
} else {
__ push(r3);
__ CallRuntime(Runtime::kNewFunctionContext);
}
RecordSafepoint(deopt_mode);
// Context is returned in both r2 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ LoadRR(cp, r2);
__ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
int first_parameter = scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ LoadP(r2, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextMemOperand(cp, var->index());
__ StoreP(r2, target);
// Update the write barrier. This clobbers r5 and r2.
if (need_write_barrier) {
__ RecordWriteContextSlot(cp, target.offset(), r2, r5,
GetLinkRegisterState(), kSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(cp, r2, &done);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
Comment(";;; Prologue end");
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
DCHECK(slots >= 0);
__ lay(sp, MemOperand(sp, -slots * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
}
bool LCodeGen::GenerateDeferredCode() {
DCHECK(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(
chunk()->graph()->SourcePositionToScriptPosition(value->position()));
Comment(
";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(), code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
DCHECK(!frame_is_built_);
DCHECK(info()->IsStub());
frame_is_built_ = true;
__ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
__ PushCommonFrame(scratch0());
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
Comment(";;; Destroy frame");
DCHECK(frame_is_built_);
__ PopCommonFrame(scratch0());
frame_is_built_ = false;
}
__ b(code->exit());
}
}
return !is_aborted();
}
bool LCodeGen::GenerateJumpTable() {
// Check that the jump table is accessible from everywhere in the function
// code, i.e. that offsets in halfworld to the table can be encoded in the
// 32-bit signed immediate of a branch instruction.
// To simplify we consider the code size from the first instruction to the
// end of the jump table. We also don't consider the pc load delta.
// Each entry in the jump table generates one instruction and inlines one
// 32bit data after it.
// TODO(joransiu): The Int24 condition can likely be relaxed for S390
if (!is_int24(masm()->pc_offset() + jump_table_.length() * 7)) {
Abort(kGeneratedCodeIsTooLarge);
}
if (jump_table_.length() > 0) {
Label needs_frame, call_deopt_entry;
Comment(";;; -------------------- Jump table --------------------");
Address base = jump_table_[0].address;
Register entry_offset = scratch0();
int length = jump_table_.length();
for (int i = 0; i < length; i++) {
Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
__ bind(&table_entry->label);
DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type);
Address entry = table_entry->address;
DeoptComment(table_entry->deopt_info);
// Second-level deopt table entries are contiguous and small, so instead
// of loading the full, absolute address of each one, load an immediate
// offset which will be added to the base address later.
__ mov(entry_offset, Operand(entry - base));
if (table_entry->needs_frame) {
DCHECK(!info()->saves_caller_doubles());
Comment(";;; call deopt with frame");
__ PushCommonFrame();
__ b(r14, &needs_frame);
} else {
__ b(r14, &call_deopt_entry);
}
}
if (needs_frame.is_linked()) {
__ bind(&needs_frame);
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
DCHECK(info()->IsStub());
__ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB));
__ push(ip);
DCHECK(info()->IsStub());
}
Comment(";;; call deopt");
__ bind(&call_deopt_entry);
if (info()->saves_caller_doubles()) {
DCHECK(info()->IsStub());
RestoreCallerDoubles();
}
// Add the base address to the offset previously loaded in entry_offset.
__ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
__ AddP(ip, entry_offset, ip);
__ Jump(ip);
}
// The deoptimization jump table is the last part of the instruction
// sequence. Mark the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
DCHECK(is_done());
safepoints_.Emit(masm(), GetTotalFrameSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int code) const {
return Register::from_code(code);
}
DoubleRegister LCodeGen::ToDoubleRegister(int code) const {
return DoubleRegister::from_code(code);
}
Register LCodeGen::ToRegister(LOperand* op) const {
DCHECK(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk_->LookupConstant(const_op);
Handle<Object> literal = constant->handle(isolate());
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
AllowDeferredHandleDereference get_number;
DCHECK(literal->IsNumber());
__ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
} else if (r.IsDouble()) {
Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
} else {
DCHECK(r.IsSmiOrTagged());
__ Move(scratch, literal);
}
return scratch;
} else if (op->IsStackSlot()) {
__ LoadP(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
Register dst) {
DCHECK(IsInteger32(const_op));
HConstant* constant = chunk_->LookupConstant(const_op);
int32_t value = constant->Integer32Value();
if (IsSmi(const_op)) {
__ LoadSmiLiteral(dst, Smi::FromInt(value));
} else {
__ LoadIntLiteral(dst, value);
}
}
DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
DCHECK(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
bool LCodeGen::IsInteger32(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsSmi(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
DCHECK(r.IsSmiOrTagged());
return reinterpret_cast<intptr_t>(Smi::FromInt(value));
}
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
return Smi::FromInt(constant->Integer32Value());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasDoubleValue());
return constant->DoubleValue();
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
HConstant* constant = chunk()->LookupConstant(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsSmi()) {
DCHECK(constant->HasSmiValue());
return Operand(Smi::FromInt(constant->Integer32Value()));
} else if (r.IsInteger32()) {
DCHECK(constant->HasInteger32Value());
return Operand(constant->Integer32Value());
} else if (r.IsDouble()) {
Abort(kToOperandUnsupportedDoubleImmediate);
}
DCHECK(r.IsTagged());
return Operand(constant->handle(isolate()));
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort(kToOperandIsDoubleRegisterUnimplemented);
return Operand::Zero();
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand::Zero();
}
static int ArgumentsOffsetWithoutFrame(int index) {
DCHECK(index < 0);
return -(index + 1) * kPointerSize;
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
DCHECK(!op->IsRegister());
DCHECK(!op->IsDoubleRegister());
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, FrameSlotToFPOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
DCHECK(op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize);
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return MemOperand(sp,
ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
WriteTranslation(environment->outer(), translation);
WriteTranslationFrame(environment, translation);
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(
environment, translation, value, environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation, LOperand* op,
bool is_tagged, bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment, translation, value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer, dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
int index = op->index();
if (is_tagged) {
translation->StoreStackSlot(index);
} else if (is_uint32) {
translation->StoreUint32StackSlot(index);
} else {
translation->StoreInt32StackSlot(index);
}
} else if (op->IsDoubleStackSlot()) {
int index = op->index();
translation->StoreDoubleStackSlot(index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode) {
DCHECK(instr != NULL);
__ Call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
LInstruction* instr, SaveFPRegsMode save_doubles) {
DCHECK(instr != NULL);
__ CallRuntime(function, num_arguments, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
__ Move(cp, ToRegister(context));
} else if (context->IsStackSlot()) {
__ LoadP(cp, ToMemOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
LInstruction* instr, LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(instr->pointer_map(), argc,
Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index, translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, zone());
}
}
void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
Deoptimizer::DeoptReason deopt_reason,
Deoptimizer::BailoutType bailout_type,
CRegister cr) {
LEnvironment* environment = instr->environment();
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
DCHECK(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
Register scratch = scratch0();
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
// Store the condition on the stack if necessary
if (cond != al) {
Label done;
__ LoadImmP(scratch, Operand::Zero());
__ b(NegateCondition(cond), &done, Label::kNear);
__ LoadImmP(scratch, Operand(1));
__ bind(&done);
__ push(scratch);
}
Label done;
__ Push(r3);
__ mov(scratch, Operand(count));
__ LoadW(r3, MemOperand(scratch));
__ Sub32(r3, r3, Operand(1));
__ Cmp32(r3, Operand::Zero());
__ bne(&no_deopt, Label::kNear);
__ LoadImmP(r3, Operand(FLAG_deopt_every_n_times));
__ StoreW(r3, MemOperand(scratch));
__ Pop(r3);
if (cond != al) {
// Clean up the stack before the deoptimizer call
__ pop(scratch);
}
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
__ b(&done);
__ bind(&no_deopt);
__ StoreW(r3, MemOperand(scratch));
__ Pop(r3);
if (cond != al) {
// Clean up the stack before the deoptimizer call
__ pop(scratch);
}
__ bind(&done);
if (cond != al) {
cond = ne;
__ CmpP(scratch, Operand::Zero());
}
}
if (info()->ShouldTrapOnDeopt()) {
__ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
}
Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
DCHECK(info()->IsStub() || frame_is_built_);
// Go through jump table if we need to handle condition, build frame, or
// restore caller doubles.
if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
__ Call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
!frame_is_built_);
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (FLAG_trace_deopt || isolate()->is_profiling() ||
jump_table_.is_empty() ||
!table_entry.IsEquivalentTo(jump_table_.last())) {
jump_table_.Add(table_entry, zone());
}
__ b(cond, &jump_table_.last().label /*, cr*/);
}
}
void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
Deoptimizer::DeoptReason deopt_reason,
CRegister cr) {
Deoptimizer::BailoutType bailout_type =
info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
DeoptimizeIf(cond, instr, deopt_reason, bailout_type, cr);
}
void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
SafepointMode safepoint_mode) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
RecordSafepointWithRegisters(instr->pointer_map(), 0,
Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
int arguments, Safepoint::DeoptMode deopt_mode) {
DCHECK(expected_safepoint_kind_ == kind);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint =
safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
void LCodeGen::RecordAndWritePosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_, label->hydrogen_value()->id(),
label->block_id(), LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t shift = WhichPowerOf2Abs(divisor);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ CmpP(dividend, Operand::Zero());
__ bge(÷nd_is_not_negative, Label::kNear);
if (shift) {
// Note that this is correct even for kMinInt operands.
__ LoadComplementRR(dividend, dividend);
__ ExtractBitRange(dividend, dividend, shift - 1, 0);
__ LoadComplementRR(dividend, dividend);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
}
} else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ mov(dividend, Operand::Zero());
} else {
DeoptimizeIf(al, instr, Deoptimizer::kMinusZero);
}
__ b(&done, Label::kNear);
}
__ bind(÷nd_is_not_negative);
if (shift) {
__ ExtractBitRange(dividend, dividend, shift - 1, 0);
} else {
__ mov(dividend, Operand::Zero());
}
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
return;
}
__ TruncatingDiv(result, dividend, Abs(divisor));
__ mov(ip, Operand(Abs(divisor)));
__ Mul(result, result, ip);
__ SubP(result, dividend, result /*, LeaveOE, SetRC*/);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ bne(&remainder_not_zero, Label::kNear /*, cr0*/);
__ Cmp32(dividend, Operand::Zero());
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
Register left_reg = ToRegister(instr->left());
Register right_reg = ToRegister(instr->right());
Register result_reg = ToRegister(instr->result());
Label done;
// Check for x % 0.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ Cmp32(right_reg, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
}
// Check for kMinInt % -1, dr will return undefined, which is not what we
// want. We have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ Cmp32(left_reg, Operand(kMinInt));
__ bne(&no_overflow_possible, Label::kNear);
__ Cmp32(right_reg, Operand(-1));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
} else {
__ b(ne, &no_overflow_possible, Label::kNear);
__ mov(result_reg, Operand::Zero());
__ b(&done, Label::kNear);
}
__ bind(&no_overflow_possible);
}
// Divide instruction dr will implicity use register pair
// r0 & r1 below.
DCHECK(!left_reg.is(r1));
DCHECK(!right_reg.is(r1));
DCHECK(!result_reg.is(r1));
__ LoadRR(r0, left_reg);
__ srda(r0, Operand(32));
__ dr(r0, right_reg); // R0:R1 = R1 / divisor - R0 remainder
__ LoadAndTestP_ExtendSrc(result_reg, r0); // Copy remainder to resultreg
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ bne(&done, Label::kNear);
__ Cmp32(left_reg, Operand::Zero());
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
}
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
DCHECK(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ Cmp32(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ Cmp32(dividend, Operand(0x80000000));
DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
}
int32_t shift = WhichPowerOf2Abs(divisor);
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
__ TestBitRange(dividend, shift - 1, 0, r0);
DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision, cr0);
}
if (divisor == -1) { // Nice shortcut, not needed for correctness.
__ LoadComplementRR(result, dividend);
return;
}
if (shift == 0) {
__ LoadRR(result, dividend);
} else {
if (shift == 1) {
__ ShiftRight(result, dividend, Operand(31));
} else {
__ ShiftRightArith(result, dividend, Operand(31));
__ ShiftRight(result, result, Operand(32 - shift));
}
__ AddP(result, dividend, result);
__ ShiftRightArith(result, result, Operand(shift));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
}
if (divisor < 0) __ LoadComplementRR(result, result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ Cmp32(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
}
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ LoadComplementRR(result, result);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
Register scratch = scratch0();
__ mov(ip, Operand(divisor));
__ Mul(scratch, result, ip);
__ Cmp32(scratch, dividend);
DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
const Register dividend = ToRegister(instr->dividend());
const Register divisor = ToRegister(instr->divisor());
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
DCHECK(!divisor.is(result));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ Cmp32(divisor, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ Cmp32(dividend, Operand::Zero());
__ bne(÷nd_not_zero, Label::kNear);
__ Cmp32(divisor, Operand::Zero());
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ Cmp32(dividend, Operand(kMinInt));
__ bne(÷nd_not_min_int, Label::kNear);
__ Cmp32(divisor, Operand(-1));
DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
__ bind(÷nd_not_min_int);
}
__ LoadRR(r0, dividend);
__ srda(r0, Operand(32));
__ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
__ LoadAndTestP_ExtendSrc(result, r1); // Move quotient to result register
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
__ Cmp32(r0, Operand::Zero());
DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecision);
}
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register result = ToRegister(instr->result());
int32_t divisor = instr->divisor();
bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt);
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 0) {
if (shift || !result.is(dividend)) {
__ ShiftRightArith(result, dividend, Operand(shift));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
}
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
#if V8_TARGET_ARCH_S390X
if (divisor == -1 && can_overflow) {
__ Cmp32(dividend, Operand(0x80000000));
DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
}
#endif
__ LoadComplementRR(result, dividend);
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero, cr0);
}
// If the negation could not overflow, simply shifting is OK.
#if !V8_TARGET_ARCH_S390X
if (!can_overflow) {
#endif
if (shift) {
__ ShiftRightArithP(result, result, Operand(shift));
}
return;
#if !V8_TARGET_ARCH_S390X
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
return;
}
Label overflow_label, done;
__ b(overflow, &overflow_label, Label::kNear);
__ ShiftRightArith(result, result, Operand(shift));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
__ b(&done, Label::kNear);
__ bind(&overflow_label);
__ mov(result, Operand(kMinInt / divisor));
__ bind(&done);
#endif
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
if (divisor == 0) {
DeoptimizeIf(al, instr, Deoptimizer::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ Cmp32(dividend, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ LoadComplementRR(result, result);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp());
DCHECK(!temp.is(dividend) && !temp.is(result));
Label needs_adjustment, done;
__ Cmp32(dividend, Operand::Zero());
__ b(divisor > 0 ? lt : gt, &needs_adjustment);
__ TruncatingDiv(result, dividend, Abs(divisor));
if (divisor < 0) __ LoadComplementRR(result, result);
__ b(&done, Label::kNear);
__ bind(&needs_adjustment);
__ AddP(temp, dividend, Operand(divisor > 0 ? 1 : -1));
__ TruncatingDiv(result, temp, Abs(divisor));
if (divisor < 0) __ LoadComplementRR(result, result);
__ SubP(result, result, Operand(1));
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
const Register dividend = ToRegister(instr->dividend());
const Register divisor = ToRegister(instr->divisor());
Register result = ToRegister(instr->result());
DCHECK(!dividend.is(result));
DCHECK(!divisor.is(result));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ Cmp32(divisor, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ Cmp32(dividend, Operand::Zero());
__ bne(÷nd_not_zero, Label::kNear);
__ Cmp32(divisor, Operand::Zero());
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ Cmp32(dividend, Operand(kMinInt));
__ bne(&no_overflow_possible, Label::kNear);
__ Cmp32(divisor, Operand(-1));
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
} else {
__ bne(&no_overflow_possible, Label::kNear);
__ LoadRR(result, dividend);
}
__ bind(&no_overflow_possible);
}
__ LoadRR(r0, dividend);
__ srda(r0, Operand(32));
__ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient
__ lr(result, r1); // Move quotient to result register
Label done;
Register scratch = scratch0();
// If both operands have the same sign then we are done.
__ Xor(scratch, dividend, divisor);
__ ltr(scratch, scratch); // use 32 bit version LoadAndTestRR even in 64 bit
__ bge(&done, Label::kNear);
// If there is no remainder then we are done.
__ lr(scratch, result);
__ msr(scratch, divisor);
__ Cmp32(dividend, scratch);
__ beq(&done, Label::kNear);
// We performed a truncating division. Correct the result.
__ Sub32(result, result, Operand(1));
__ bind(&done);
}
void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
DoubleRegister addend = ToDoubleRegister(instr->addend());
DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
DoubleRegister result = ToDoubleRegister(instr->result());
// Unable to use madbr as the intermediate value is not rounded
// to proper precision
__ ldr(result, multiplier);
__ mdbr(result, multiplicand);
__ adbr(result, addend);
}
void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
DoubleRegister minuend = ToDoubleRegister(instr->minuend());
DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
DoubleRegister result = ToDoubleRegister(instr->result());
// Unable to use msdbr as the intermediate value is not rounded
// to proper precision
__ ldr(result, multiplier);
__ mdbr(result, multiplicand);
__ sdbr(result, minuend);
}
void LCodeGen::DoMulI(LMulI* instr) {
Register scratch = scratch0();
Register result = ToRegister(instr->result());
// Note that result may alias left.
Register left = ToRegister(instr->left());
LOperand* right_op = instr->right();
bool bailout_on_minus_zero =
instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right_op->IsConstantOperand()) {
int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
if (bailout_on_minus_zero && (constant < 0)) {
// The case of a null constant will be handled separately.
// If constant is negative and left is null, the result should be -0.
__ CmpP(left, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
}
switch (constant) {
case -1:
if (can_overflow) {
#if V8_TARGET_ARCH_S390X
if (instr->hydrogen()->representation().IsSmi()) {
#endif
__ LoadComplementRR(result, left);
DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
#if V8_TARGET_ARCH_S390X
} else {
__ LoadComplementRR(result, left);
__ TestIfInt32(result, r0);
DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
}
#endif
} else {
__ LoadComplementRR(result, left);
}
break;
case 0:
if (bailout_on_minus_zero) {
// If left is strictly negative and the constant is null, the
// result is -0. Deoptimize if required, otherwise return 0.
#if V8_TARGET_ARCH_S390X
if (instr->hydrogen()->representation().IsSmi()) {
#endif
__ Cmp32(left, Operand::Zero());
#if V8_TARGET_ARCH_S390X
} else {
__ Cmp32(left, Operand::Zero());
}
#endif
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
}
__ LoadImmP(result, Operand::Zero());
break;
case 1:
__ Move(result, left);
break;
default:
// Multiplying by powers of two and powers of two plus or minus
// one can be done faster with shifted operands.
// For other constants we emit standard code.
int32_t mask = constant >> 31;
uint32_t constant_abs = (constant + mask) ^ mask;
if (base::bits::IsPowerOfTwo32(constant_abs)) {
int32_t shift = WhichPowerOf2(constant_abs);
__ ShiftLeftP(result, left, Operand(shift));
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ LoadComplementRR(result, result);
} else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) {
int32_t shift = WhichPowerOf2(constant_abs - 1);
__ ShiftLeftP(scratch, left, Operand(shift));
__ AddP(result, scratch, left);
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ LoadComplementRR(result, result);
} else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) {
int32_t shift = WhichPowerOf2(constant_abs + 1);
__ ShiftLeftP(scratch, left, Operand(shift));
__ SubP(result, scratch, left);
// Correct the sign of the result if the constant is negative.
if (constant < 0) __ LoadComplementRR(result, result);
} else {
// Generate standard code.
__ Move(result, left);
__ MulP(result, Operand(constant));
}
}
} else {
DCHECK(right_op->IsRegister());
Register right = ToRegister(right_op);
if (can_overflow) {
#if V8_TARGET_ARCH_S390X
// result = left * right.
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ SmiUntag(scratch, right);
__ msgr(result, scratch);
} else {
__ LoadRR(result, left);
__ msgr(result, right);
}
__ TestIfInt32(result, r0);
DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiTag(result);
}
#else
// r0:scratch = scratch * right
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(scratch, left);
__ mr_z(r0, right);
__ LoadRR(result, scratch);
} else {
// r0:scratch = scratch * right
__ LoadRR(scratch, left);
__ mr_z(r0, right);
__ LoadRR(result, scratch);
}
__ TestIfInt32(r0, result, scratch);
DeoptimizeIf(ne, instr, Deoptimizer::kOverflow);
#endif
} else {
if (instr->hydrogen()->representation().IsSmi()) {
__ SmiUntag(result, left);
__ Mul(result, result, right);
} else {
__ Mul(result, left, right);
}
}
if (bailout_on_minus_zero) {
Label done;
#if V8_TARGET_ARCH_S390X
if (instr->hydrogen()->representation().IsSmi()) {
#endif
__ XorP(r0, left, right);
__ LoadAndTestRR(r0, r0);
__ bge(&done, Label::kNear);
#if V8_TARGET_ARCH_S390X
} else {
__ XorP(r0, left, right);
__ Cmp32(r0, Operand::Zero());
__ bge(&done, Label::kNear);
}
#endif
// Bail out if the result is minus zero.
__ CmpP(result, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
__ bind(&done);
}
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left_op = instr->left();
LOperand* right_op = instr->right();
DCHECK(left_op->IsRegister());
Register left = ToRegister(left_op);
Register result = ToRegister(instr->result());
if (right_op->IsConstantOperand()) {
switch (instr->op()) {
case Token::BIT_AND:
__ AndP(result, left, Operand(ToOperand(right_op)));
break;
case Token::BIT_OR:
__ OrP(result, left, Operand(ToOperand(right_op)));
break;
case Token::BIT_XOR:
__ XorP(result, left, Operand(ToOperand(right_op)));
break;
default:
UNREACHABLE();
break;
}
} else if (right_op->IsStackSlot()) {
// Reg-Mem instruction clobbers, so copy src to dst first.
if (!left.is(result)) __ LoadRR(result, left);
switch (instr->op()) {
case Token::BIT_AND:
__ AndP(result, ToMemOperand(right_op));
break;
case Token::BIT_OR:
__ OrP(result, ToMemOperand(right_op));
break;
case Token::BIT_XOR:
__ XorP(result, ToMemOperand(right_op));
break;
default:
UNREACHABLE();
break;
}
} else {
DCHECK(right_op->IsRegister());
switch (instr->op()) {
case Token::BIT_AND:
__ AndP(result, left, ToRegister(right_op));
break;
case Token::BIT_OR:
__ OrP(result, left, ToRegister(right_op));
break;
case Token::BIT_XOR:
__ XorP(result, left, ToRegister(right_op));
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
// Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
// result may alias either of them.
LOperand* right_op = instr->right();
Register left = ToRegister(instr->left());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
if (right_op->IsRegister()) {
// Mask the right_op operand.
__ AndP(scratch, ToRegister(right_op), Operand(0x1F));
switch (instr->op()) {
case Token::ROR:
// rotate_right(a, b) == rotate_left(a, 32 - b)
__ LoadComplementRR(scratch, scratch);
__ rll(result, left, scratch, Operand(32));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
break;
case Token::SAR:
__ ShiftRightArith(result, left, scratch);
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
break;
case Token::SHR:
__ ShiftRight(result, left, scratch);
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
if (instr->can_deopt()) {
#if V8_TARGET_ARCH_S390X
__ ltgfr(result, result /*, SetRC*/);
#else
__ ltr(result, result); // Set the <,==,> condition
#endif
DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue, cr0);
}
break;
case Token::SHL:
__ ShiftLeft(result, left, scratch);
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
break;
default:
UNREACHABLE();
break;
}
} else {
// Mask the right_op operand.
int value = ToInteger32(LConstantOperand::cast(right_op));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count != 0) {
__ rll(result, left, Operand(32 - shift_count));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
} else {
__ Move(result, left);
}
break;
case Token::SAR:
if (shift_count != 0) {
__ ShiftRightArith(result, left, Operand(shift_count));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
} else {
__ Move(result, left);
}
break;
case Token::SHR:
if (shift_count != 0) {
__ ShiftRight(result, left, Operand(shift_count));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
} else {
if (instr->can_deopt()) {
__ Cmp32(left, Operand::Zero());
DeoptimizeIf(lt, instr, Deoptimizer::kNegativeValue);
}
__ Move(result, left);
}
break;
case Token::SHL:
if (shift_count != 0) {
#if V8_TARGET_ARCH_S390X
if (instr->hydrogen_value()->representation().IsSmi()) {
__ ShiftLeftP(result, left, Operand(shift_count));
#else
if (instr->hydrogen_value()->representation().IsSmi() &&
instr->can_deopt()) {
if (shift_count != 1) {
__ ShiftLeft(result, left, Operand(shift_count - 1));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
__ SmiTagCheckOverflow(result, result, scratch);
} else {
__ SmiTagCheckOverflow(result, left, scratch);
}
DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
#endif
} else {
__ ShiftLeft(result, left, Operand(shift_count));
#if V8_TARGET_ARCH_S390X
__ lgfr(result, result);
#endif
}
} else {
__ Move(result, left);
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
instr->hydrogen()->representation().IsExternal());
#if V8_TARGET_ARCH_S390X
// The overflow detection needs to be tested on the lower 32-bits.
// As a result, on 64-bit, we need to force 32-bit arithmetic operations
// to set the CC overflow bit properly. The result is then sign-extended.
bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
#else
bool checkOverflow = true;
#endif
if (right->IsConstantOperand()) {
if (!isInteger || !checkOverflow)
__ SubP(ToRegister(result), ToRegister(left), ToOperand(right));
else
__ Sub32(ToRegister(result), ToRegister(left), ToOperand(right));
} else if (right->IsRegister()) {
if (!isInteger)
__ SubP(ToRegister(result), ToRegister(left), ToRegister(right));
else if (!checkOverflow)
__ SubP_ExtendSrc(ToRegister(result), ToRegister(left),
ToRegister(right));
else
__ Sub32(ToRegister(result), ToRegister(left), ToRegister(right));
} else {
if (!left->Equals(instr->result()))
__ LoadRR(ToRegister(result), ToRegister(left));
MemOperand mem = ToMemOperand(right);
if (!isInteger) {
__ SubP(ToRegister(result), mem);
} else {
#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
// We want to read the 32-bits directly from memory
MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
#else
MemOperand Upper32Mem = ToMemOperand(right);
#endif
if (checkOverflow) {
__ Sub32(ToRegister(result), Upper32Mem);
} else {
__ SubP_ExtendSrc(ToRegister(result), Upper32Mem);
}
}
}
#if V8_TARGET_ARCH_S390X
if (isInteger && checkOverflow)
__ lgfr(ToRegister(result), ToRegister(result));
#endif
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
}
}
void LCodeGen::DoRSubI(LRSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) &&
right->IsConstantOperand());
#if V8_TARGET_ARCH_S390X
// The overflow detection needs to be tested on the lower 32-bits.
// As a result, on 64-bit, we need to force 32-bit arithmetic operations
// to set the CC overflow bit properly. The result is then sign-extended.
bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
#else
bool checkOverflow = true;
#endif
Operand right_operand = ToOperand(right);
__ mov(r0, right_operand);
if (!checkOverflow) {
__ SubP_ExtendSrc(ToRegister(result), r0, ToRegister(left));
} else {
__ Sub32(ToRegister(result), r0, ToRegister(left));
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
}
void LCodeGen::DoConstantD(LConstantD* instr) {
DCHECK(instr->result()->IsDoubleRegister());
DoubleRegister result = ToDoubleRegister(instr->result());
uint64_t bits = instr->bits();
__ LoadDoubleLiteral(result, bits, scratch0());
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ Move(ToRegister(instr->result()), object);
}
MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToInteger32(LConstantOperand::cast(index));
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldMemOperand(string, SeqString::kHeaderSize + offset);
}
Register scratch = scratch0();
DCHECK(!scratch.is(string));
DCHECK(!scratch.is(ToRegister(index)));
// TODO(joransiu) : Fold Add into FieldMemOperand
if (encoding == String::ONE_BYTE_ENCODING) {
__ AddP(scratch, string, ToRegister(index));
} else {
STATIC_ASSERT(kUC16Size == 2);
__ ShiftLeftP(scratch, ToRegister(index), Operand(1));
__ AddP(scratch, string, scratch);
}
return FieldMemOperand(scratch, SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
Register scratch = scratch0();
__ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
__ llc(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
__ AndP(scratch, scratch,
Operand(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ CmpP(scratch,
Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
: two_byte_seq_type));
__ Check(eq, kUnexpectedStringType);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ llc(result, operand);
} else {
__ llh(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
Register value = ToRegister(instr->value());
if (FLAG_debug_code) {
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type
: two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ stc(value, operand);
} else {
__ sth(value, operand);
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
LOperand* result = instr->result();
bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
instr->hydrogen()->representation().IsExternal());
#if V8_TARGET_ARCH_S390X
// The overflow detection needs to be tested on the lower 32-bits.
// As a result, on 64-bit, we need to force 32-bit arithmetic operations
// to set the CC overflow bit properly. The result is then sign-extended.
bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
#else
bool checkOverflow = true;
#endif
if (right->IsConstantOperand()) {
if (!isInteger || !checkOverflow)
__ AddP(ToRegister(result), ToRegister(left), ToOperand(right));
else
__ Add32(ToRegister(result), ToRegister(left), ToOperand(right));
} else if (right->IsRegister()) {
if (!isInteger)
__ AddP(ToRegister(result), ToRegister(left), ToRegister(right));
else if (!checkOverflow)
__ AddP_ExtendSrc(ToRegister(result), ToRegister(left),
ToRegister(right));
else
__ Add32(ToRegister(result), ToRegister(left), ToRegister(right));
} else {
if (!left->Equals(instr->result()))
__ LoadRR(ToRegister(result), ToRegister(left));
MemOperand mem = ToMemOperand(right);
if (!isInteger) {
__ AddP(ToRegister(result), mem);
} else {
#if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN
// We want to read the 32-bits directly from memory
MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4);
#else
MemOperand Upper32Mem = ToMemOperand(right);
#endif
if (checkOverflow) {
__ Add32(ToRegister(result), Upper32Mem);
} else {
__ AddP_ExtendSrc(ToRegister(result), Upper32Mem);
}
}
}
#if V8_TARGET_ARCH_S390X
if (isInteger && checkOverflow)
__ lgfr(ToRegister(result), ToRegister(result));
#endif
// Doptimize on overflow
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
HMathMinMax::Operation operation = instr->hydrogen()->operation();
Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Register left_reg = ToRegister(left);
Register right_reg = EmitLoadRegister(right, ip);
Register result_reg = ToRegister(instr->result());
Label return_left, done;
#if V8_TARGET_ARCH_S390X
if (instr->hydrogen_value()->representation().IsSmi()) {
#endif
__ CmpP(left_reg, right_reg);
#if V8_TARGET_ARCH_S390X
} else {
__ Cmp32(left_reg, right_reg);
}
#endif
__ b(cond, &return_left, Label::kNear);
__ Move(result_reg, right_reg);
__ b(&done, Label::kNear);
__ bind(&return_left);
__ Move(result_reg, left_reg);
__ bind(&done);
} else {
DCHECK(instr->hydrogen()->representation().IsDouble());
DoubleRegister left_reg = ToDoubleRegister(left);
DoubleRegister right_reg = ToDoubleRegister(right);
DoubleRegister result_reg = ToDoubleRegister(instr->result());
Label check_nan_left, check_zero, return_left, return_right, done;
__ cdbr(left_reg, right_reg);
__ bunordered(&check_nan_left, Label::kNear);
__ beq(&check_zero);
__ b(cond, &return_left, Label::kNear);
__ b(&return_right, Label::kNear);
__ bind(&check_zero);
__ lzdr(kDoubleRegZero);
__ cdbr(left_reg, kDoubleRegZero);
__ bne(&return_left, Label::kNear); // left == right != 0.
// At this point, both left and right are either 0 or -0.
// N.B. The following works because +0 + -0 == +0
if (operation == HMathMinMax::kMathMin) {
// For min we want logical-or of sign bit: -(-L + -R)
__ lcdbr(left_reg, left_reg);
__ ldr(result_reg, left_reg);
if (left_reg.is(right_reg)) {
__ adbr(result_reg, right_reg);
} else {
__ sdbr(result_reg, right_reg);
}
__ lcdbr(result_reg, result_reg);
} else {
// For max we want logical-and of sign bit: (L + R)
__ ldr(result_reg, left_reg);
__ adbr(result_reg, right_reg);
}
__ b(&done, Label::kNear);
__ bind(&check_nan_left);
__ cdbr(left_reg, left_reg);
__ bunordered(&return_left, Label::kNear); // left == NaN.
__ bind(&return_right);
if (!right_reg.is(result_reg)) {
__ ldr(result_reg, right_reg);
}
__ b(&done, Label::kNear);
__ bind(&return_left);
if (!left_reg.is(result_reg)) {
__ ldr(result_reg, left_reg);
}
__ bind(&done);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->left());
DoubleRegister right = ToDoubleRegister(instr->right());
DoubleRegister result = ToDoubleRegister(instr->result());
// All operations except MOD are computed in-place.
DCHECK(instr->op() == Token::MOD || left.is(result));
switch (instr->op()) {
case Token::ADD:
__ adbr(result, right);
break;
case Token::SUB:
__ sdbr(result, right);
break;
case Token::MUL:
__ mdbr(result, right);
break;
case Token::DIV:
__ ddbr(result, right);
break;
case Token::MOD: {
__ PrepareCallCFunction(0, 2, scratch0());
__ MovToFloatParameters(left, right);
__ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
0, 2);
// Move the result in the double result register.
__ MovFromFloatResult(result);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->left()).is(r3));
DCHECK(ToRegister(instr->right()).is(r2));
DCHECK(ToRegister(instr->result()).is(r2));
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
}
template <class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cond) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || cond == al) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ b(cond, chunk_->GetAssemblyLabel(left_block));
} else {
__ b(cond, chunk_->GetAssemblyLabel(left_block));
__ b(chunk_->GetAssemblyLabel(right_block));
}
}
template <class InstrType>
void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond) {
int true_block = instr->TrueDestination(chunk_);
__ b(cond, chunk_->GetAssemblyLabel(true_block));
}
template <class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond) {
int false_block = instr->FalseDestination(chunk_);
__ b(cond, chunk_->GetAssemblyLabel(false_block));
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
DoubleRegister dbl_scratch = double_scratch0();
if (r.IsInteger32()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ Cmp32(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (r.IsSmi()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ CmpP(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (r.IsDouble()) {
DCHECK(!info()->IsStub());
DoubleRegister reg = ToDoubleRegister(instr->value());
__ lzdr(kDoubleRegZero);
__ cdbr(reg, kDoubleRegZero);
// Test the double value. Zero and NaN are false.
Condition lt_gt = static_cast<Condition>(lt | gt);
EmitBranch(instr, lt_gt);
} else {
DCHECK(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
DCHECK(!info()->IsStub());
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(instr, eq);
} else if (type.IsSmi()) {
DCHECK(!info()->IsStub());
__ CmpP(reg, Operand::Zero());
EmitBranch(instr, ne);
} else if (type.IsJSArray()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, al);
} else if (type.IsHeapNumber()) {
DCHECK(!info()->IsStub());
__ ld(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
// Test the double value. Zero and NaN are false.
__ lzdr(kDoubleRegZero);
__ cdbr(dbl_scratch, kDoubleRegZero);
Condition lt_gt = static_cast<Condition>(lt | gt);
EmitBranch(instr, lt_gt);
} else if (type.IsString()) {
DCHECK(!info()->IsStub());
__ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
__ CmpP(ip, Operand::Zero());
EmitBranch(instr, ne);
} else {
ToBooleanICStub::Types expected =
instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected.IsEmpty()) expected = ToBooleanICStub::Types::Generic();
if (expected.Contains(ToBooleanICStub::UNDEFINED)) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ beq(instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanICStub::BOOLEAN)) {
// Boolean -> its value.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ beq(instr->TrueLabel(chunk_));
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ beq(instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanICStub::NULL_TYPE)) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ beq(instr->FalseLabel(chunk_));
}
if (expected.Contains(ToBooleanICStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ CmpP(reg, Operand::Zero());
__ beq(instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ TestIfSmi(reg);
DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
}
const Register map = scratch0();
if (expected.NeedsMap()) {
__ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ tm(FieldMemOperand(map, Map::kBitFieldOffset),
Operand(1 << Map::kIsUndetectable));
__ bne(instr->FalseLabel(chunk_));
}
}
if (expected.Contains(ToBooleanICStub::SPEC_OBJECT)) {
// spec object -> true.
__ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE);
__ bge(instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanICStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
__ bge(¬_string, Label::kNear);
__ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
__ CmpP(ip, Operand::Zero());
__ bne(instr->TrueLabel(chunk_));
__ b(instr->FalseLabel(chunk_));
__ bind(¬_string);
}
if (expected.Contains(ToBooleanICStub::SYMBOL)) {
// Symbol value -> true.
__ CompareInstanceType(map, ip, SYMBOL_TYPE);
__ beq(instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanICStub::SIMD_VALUE)) {
// SIMD value -> true.
Label not_simd;
__ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE);
__ beq(instr->TrueLabel(chunk_));
}
if (expected.Contains(ToBooleanICStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ bne(¬_heap_number, Label::kNear);
__ LoadDouble(dbl_scratch,
FieldMemOperand(reg, HeapNumber::kValueOffset));
__ lzdr(kDoubleRegZero);
__ cdbr(dbl_scratch, kDoubleRegZero);
__ bunordered(instr->FalseLabel(chunk_)); // NaN -> false.
__ beq(instr->FalseLabel(chunk_)); // +0, -0 -> false.
__ b(instr->TrueLabel(chunk_));
__ bind(¬_heap_number);
}
if (!expected.IsGeneric()) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(al, instr, Deoptimizer::kUnexpectedObject);
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }
Condition LCodeGen::TokenToCondition(Token::Value op) {
Condition cond = kNoCondition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::NE:
case Token::NE_STRICT:
cond = ne;
break;
case Token::LT:
cond = lt;
break;
case Token::GT:
cond = gt;
break;
case Token::LTE:
cond = le;
break;
case Token::GTE:
cond = ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cond = TokenToCondition(instr->op());
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
? instr->TrueDestination(chunk_)
: instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Compare left and right operands as doubles and load the
// resulting flags into the normal status register.
__ cdbr(ToDoubleRegister(left), ToDoubleRegister(right));
// If a NaN is involved, i.e. the result is unordered,
// jump to false block label.
__ bunordered(instr->FalseLabel(chunk_));
} else {
if (right->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(right));
if (instr->hydrogen_value()->representation().IsSmi()) {
if (is_unsigned) {
__ CmpLogicalSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
} else {
__ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
}
} else {
if (is_unsigned) {
__ CmpLogical32(ToRegister(left), ToOperand(right));
} else {
__ Cmp32(ToRegister(left), ToOperand(right));
}
}
} else if (left->IsConstantOperand()) {
int32_t value = ToInteger32(LConstantOperand::cast(left));
if (instr->hydrogen_value()->representation().IsSmi()) {
if (is_unsigned) {
__ CmpLogicalSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
} else {
__ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
}
} else {
if (is_unsigned) {
__ CmpLogical32(ToRegister(right), ToOperand(left));
} else {
__ Cmp32(ToRegister(right), ToOperand(left));
}
}
// We commuted the operands, so commute the condition.
cond = CommuteCondition(cond);
} else if (instr->hydrogen_value()->representation().IsSmi()) {
if (is_unsigned) {
__ CmpLogicalP(ToRegister(left), ToRegister(right));
} else {
__ CmpP(ToRegister(left), ToRegister(right));
}
} else {
if (is_unsigned) {
__ CmpLogical32(ToRegister(left), ToRegister(right));
} else {
__ Cmp32(ToRegister(left), ToRegister(right));
}
}
}
EmitBranch(instr, cond);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
__ CmpP(left, right);
EmitBranch(instr, eq);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ CmpP(input_reg, Operand(factory()->the_hole_value()));
EmitBranch(instr, eq);
return;
}
DoubleRegister input_reg = ToDoubleRegister(instr->object());
__ cdbr(input_reg, input_reg);
EmitFalseBranch(instr, ordered);
Register scratch = scratch0();
// Convert to GPR and examine the upper 32 bits
__ lgdr(scratch, input_reg);
__ srlg(scratch, scratch, Operand(32));
__ Cmp32(scratch, Operand(kHoleNanUpper32));
EmitBranch(instr, eq);
}
Condition LCodeGen::EmitIsString(Register input, Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
__ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
return lt;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp1 = ToRegister(instr->temp());
SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK
: INLINE_SMI_CHECK;
Condition true_cond =
EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
EmitBranch(instr, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Register input_reg = EmitLoadRegister(instr->value(), ip);
__ TestIfSmi(input_reg);
EmitBranch(instr, eq);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
__ tm(FieldMemOperand(temp, Map::kBitFieldOffset),
Operand(1 << Map::kIsUndetectable));
EmitBranch(instr, ne);
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->left()).is(r3));
DCHECK(ToRegister(instr->right()).is(r2));
Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
__ CompareRoot(r2, Heap::kTrueValueRootIndex);
EmitBranch(instr, eq);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
DCHECK(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return eq;
if (to == LAST_TYPE) return ge;
if (from == FIRST_TYPE) return le;
UNREACHABLE();
return eq;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register scratch = scratch0();
Register input = ToRegister(instr->value());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
EmitBranch(instr, BranchCondition(instr->hydrogen()));
}
void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
__ AssertString(input);
__ LoadlW(result, FieldMemOperand(input, String::kHashFieldOffset));
__ IndexFromHash(result, result);
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Register input = ToRegister(instr->value());
Register scratch = scratch0();
__ LoadlW(scratch, FieldMemOperand(input, String::kHashFieldOffset));
__ mov(r0, Operand(String::kContainsCachedArrayIndexMask));
__ AndP(r0, scratch);
EmitBranch(instr, eq);
}
// Branches to a label or falls through with the answer in flags. Trashes
// the temp registers, but not the input.
void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
Handle<String> class_name, Register input,
Register temp, Register temp2) {
DCHECK(!input.is(temp));
DCHECK(!input.is(temp2));
DCHECK(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
__ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE);
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
__ bge(is_true);
} else {
__ bge(is_false);
}
// Check if the constructor in the map is a function.
Register instance_type = ip;
__ GetMapConstructor(temp, temp, temp2, instance_type);
// Objects with a non-function constructor have class 'Object'.
__ CmpP(instance_type, Operand(JS_FUNCTION_TYPE));
if (String::Equals(isolate()->factory()->Object_string(), class_name)) {
__ bne(is_true);
} else {
__ bne(is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(temp,
FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is internalized since it's a literal.
// The name in the constructor is internalized because of the way the context
// is booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are internalized it is sufficient to use an
// identity comparison.
__ CmpP(temp, Operand(class_name));
// End with the answer in flags.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = scratch0();
Register temp2 = ToRegister(instr->temp());
Handle<String> class_name = instr->hydrogen()->class_name();
EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
class_name, input, temp, temp2);
EmitBranch(instr, eq);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
__ mov(temp, Operand(instr->map()));
__ CmpP(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
EmitBranch(instr, eq);
}
void LCodeGen::DoHasInPrototypeChainAndBranch(
LHasInPrototypeChainAndBranch* instr) {
Register const object = ToRegister(instr->object());
Register const object_map = scratch0();
Register const object_instance_type = ip;
Register const object_prototype = object_map;
Register const prototype = ToRegister(instr->prototype());
// The {object} must be a spec object. It's sufficient to know that {object}
// is not a smi, since all other non-spec objects have {null} prototypes and
// will be ruled out below.
if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
__ TestIfSmi(object);
EmitFalseBranch(instr, eq);
}
// Loop through the {object}s prototype chain looking for the {prototype}.
__ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset));
Label loop;
__ bind(&loop);
// Deoptimize if the object needs to be access checked.
__ LoadlB(object_instance_type,
FieldMemOperand(object_map, Map::kBitFieldOffset));
__ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0);
DeoptimizeIf(ne, instr, Deoptimizer::kAccessCheck, cr0);
// Deoptimize for proxies.
__ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE);
DeoptimizeIf(eq, instr, Deoptimizer::kProxy);
__ LoadP(object_prototype,
FieldMemOperand(object_map, Map::kPrototypeOffset));
__ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
EmitFalseBranch(instr, eq);
__ CmpP(object_prototype, prototype);
EmitTrueBranch(instr, eq);
__ LoadP(object_map,
FieldMemOperand(object_prototype, HeapObject::kMapOffset));
__ b(&loop);
}
void LCodeGen::DoCmpT(LCmpT* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
Token::Value op = instr->op();
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
// This instruction also signals no smi code inlined
__ CmpP(r2, Operand::Zero());
Condition condition = ComputeCompareCondition(op);
Label true_value, done;
__ b(condition, &true_value, Label::kNear);
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
__ b(&done, Label::kNear);
__ bind(&true_value);
__ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace && info()->IsOptimizing()) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in r2. We're leaving the code
// managed by the register allocator and tearing down the frame, it's
// safe to write to the context register.
__ push(r2);
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kTraceExit);
}
if (info()->saves_caller_doubles()) {
RestoreCallerDoubles();
}
if (instr->has_constant_parameter_count()) {
int parameter_count = ToInteger32(instr->constant_parameter_count());
int32_t sp_delta = (parameter_count + 1) * kPointerSize;
if (NeedsEagerFrame()) {
masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta);
} else if (sp_delta != 0) {
// TODO(joransiu): Clean this up into Macro Assembler
if (sp_delta >= 0 && sp_delta < 4096)
__ la(sp, MemOperand(sp, sp_delta));
else
__ lay(sp, MemOperand(sp, sp_delta));
}
} else {
DCHECK(info()->IsStub()); // Functions would need to drop one more value.
Register reg = ToRegister(instr->parameter_count());
// The argument count parameter is a smi
if (NeedsEagerFrame()) {
masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
}
__ SmiToPtrArrayOffset(r0, reg);
__ AddP(sp, sp, r0);
}
__ Ret();
}
template <class T>
void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
Register vector_register = ToRegister(instr->temp_vector());
Register slot_register = LoadDescriptor::SlotRegister();
DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
DCHECK(slot_register.is(r2));
AllowDeferredHandleDereference vector_structure_check;
Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
__ Move(vector_register, vector);
// No need to allocate this register.
FeedbackVectorSlot slot = instr->hydrogen()->slot();
int index = vector->GetIndex(slot);
__ LoadSmiLiteral(slot_register, Smi::FromInt(index));
}
template <class T>
void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
Register vector_register = ToRegister(instr->temp_vector());
Register slot_register = ToRegister(instr->temp_slot());
AllowDeferredHandleDereference vector_structure_check;
Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
__ Move(vector_register, vector);
FeedbackVectorSlot slot = instr->hydrogen()->slot();
int index = vector->GetIndex(slot);
__ LoadSmiLiteral(slot_register, Smi::FromInt(index));
}
void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->result()).is(r2));
EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
Handle<Code> ic =
CodeFactory::LoadGlobalICInOptimizedCode(isolate(), instr->typeof_mode())
.code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ LoadP(result, ContextMemOperand(context, instr->slot_index()));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(eq, instr, Deoptimizer::kHole);
} else {
Label skip;
__ bne(&skip, Label::kNear);
__ mov(result, Operand(factory()->undefined_value()));
__ bind(&skip);
}
}
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Register scratch = scratch0();
MemOperand target = ContextMemOperand(context, instr->slot_index());
Label skip_assignment;
if (instr->hydrogen()->RequiresHoleCheck()) {
__ LoadP(scratch, target);
__ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(eq, instr, Deoptimizer::kHole);
} else {
__ bne(&skip_assignment);
}
}
__ StoreP(value, target);
if (instr->hydrogen()->NeedsWriteBarrier()) {
SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK
: INLINE_SMI_CHECK;
__ RecordWriteContextSlot(context, target.offset(), value, scratch,
GetLinkRegisterState(), kSaveFPRegs,
EMIT_REMEMBERED_SET, check_needed);
}
__ bind(&skip_assignment);
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
Register object = ToRegister(instr->object());
if (access.IsExternalMemory()) {
Register result = ToRegister(instr->result());
MemOperand operand = MemOperand(object, offset);
__ LoadRepresentation(result, operand, access.representation(), r0);
return;
}
if (instr->hydrogen()->representation().IsDouble()) {
DCHECK(access.IsInobject());
DoubleRegister result = ToDoubleRegister(instr->result());
__ ld(result, FieldMemOperand(object, offset));
return;
}
Register result = ToRegister(instr->result());
if (!access.IsInobject()) {
__ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
object = result;
}
Representation representation = access.representation();
#if V8_TARGET_ARCH_S390X
// 64-bit Smi optimization
if (representation.IsSmi() &&
instr->hydrogen()->representation().IsInteger32()) {
// Read int value directly from upper half of the smi.
offset = SmiWordOffset(offset);
representation = Representation::Integer32();
}
#endif
__ LoadRepresentation(result, FieldMemOperand(object, offset), representation,
r0);
}
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
DCHECK(ToRegister(instr->result()).is(r2));
// Name is always in r4.
__ mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate()).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register scratch = scratch0();
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Get the prototype or initial map from the function.
__ LoadP(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(eq, instr, Deoptimizer::kHole);
// If the function does not have an initial map, we're done.
Label done;
__ CompareObjectType(result, scratch, scratch, MAP_TYPE);
__ bne(&done, Label::kNear);
// Get the prototype from the initial map.
__ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
Register result = ToRegister(instr->result());
__ LoadRoot(result, instr->index());
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register result = ToRegister(instr->result());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
if (instr->length()->IsConstantOperand()) {
int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
if (instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int index = (const_length - const_index) + 1;
__ LoadP(result, MemOperand(arguments, index * kPointerSize));
} else {
Register index = ToRegister(instr->index());
__ SubP(result, index, Operand(const_length + 1));
__ LoadComplementRR(result, result);
__ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
__ LoadP(result, MemOperand(arguments, result));
}
} else if (instr->index()->IsConstantOperand()) {
Register length = ToRegister(instr->length());
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int loc = const_index - 1;
if (loc != 0) {
__ SubP(result, length, Operand(loc));
__ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
__ LoadP(result, MemOperand(arguments, result));
} else {
__ ShiftLeftP(result, length, Operand(kPointerSizeLog2));
__ LoadP(result, MemOperand(arguments, result));
}
} else {
Register length = ToRegister(instr->length());
Register index = ToRegister(instr->index());
__ SubP(result, length, index);
__ AddP(result, result, Operand(1));
__ ShiftLeftP(result, result, Operand(kPointerSizeLog2));
__ LoadP(result, MemOperand(arguments, result));
}
}
void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
Register external_pointer = ToRegister(instr->elements());
Register key = no_reg;
ElementsKind elements_kind = instr->elements_kind();
bool key_is_constant = instr->key()->IsConstantOperand();
int constant_key = 0;
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
} else {
key = ToRegister(instr->key());
}
int element_size_shift = ElementsKindToShiftSize(elements_kind);
bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
int base_offset = instr->base_offset();
bool use_scratch = false;
if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
DoubleRegister result = ToDoubleRegister(instr->result());
if (key_is_constant) {
base_offset += constant_key << element_size_shift;
if (!is_int20(base_offset)) {
__ mov(scratch0(), Operand(base_offset));
base_offset = 0;
use_scratch = true;
}
} else {
__ IndexToArrayOffset(scratch0(), key, element_size_shift, key_is_smi,
keyMaybeNegative);
use_scratch = true;
}
if (elements_kind == FLOAT32_ELEMENTS) {
if (!use_scratch) {
__ ldeb(result, MemOperand(external_pointer, base_offset));
} else {
__ ldeb(result, MemOperand(scratch0(), external_pointer, base_offset));
}
} else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
if (!use_scratch) {
__ ld(result, MemOperand(external_pointer, base_offset));
} else {
__ ld(result, MemOperand(scratch0(), external_pointer, base_offset));
}
}
} else {
Register result = ToRegister(instr->result());
MemOperand mem_operand =
PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
constant_key, element_size_shift, base_offset,
keyMaybeNegative);
switch (elements_kind) {
case INT8_ELEMENTS:
__ LoadB(result, mem_operand);
break;
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ LoadlB(result, mem_operand);
break;
case INT16_ELEMENTS:
__ LoadHalfWordP(result, mem_operand);
break;
case UINT16_ELEMENTS:
__ LoadLogicalHalfWordP(result, mem_operand);
break;
case INT32_ELEMENTS:
__ LoadW(result, mem_operand, r0);
break;
case UINT32_ELEMENTS:
__ LoadlW(result, mem_operand, r0);
if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
__ CmpLogical32(result, Operand(0x80000000));
DeoptimizeIf(ge, instr, Deoptimizer::kNegativeValue);
}
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
Register elements = ToRegister(instr->elements());
bool key_is_constant = instr->key()->IsConstantOperand();
Register key = no_reg;
DoubleRegister result = ToDoubleRegister(instr->result());
Register scratch = scratch0();
int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
int constant_key = 0;
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
} else {
key = ToRegister(instr->key());
}
bool use_scratch = false;
intptr_t base_offset = instr->base_offset() + constant_key * kDoubleSize;
if (!key_is_constant) {
use_scratch = true;
__ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
keyMaybeNegative);
}
// Memory references support up to 20-bits signed displacement in RXY form
// Include Register::kExponentOffset in check, so we are guaranteed not to
// overflow displacement later.
if (!is_int20(base_offset + Register::kExponentOffset)) {
use_scratch = true;
if (key_is_constant) {
__ mov(scratch, Operand(base_offset));
} else {
__ AddP(scratch, Operand(base_offset));
}
base_offset = 0;
}
if (!use_scratch) {
__ ld(result, MemOperand(elements, base_offset));
} else {
__ ld(result, MemOperand(scratch, elements, base_offset));
}
if (instr->hydrogen()->RequiresHoleCheck()) {
if (!use_scratch) {
__ LoadlW(r0,
MemOperand(elements, base_offset + Register::kExponentOffset));
} else {
__ LoadlW(r0, MemOperand(scratch, elements,
base_offset + Register::kExponentOffset));
}
__ Cmp32(r0, Operand(kHoleNanUpper32));
DeoptimizeIf(eq, instr, Deoptimizer::kHole);
}
}
void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
HLoadKeyed* hinstr = instr->hydrogen();
Register elements = ToRegister(instr->elements());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
int offset = instr->base_offset();
if (instr->key()->IsConstantOperand()) {
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
offset += ToInteger32(const_operand) * kPointerSize;
} else {
Register key = ToRegister(instr->key());
// Even though the HLoadKeyed instruction forces the input
// representation for the key to be an integer, the input gets replaced
// during bound check elimination with the index argument to the bounds
// check, which can be tagged, so that case must be handled here, too.
if (hinstr->key()->representation().IsSmi()) {
__ SmiToPtrArrayOffset(scratch, key);
} else {
__ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
}
}
bool requires_hole_check = hinstr->RequiresHoleCheck();
Representation representation = hinstr->representation();
#if V8_TARGET_ARCH_S390X
// 64-bit Smi optimization
if (representation.IsInteger32() &&
hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
DCHECK(!requires_hole_check);
// Read int value directly from upper half of the smi.
offset = SmiWordOffset(offset);
}
#endif
if (instr->key()->IsConstantOperand()) {
__ LoadRepresentation(result, MemOperand(elements, offset), representation,
r1);
} else {
__ LoadRepresentation(result, MemOperand(scratch, elements, offset),
representation, r1);
}
// Check for the hole value.
if (requires_hole_check) {
if (IsFastSmiElementsKind(hinstr->elements_kind())) {
__ TestIfSmi(result);
DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
} else {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(eq, instr, Deoptimizer::kHole);
}
} else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
Label done;
__ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
__ CmpP(result, scratch);
__ bne(&done);
if (info()->IsStub()) {
// A stub can safely convert the hole to undefined only if the array
// protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
// it needs to bail out.
__ LoadRoot(result, Heap::kArrayProtectorRootIndex);
__ LoadP(result, FieldMemOperand(result, Cell::kValueOffset));
__ CmpSmiLiteral(result, Smi::FromInt(Isolate::kArrayProtectorValid), r0);
DeoptimizeIf(ne, instr, Deoptimizer::kHole);
}
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ bind(&done);
}
}
void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
if (instr->is_fixed_typed_array()) {
DoLoadKeyedExternalArray(instr);
} else if (instr->hydrogen()->representation().IsDouble()) {
DoLoadKeyedFixedDoubleArray(instr);
} else {
DoLoadKeyedFixedArray(instr);
}
}
MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base,
bool key_is_constant, bool key_is_smi,
int constant_key,
int element_size_shift,
int base_offset,
bool keyMaybeNegative) {
Register scratch = scratch0();
if (key_is_constant) {
int offset = (base_offset + (constant_key << element_size_shift));
if (!is_int20(offset)) {
__ mov(scratch, Operand(offset));
return MemOperand(base, scratch);
} else {
return MemOperand(base,
(constant_key << element_size_shift) + base_offset);
}
}
bool needs_shift =
(element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0));
if (needs_shift) {
__ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
keyMaybeNegative);
} else {
scratch = key;
}
if (!is_int20(base_offset)) {
__ AddP(scratch, Operand(base_offset));
base_offset = 0;
}
return MemOperand(scratch, base, base_offset);
}
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register scratch = scratch0();
Register result = ToRegister(instr->result());
if (instr->hydrogen()->from_inlined()) {
__ lay(result, MemOperand(sp, -2 * kPointerSize));
} else if (instr->hydrogen()->arguments_adaptor()) {
// Check if the calling frame is an arguments adaptor frame.
Label done, adapted;
__ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(
result,
MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
__ CmpSmiLiteral(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ beq(&adapted, Label::kNear);
__ LoadRR(result, fp);
__ b(&done, Label::kNear);
__ bind(&adapted);
__ LoadRR(result, scratch);
__ bind(&done);
} else {
__ LoadRR(result, fp);
}
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Register elem = ToRegister(instr->elements());
Register result = ToRegister(instr->result());
Label done;
// If no arguments adaptor frame the number of arguments is fixed.
__ CmpP(fp, elem);
__ mov(result, Operand(scope()->num_parameters()));
__ beq(&done, Label::kNear);
// Arguments adaptor frame present. Get argument length from there.
__ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(result,
MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(result);
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
// If the receiver is null or undefined, we have to pass the global
// object as a receiver to normal functions. Values have to be
// passed unchanged to builtins and strict-mode functions.
Label global_object, result_in_receiver;
if (!instr->hydrogen()->known_function()) {
// Do not transform the receiver to object for strict mode
// functions or builtins.
__ LoadP(scratch,
FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ LoadlW(scratch, FieldMemOperand(
scratch, SharedFunctionInfo::kCompilerHintsOffset));
__ AndP(r0, scratch, Operand((1 << SharedFunctionInfo::kStrictModeBit) |
(1 << SharedFunctionInfo::kNativeBit)));
__ bne(&result_in_receiver, Label::kNear);
}
// Normal function. Replace undefined or null with global receiver.
__ CompareRoot(receiver, Heap::kNullValueRootIndex);
__ beq(&global_object, Label::kNear);
__ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
__ beq(&global_object, Label::kNear);
// Deoptimize if the receiver is not a JS object.
__ TestIfSmi(receiver);
DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
__ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE);
DeoptimizeIf(lt, instr, Deoptimizer::kNotAJavaScriptObject);
__ b(&result_in_receiver, Label::kNear);
__ bind(&global_object);
__ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset));
__ LoadP(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX));
__ LoadP(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX));
if (result.is(receiver)) {
__ bind(&result_in_receiver);
} else {
Label result_ok;
__ b(&result_ok, Label::kNear);
__ bind(&result_in_receiver);
__ LoadRR(result, receiver);
__ bind(&result_ok);
}
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
Register scratch = scratch0();
DCHECK(receiver.is(r2)); // Used for parameter count.
DCHECK(function.is(r3)); // Required by InvokeFunction.
DCHECK(ToRegister(instr->result()).is(r2));
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ CmpLogicalP(length, Operand(kArgumentsLimit));
DeoptimizeIf(gt, instr, Deoptimizer::kTooManyArguments);
// Push the receiver and use the register to keep the original
// number of arguments.
__ push(receiver);
__ LoadRR(receiver, length);
// The arguments are at a one pointer size offset from elements.
__ AddP(elements, Operand(1 * kPointerSize));
// Loop through the arguments pushing them onto the execution
// stack.
Label invoke, loop;
// length is a small non-negative integer, due to the test above.
__ CmpP(length, Operand::Zero());
__ beq(&invoke, Label::kNear);
__ bind(&loop);
__ ShiftLeftP(r1, length, Operand(kPointerSizeLog2));
__ LoadP(scratch, MemOperand(elements, r1));
__ push(scratch);
__ BranchOnCount(length, &loop);
__ bind(&invoke);
InvokeFlag flag = CALL_FUNCTION;
if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
DCHECK(!info()->saves_caller_doubles());
// TODO(ishell): drop current frame before pushing arguments to the stack.
flag = JUMP_FUNCTION;
ParameterCount actual(r2);
// It is safe to use r5, r6 and r7 as scratch registers here given that
// 1) we are not going to return to caller function anyway,
// 2) r5 (new.target) will be initialized below.
PrepareForTailCall(actual, r5, r6, r7);
}
DCHECK(instr->HasPointerMap());
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
// The number of arguments is stored in receiver which is r2, as expected
// by InvokeFunction.
ParameterCount actual(receiver);
__ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->value();
if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
Abort(kDoPushArgumentNotImplementedForDoubleType);
} else {
Register argument_reg = EmitLoadRegister(argument, ip);
__ push(argument_reg);
}
}
void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); }
void LCodeGen::DoThisFunction(LThisFunction* instr) {
Register result = ToRegister(instr->result());
__ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
void LCodeGen::DoContext(LContext* instr) {
// If there is a non-return use, the context must be moved to a register.
Register result = ToRegister(instr->result());
if (info()->IsOptimizing()) {
__ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
} else {
// If there is no frame, the context must be in cp.
DCHECK(result.is(cp));
}
}
void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
__ Move(scratch0(), instr->hydrogen()->pairs());
__ push(scratch0());
__ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags()));
__ push(scratch0());
CallRuntime(Runtime::kDeclareGlobals, instr);
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int formal_parameter_count, int arity,
bool is_tail_call, LInstruction* instr) {
bool dont_adapt_arguments =
formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
bool can_invoke_directly =
dont_adapt_arguments || formal_parameter_count == arity;
Register function_reg = r3;
LPointerMap* pointers = instr->pointer_map();
if (can_invoke_directly) {
// Change context.
__ LoadP(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
// Always initialize new target and number of actual arguments.
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ mov(r2, Operand(arity));
bool is_self_call = function.is_identical_to(info()->closure());
// Invoke function.
if (is_self_call) {
Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
if (is_tail_call) {
__ Jump(self, RelocInfo::CODE_TARGET);
} else {
__ Call(self, RelocInfo::CODE_TARGET);
}
} else {
__ LoadP(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
if (is_tail_call) {
__ JumpToJSEntry(ip);
} else {
__ CallJSEntry(ip);
}
}
if (!is_tail_call) {
// Set up deoptimization.
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
}
} else {
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(arity);
ParameterCount expected(formal_parameter_count);
InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
__ InvokeFunction(function_reg, expected, actual, flag, generator);
}
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
DCHECK(instr->context() != NULL);
DCHECK(ToRegister(instr->context()).is(cp));
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
// Deoptimize if not a heap number.
__ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
Label done;
Register exponent = scratch0();
scratch = no_reg;
__ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it.
__ Cmp32(exponent, Operand::Zero());
// Move the input to the result if necessary.
__ Move(result, input);
__ bge(&done);
// Input is negative. Reverse its sign.
// Preserve the value of all registers.
{
PushSafepointRegistersScope scope(this);
// Registers were saved at the safepoint, so we can use
// many scratch registers.
Register tmp1 = input.is(r3) ? r2 : r3;
Register tmp2 = input.is(r4) ? r2 : r4;
Register tmp3 = input.is(r5) ? r2 : r5;
Register tmp4 = input.is(r6) ? r2 : r6;
// exponent: floating point exponent value.
Label allocated, slow;
__ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
__ b(&allocated);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
instr->context());
// Set the pointer to the new heap number in tmp.
if (!tmp1.is(r2)) __ LoadRR(tmp1, r2);
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input, input);
__ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
__ bind(&allocated);
// exponent: floating point exponent value.
// tmp1: allocated heap number.
// Clear the sign bit.
__ nilf(exponent, Operand(~HeapNumber::kSignMask));
__ StoreW(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
__ LoadlW(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
__ StoreW(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
__ StoreToSafepointRegisterSlot(tmp1, result);
}
__ bind(&done);
}
void LCodeGen::EmitMathAbs(LMathAbs* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
Label done;
__ CmpP(input, Operand::Zero());
__ Move(result, input);
__ bge(&done, Label::kNear);
__ LoadComplementRR(result, result);
// Deoptimize on overflow.
DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow, cr0);
__ bind(&done);
}
#if V8_TARGET_ARCH_S390X
void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
Label done;
__ Cmp32(input, Operand::Zero());
__ Move(result, input);
__ bge(&done, Label::kNear);
// Deoptimize on overflow.
__ Cmp32(input, Operand(0x80000000));
DeoptimizeIf(eq, instr, Deoptimizer::kOverflow);
__ LoadComplementRR(result, result);
__ bind(&done);
}
#endif
void LCodeGen::DoMathAbs(LMathAbs* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
LInstruction* instr() override { return instr_; }
private:
LMathAbs* instr_;
};
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
DoubleRegister input = ToDoubleRegister(instr->value());
DoubleRegister result = ToDoubleRegister(instr->result());
__ lpdbr(result, input);
#if V8_TARGET_ARCH_S390X
} else if (r.IsInteger32()) {
EmitInteger32MathAbs(instr);
} else if (r.IsSmi()) {
#else
} else if (r.IsSmiOrInteger32()) {
#endif
EmitMathAbs(instr);
} else {
// Representation is tagged.
DeferredMathAbsTaggedHeapNumber* deferred =
new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
Register input = ToRegister(instr->value());
// Smi check.
__ JumpIfNotSmi(input, deferred->entry());
// If smi, handle it directly.
EmitMathAbs(instr);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloor(LMathFloor* instr) {
DoubleRegister input = ToDoubleRegister(instr->value());
Register result = ToRegister(instr->result());
Register input_high = scratch0();
Register scratch = ip;
Label done, exact;
__ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done,
&exact);
DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
__ bind(&exact);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Test for -0.
__ CmpP(result, Operand::Zero());
__ bne(&done, Label::kNear);
__ Cmp32(input_high, Operand::Zero());
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
}
__ bind(&done);
}
void LCodeGen::DoMathRound(LMathRound* instr) {
DoubleRegister input = ToDoubleRegister(instr->value());
Register result = ToRegister(instr->result());
DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
DoubleRegister input_plus_dot_five = double_scratch1;
Register scratch1 = scratch0();
Register scratch2 = ip;
DoubleRegister dot_five = double_scratch0();
Label convert, done;
__ LoadDoubleLiteral(dot_five, 0.5, r0);
__ lpdbr(double_scratch1, input);
__ cdbr(double_scratch1, dot_five);
DeoptimizeIf(unordered, instr, Deoptimizer::kLostPrecisionOrNaN);
// If input is in [-0.5, -0], the result is -0.
// If input is in [+0, +0.5[, the result is +0.
// If the input is +0.5, the result is 1.
__ bgt(&convert, Label::kNear); // Out of [-0.5, +0.5].
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// [-0.5, -0] (negative) yields minus zero.
__ TestDoubleSign(input, scratch1);
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
}
Label return_zero;
__ cdbr(input, dot_five);
__ bne(&return_zero, Label::kNear);
__ LoadImmP(result, Operand(1)); // +0.5.
__ b(&done, Label::kNear);
// Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
// flag kBailoutOnMinusZero.
__ bind(&return_zero);
__ LoadImmP(result, Operand::Zero());
__ b(&done, Label::kNear);
__ bind(&convert);
__ ldr(input_plus_dot_five, input);
__ adbr(input_plus_dot_five, dot_five);
// Reuse dot_five (double_scratch0) as we no longer need this value.
__ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2,
double_scratch0(), &done, &done);
DeoptimizeIf(al, instr, Deoptimizer::kLostPrecisionOrNaN);
__ bind(&done);
}
void LCodeGen::DoMathFround(LMathFround* instr) {
DoubleRegister input_reg = ToDoubleRegister(instr->value());
DoubleRegister output_reg = ToDoubleRegister(instr->result());
// Round double to float
__ ledbr(output_reg, input_reg);
// Extend from float to double
__ ldebr(output_reg, output_reg);
}
void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
DoubleRegister input = ToDoubleRegister(instr->value());
DoubleRegister result = ToDoubleRegister(instr->result());
__ sqdbr(result, input);
}
void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
DoubleRegister input = ToDoubleRegister(instr->value());
DoubleRegister result = ToDoubleRegister(instr->result());
DoubleRegister temp = double_scratch0();
// Note that according to ECMA-262 15.8.2.13:
// Math.pow(-Infinity, 0.5) == Infinity
// Math.sqrt(-Infinity) == NaN
Label skip, done;
__ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0());
__ cdbr(input, temp);
__ bne(&skip, Label::kNear);
__ lcdbr(result, temp);
__ b(&done, Label::kNear);
// Add +0 to convert -0 to +0.
__ bind(&skip);
__ ldr(result, input);
__ lzdr(kDoubleRegZero);
__ adbr(result, kDoubleRegZero);
__ sqdbr(result, result);
__ bind(&done);
}
void LCodeGen::DoPower(LPower* instr) {
Representation exponent_type = instr->hydrogen()->right()->representation();
// Having marked this as a call, we can use any registers.
// Just make sure that the input/output registers are the expected ones.
Register tagged_exponent = MathPowTaggedDescriptor::exponent();
DCHECK(!instr->right()->IsDoubleRegister() ||
ToDoubleRegister(instr->right()).is(d2));
DCHECK(!instr->right()->IsRegister() ||
ToRegister(instr->right()).is(tagged_exponent));
DCHECK(ToDoubleRegister(instr->left()).is(d1));
DCHECK(ToDoubleRegister(instr->result()).is(d3));
if (exponent_type.IsSmi()) {
MathPowStub stub(isolate(), MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsTagged()) {
Label no_deopt;
__ JumpIfSmi(tagged_exponent, &no_deopt);
__ LoadP(r9, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset));
__ CompareRoot(r9, Heap::kHeapNumberMapRootIndex);
DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
__ bind(&no_deopt);
MathPowStub stub(isolate(), MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsInteger32()) {
MathPowStub stub(isolate(), MathPowStub::INTEGER);
__ CallStub(&stub);
} else {
DCHECK(exponent_type.IsDouble());
MathPowStub stub(isolate(), MathPowStub::DOUBLE);
__ CallStub(&stub);
}
}
void LCodeGen::DoMathCos(LMathCos* instr) {
__ PrepareCallCFunction(0, 1, scratch0());
__ MovToFloatParameter(ToDoubleRegister(instr->value()));
__ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1);
__ MovFromFloatResult(ToDoubleRegister(instr->result()));
}
void LCodeGen::DoMathSin(LMathSin* instr) {
__ PrepareCallCFunction(0, 1, scratch0());
__ MovToFloatParameter(ToDoubleRegister(instr->value()));
__ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1);
__ MovFromFloatResult(ToDoubleRegister(instr->result()));
}
void LCodeGen::DoMathExp(LMathExp* instr) {
__ PrepareCallCFunction(0, 1, scratch0());
__ MovToFloatParameter(ToDoubleRegister(instr->value()));
__ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1);
__ MovFromFloatResult(ToDoubleRegister(instr->result()));
}
void LCodeGen::DoMathLog(LMathLog* instr) {
__ PrepareCallCFunction(0, 1, scratch0());
__ MovToFloatParameter(ToDoubleRegister(instr->value()));
__ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1);
__ MovFromFloatResult(ToDoubleRegister(instr->result()));
}
void LCodeGen::DoMathClz32(LMathClz32* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
Label done;
__ llgfr(result, input);
__ flogr(r0, result);
__ LoadRR(result, r0);
__ CmpP(r0, Operand::Zero());
__ beq(&done, Label::kNear);
__ SubP(result, Operand(32));
__ bind(&done);
}
void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
Register scratch1, Register scratch2,
Register scratch3) {
#if DEBUG
if (actual.is_reg()) {
DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
} else {
DCHECK(!AreAliased(scratch1, scratch2, scratch3));
}
#endif
if (FLAG_code_comments) {
if (actual.is_reg()) {
Comment(";;; PrepareForTailCall, actual: %s {",
RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
actual.reg().code()));
} else {
Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
}
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ LoadP(scratch3,
MemOperand(scratch2, StandardFrameConstants::kContextOffset));
__ CmpSmiLiteral(scratch3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
__ bne(&no_arguments_adaptor);
// Drop current frame and load arguments count from arguments adaptor frame.
__ LoadRR(fp, scratch2);
__ LoadP(caller_args_count_reg,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
__ b(&formal_parameter_count_loaded);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count
__ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count()));
__ bind(&formal_parameter_count_loaded);
__ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3);
Comment(";;; }");
}
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
HInvokeFunction* hinstr = instr->hydrogen();
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->function()).is(r3));
DCHECK(instr->HasPointerMap());
bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
if (is_tail_call) {
DCHECK(!info()->saves_caller_doubles());
ParameterCount actual(instr->arity());
// It is safe to use r5, r6 and r7 as scratch registers here given that
// 1) we are not going to return to caller function anyway,
// 2) r5 (new.target) will be initialized below.
PrepareForTailCall(actual, r5, r6, r7);
}
Handle<JSFunction> known_function = hinstr->known_function();
if (known_function.is_null()) {
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(instr->arity());
InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
__ InvokeFunction(r3, no_reg, actual, flag, generator);
} else {
CallKnownFunction(known_function, hinstr->formal_parameter_count(),
instr->arity(), is_tail_call, instr);
}
}
void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
DCHECK(ToRegister(instr->result()).is(r2));
if (instr->hydrogen()->IsTailCall()) {
if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
if (instr->target()->IsConstantOperand()) {
LConstantOperand* target = LConstantOperand::cast(instr->target());
Handle<Code> code = Handle<Code>::cast(ToHandle(target));
__ Jump(code, RelocInfo::CODE_TARGET);
} else {
DCHECK(instr->target()->IsRegister());
Register target = ToRegister(instr->target());
__ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
}
} else {
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
if (instr->target()->IsConstantOperand()) {
LConstantOperand* target = LConstantOperand::cast(instr->target());
Handle<Code> code = Handle<Code>::cast(ToHandle(target));
generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
__ Call(code, RelocInfo::CODE_TARGET);
} else {
DCHECK(instr->target()->IsRegister());
Register target = ToRegister(instr->target());
generator.BeforeCall(__ CallSize(target));
__ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag));
__ CallJSEntry(ip);
}
generator.AfterCall();
}
}
void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->constructor()).is(r3));
DCHECK(ToRegister(instr->result()).is(r2));
__ mov(r2, Operand(instr->arity()));
__ Move(r4, instr->hydrogen()->site());
ElementsKind kind = instr->hydrogen()->elements_kind();
AllocationSiteOverrideMode override_mode =
(AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
? DISABLE_ALLOCATION_SITES
: DONT_OVERRIDE;
if (instr->arity() == 0) {
ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else if (instr->arity() == 1) {
Label done;
if (IsFastPackedElementsKind(kind)) {
Label packed_case;
// We might need a change here
// look at the first argument
__ LoadP(r7, MemOperand(sp, 0));
__ CmpP(r7, Operand::Zero());
__ beq(&packed_case, Label::kNear);
ElementsKind holey_kind = GetHoleyElementsKind(kind);
ArraySingleArgumentConstructorStub stub(isolate(), holey_kind,
override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ b(&done, Label::kNear);
__ bind(&packed_case);
}
ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ bind(&done);
} else {
ArrayNArgumentsConstructorStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
CallRuntime(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
Register function = ToRegister(instr->function());
Register code_object = ToRegister(instr->code_object());
__ lay(code_object,
MemOperand(code_object, Code::kHeaderSize - kHeapObjectTag));
__ StoreP(code_object,
FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0);
}
void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
Register result = ToRegister(instr->result());
Register base = ToRegister(instr->base_object());
if (instr->offset()->IsConstantOperand()) {
LConstantOperand* offset = LConstantOperand::cast(instr->offset());
__ lay(result, MemOperand(base, ToInteger32(offset)));
} else {
Register offset = ToRegister(instr->offset());
__ lay(result, MemOperand(base, offset));
}
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
HStoreNamedField* hinstr = instr->hydrogen();
Representation representation = instr->representation();
Register object = ToRegister(instr->object());
Register scratch = scratch0();
HObjectAccess access = hinstr->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
Register value = ToRegister(instr->value());
MemOperand operand = MemOperand(object, offset);
__ StoreRepresentation(value, operand, representation, r0);
return;
}
__ AssertNotSmi(object);
#if V8_TARGET_ARCH_S390X
DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
IsInteger32(LConstantOperand::cast(instr->value())));
#else
DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
IsSmi(LConstantOperand::cast(instr->value())));
#endif
if (!FLAG_unbox_double_fields && representation.IsDouble()) {
DCHECK(access.IsInobject());
DCHECK(!hinstr->has_transition());
DCHECK(!hinstr->NeedsWriteBarrier());
DoubleRegister value = ToDoubleRegister(instr->value());
DCHECK(offset >= 0);
__ std(value, FieldMemOperand(object, offset));
return;
}
if (hinstr->has_transition()) {
Handle<Map> transition = hinstr->transition_map();
AddDeprecationDependency(transition);
__ mov(scratch, Operand(transition));
__ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0);
if (hinstr->NeedsWriteBarrierForMap()) {
Register temp = ToRegister(instr->temp());
// Update the write barrier for the map field.
__ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(),
kSaveFPRegs);
}
}
// Do the store.
Register record_dest = object;
Register record_value = no_reg;
Register record_scratch = scratch;
#if V8_TARGET_ARCH_S390X
if (FLAG_unbox_double_fields && representation.IsDouble()) {
DCHECK(access.IsInobject());
DoubleRegister value = ToDoubleRegister(instr->value());
__ std(value, FieldMemOperand(object, offset));
if (hinstr->NeedsWriteBarrier()) {
record_value = ToRegister(instr->value());
}
} else {
if (representation.IsSmi() &&
hinstr->value()->representation().IsInteger32()) {
DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
// 64-bit Smi optimization
// Store int value directly to upper half of the smi.
offset = SmiWordOffset(offset);
representation = Representation::Integer32();
}
#endif
if (access.IsInobject()) {
Register value = ToRegister(instr->value());
MemOperand operand = FieldMemOperand(object, offset);
__ StoreRepresentation(value, operand, representation, r0);
record_value = value;
} else {
Register value = ToRegister(instr->value());
__ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
MemOperand operand = FieldMemOperand(scratch, offset);
__ StoreRepresentation(value, operand, representation, r0);
record_dest = scratch;
record_value = value;
record_scratch = object;
}
#if V8_TARGET_ARCH_S390X
}
#endif
if (hinstr->NeedsWriteBarrier()) {
__ RecordWriteField(record_dest, offset, record_value, record_scratch,
GetLinkRegisterState(), kSaveFPRegs,
EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
hinstr->PointersToHereCheckForValue());
}
}
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
__ mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
Handle<Code> ic =
CodeFactory::StoreICInOptimizedCode(isolate(), instr->language_mode())
.code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
Representation representation = instr->hydrogen()->length()->representation();
DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
DCHECK(representation.IsSmiOrInteger32());
Condition cc = instr->hydrogen()->allow_equality() ? lt : le;
if (instr->length()->IsConstantOperand()) {
int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
Register index = ToRegister(instr->index());
if (representation.IsSmi()) {
__ CmpLogicalP(index, Operand(Smi::FromInt(length)));
} else {
__ CmpLogical32(index, Operand(length));
}
cc = CommuteCondition(cc);
} else if (instr->index()->IsConstantOperand()) {
int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
Register length = ToRegister(instr->length());
if (representation.IsSmi()) {
__ CmpLogicalP(length, Operand(Smi::FromInt(index)));
} else {
__ CmpLogical32(length, Operand(index));
}
} else {
Register index = ToRegister(instr->index());
Register length = ToRegister(instr->length());
if (representation.IsSmi()) {
__ CmpLogicalP(length, index);
} else {
__ CmpLogical32(length, index);
}
}
if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
Label done;
__ b(NegateCondition(cc), &done, Label::kNear);
__ stop("eliminated bounds check failed");
__ bind(&done);
} else {
DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
}
}
void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
Register external_pointer = ToRegister(instr->elements());
Register key = no_reg;
ElementsKind elements_kind = instr->elements_kind();
bool key_is_constant = instr->key()->IsConstantOperand();
int constant_key = 0;
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
} else {
key = ToRegister(instr->key());
}
int element_size_shift = ElementsKindToShiftSize(elements_kind);
bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
int base_offset = instr->base_offset();
if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) {
Register address = scratch0();
DoubleRegister value(ToDoubleRegister(instr->value()));
if (key_is_constant) {
if (constant_key != 0) {
base_offset += constant_key << element_size_shift;
if (!is_int20(base_offset)) {
__ mov(address, Operand(base_offset));
__ AddP(address, external_pointer);
} else {
__ AddP(address, external_pointer, Operand(base_offset));
}
base_offset = 0;
} else {
address = external_pointer;
}
} else {
__ IndexToArrayOffset(address, key, element_size_shift, key_is_smi,
keyMaybeNegative);
__ AddP(address, external_pointer);
}
if (elements_kind == FLOAT32_ELEMENTS) {
__ ledbr(double_scratch0(), value);
__ StoreFloat32(double_scratch0(), MemOperand(address, base_offset));
} else { // Storing doubles, not floats.
__ StoreDouble(value, MemOperand(address, base_offset));
}
} else {
Register value(ToRegister(instr->value()));
MemOperand mem_operand =
PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
constant_key, element_size_shift, base_offset,
keyMaybeNegative);
switch (elements_kind) {
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
case INT8_ELEMENTS:
if (key_is_constant) {
__ StoreByte(value, mem_operand, r0);
} else {
__ StoreByte(value, mem_operand);
}
break;
case INT16_ELEMENTS:
case UINT16_ELEMENTS:
if (key_is_constant) {
__ StoreHalfWord(value, mem_operand, r0);
} else {
__ StoreHalfWord(value, mem_operand);
}
break;
case INT32_ELEMENTS:
case UINT32_ELEMENTS:
if (key_is_constant) {
__ StoreW(value, mem_operand, r0);
} else {
__ StoreW(value, mem_operand);
}
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
DoubleRegister value = ToDoubleRegister(instr->value());
Register elements = ToRegister(instr->elements());
Register key = no_reg;
Register scratch = scratch0();
DoubleRegister double_scratch = double_scratch0();
bool key_is_constant = instr->key()->IsConstantOperand();
int constant_key = 0;
// Calculate the effective address of the slot in the array to store the
// double value.
if (key_is_constant) {
constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
if (constant_key & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
} else {
key = ToRegister(instr->key());
}
int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
bool keyMaybeNegative = instr->hydrogen()->IsDehoisted();
int base_offset = instr->base_offset() + constant_key * kDoubleSize;
bool use_scratch = false;
intptr_t address_offset = base_offset;
if (key_is_constant) {
// Memory references support up to 20-bits signed displacement in RXY form
if (!is_int20((address_offset))) {
__ mov(scratch, Operand(address_offset));
address_offset = 0;
use_scratch = true;
}
} else {
use_scratch = true;
__ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi,
keyMaybeNegative);
// Memory references support up to 20-bits signed displacement in RXY form
if (!is_int20((address_offset))) {
__ AddP(scratch, Operand(address_offset));
address_offset = 0;
}
}
if (instr->NeedsCanonicalization()) {
// Turn potential sNaN value into qNaN.
__ CanonicalizeNaN(double_scratch, value);
DCHECK(address_offset >= 0);
if (use_scratch)
__ std(double_scratch, MemOperand(scratch, elements, address_offset));
else
__ std(double_scratch, MemOperand(elements, address_offset));
} else {
if (use_scratch)
__ std(value, MemOperand(scratch, elements, address_offset));
else
__ std(value, MemOperand(elements, address_offset));
}
}
void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
HStoreKeyed* hinstr = instr->hydrogen();
Register value = ToRegister(instr->value());
Register elements = ToRegister(instr->elements());
Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
Register scratch = scratch0();
int offset = instr->base_offset();
// Do the store.
if (instr->key()->IsConstantOperand()) {
DCHECK(!hinstr->NeedsWriteBarrier());
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
offset += ToInteger32(const_operand) * kPointerSize;
} else {
// Even though the HLoadKeyed instruction forces the input
// representation for the key to be an integer, the input gets replaced
// during bound check elimination with the index argument to the bounds
// check, which can be tagged, so that case must be handled here, too.
if (hinstr->key()->representation().IsSmi()) {
__ SmiToPtrArrayOffset(scratch, key);
} else {
if (instr->hydrogen()->IsDehoisted() ||
!CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) {
#if V8_TARGET_ARCH_S390X
// If array access is dehoisted, the key, being an int32, can contain
// a negative value, as needs to be sign-extended to 64-bit for
// memory access.
__ lgfr(key, key);
#endif
__ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2));
} else {
// Small optimization to reduce pathlength. After Bounds Check,
// the key is guaranteed to be non-negative. Leverage RISBG,
// which also performs zero-extension.
__ risbg(scratch, key, Operand(32 - kPointerSizeLog2),
Operand(63 - kPointerSizeLog2), Operand(kPointerSizeLog2),
true);
}
}
}
Representation representation = hinstr->value()->representation();
#if V8_TARGET_ARCH_S390X
// 64-bit Smi optimization
if (representation.IsInteger32()) {
DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
// Store int value directly to upper half of the smi.
offset = SmiWordOffset(offset);
}
#endif
if (instr->key()->IsConstantOperand()) {
__ StoreRepresentation(value, MemOperand(elements, offset), representation,
scratch);
} else {
__ StoreRepresentation(value, MemOperand(scratch, elements, offset),
representation, r0);
}
if (hinstr->NeedsWriteBarrier()) {
SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
? OMIT_SMI_CHECK
: INLINE_SMI_CHECK;
// Compute address of modified element and store it into key register.
if (instr->key()->IsConstantOperand()) {
__ lay(key, MemOperand(elements, offset));
} else {
__ lay(key, MemOperand(scratch, elements, offset));
}
__ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
EMIT_REMEMBERED_SET, check_needed,
hinstr->PointersToHereCheckForValue());
}
}
void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
// By cases: external, fast double
if (instr->is_fixed_typed_array()) {
DoStoreKeyedExternalArray(instr);
} else if (instr->hydrogen()->value()->representation().IsDouble()) {
DoStoreKeyedFixedDoubleArray(instr);
} else {
DoStoreKeyedFixedArray(instr);
}
}
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
isolate(), instr->language_mode())
.code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
class DeferredMaybeGrowElements final : public LDeferredCode {
public:
DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
LInstruction* instr() override { return instr_; }
private:
LMaybeGrowElements* instr_;
};
Register result = r2;
DeferredMaybeGrowElements* deferred =
new (zone()) DeferredMaybeGrowElements(this, instr);
LOperand* key = instr->key();
LOperand* current_capacity = instr->current_capacity();
DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
DCHECK(key->IsConstantOperand() || key->IsRegister());
DCHECK(current_capacity->IsConstantOperand() ||
current_capacity->IsRegister());
if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
int32_t constant_capacity =
ToInteger32(LConstantOperand::cast(current_capacity));
if (constant_key >= constant_capacity) {
// Deferred case.
__ b(deferred->entry());
}
} else if (key->IsConstantOperand()) {
int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
__ Cmp32(ToRegister(current_capacity), Operand(constant_key));
__ ble(deferred->entry());
} else if (current_capacity->IsConstantOperand()) {
int32_t constant_capacity =
ToInteger32(LConstantOperand::cast(current_capacity));
__ Cmp32(ToRegister(key), Operand(constant_capacity));
__ bge(deferred->entry());
} else {
__ Cmp32(ToRegister(key), ToRegister(current_capacity));
__ bge(deferred->entry());
}
if (instr->elements()->IsRegister()) {
__ Move(result, ToRegister(instr->elements()));
} else {
__ LoadP(result, ToMemOperand(instr->elements()));
}
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register result = r2;
__ LoadImmP(result, Operand::Zero());
// We have to call a stub.
{
PushSafepointRegistersScope scope(this);
if (instr->object()->IsRegister()) {
__ Move(result, ToRegister(instr->object()));
} else {
__ LoadP(result, ToMemOperand(instr->object()));
}
LOperand* key = instr->key();
if (key->IsConstantOperand()) {
LConstantOperand* constant_key = LConstantOperand::cast(key);
int32_t int_key = ToInteger32(constant_key);
if (Smi::IsValid(int_key)) {
__ LoadSmiLiteral(r5, Smi::FromInt(int_key));
} else {
// We should never get here at runtime because there is a smi check on
// the key before this point.
__ stop("expected smi");
}
} else {
__ SmiTag(r5, ToRegister(key));
}
GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
instr->hydrogen()->kind());
__ CallStub(&stub);
RecordSafepointWithLazyDeopt(
instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
__ StoreToSafepointRegisterSlot(result, result);
}
// Deopt on smi, which means the elements array changed to dictionary mode.
__ TestIfSmi(result);
DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
}
void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
Register object_reg = ToRegister(instr->object());
Register scratch = scratch0();
Handle<Map> from_map = instr->original_map();
Handle<Map> to_map = instr->transitioned_map();
ElementsKind from_kind = instr->from_kind();
ElementsKind to_kind = instr->to_kind();
Label not_applicable;
__ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
__ CmpP(scratch, Operand(from_map));
__ bne(¬_applicable);
if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
Register new_map_reg = ToRegister(instr->new_map_temp());
__ mov(new_map_reg, Operand(to_map));
__ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset));
// Write barrier.
__ RecordWriteForMap(object_reg, new_map_reg, scratch,
GetLinkRegisterState(), kDontSaveFPRegs);
} else {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(object_reg.is(r2));
PushSafepointRegistersScope scope(this);
__ Move(r3, to_map);
TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
__ CallStub(&stub);
RecordSafepointWithRegisters(instr->pointer_map(), 0,
Safepoint::kLazyDeopt);
}
__ bind(¬_applicable);
}
void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
Register object = ToRegister(instr->object());
Register temp1 = ToRegister(instr->temp1());
Register temp2 = ToRegister(instr->temp2());
Label no_memento_found;
__ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
DeoptimizeIf(eq, instr, Deoptimizer::kMementoFound);
__ bind(&no_memento_found);
}
void LCodeGen::DoStringAdd(LStringAdd* instr) {
DCHECK(ToRegister(instr->context()).is(cp));
DCHECK(ToRegister(instr->left()).is(r3));
DCHECK(ToRegister(instr->right()).is(r2));
StringAddStub stub(isolate(), instr->hydrogen()->flags(),
instr->hydrogen()->pretenure_flag());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt final : public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
LInstruction* instr() override { return instr_; }
private:
LStringCharCodeAt* instr_;
};
DeferredStringCharCodeAt* deferred =
new (zone()) DeferredStringCharCodeAt(this, instr);
StringCharLoadGenerator::Generate(
masm(), ToRegister(instr->string()), ToRegister(instr->index()),
ToRegister(instr->result()), deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ LoadImmP(result, Operand::Zero());
PushSafepointRegistersScope scope(this);
__ push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
if (instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
__ LoadSmiLiteral(scratch, Smi::FromInt(const_index));
__ push(scratch);
} else {
Register index = ToRegister(instr->index());
__ SmiTag(index);
__ push(index);
}
CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
instr->context());
__ AssertSmi(r2);
__ SmiUntag(r2);
__ StoreToSafepointRegisterSlot(r2, result);
}
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
class DeferredStringCharFromCode final : public LDeferredCode {
public:
DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override {
codegen()->DoDeferredStringCharFromCode(instr_);
}
LInstruction* instr() override { return instr_; }
private:
LStringCharFromCode* instr_;
};
DeferredStringCharFromCode* deferred =
new (zone()) DeferredStringCharFromCode(this, instr);
DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
DCHECK(!char_code.is(result));
__ CmpLogicalP(char_code, Operand(String::kMaxOneByteCharCode));
__ bgt(deferred->entry());
__ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
__ ShiftLeftP(r0, char_code, Operand(kPointerSizeLog2));
__ AddP(result, r0);
__ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize));
__ CompareRoot(result, Heap::kUndefinedValueRootIndex);
__ beq(deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ LoadImmP(result, Operand::Zero());
PushSafepointRegistersScope scope(this);
__ SmiTag(char_code);
__ push(char_code);
CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
instr->context());
__ StoreToSafepointRegisterSlot(r2, result);
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->value();
DCHECK(input->IsRegister() || input->IsStackSlot());
LOperand* output = instr->result();
DCHECK(output->IsDoubleRegister());
if (input->IsStackSlot()) {
Register scratch = scratch0();
__ LoadP(scratch, ToMemOperand(input));
__ ConvertIntToDouble(scratch, ToDoubleRegister(output));
} else {
__ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output));
}
}
void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
LOperand* input = instr->value();
LOperand* output = instr->result();
__ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output));
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI final : public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override {
codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
instr_->temp2(), SIGNED_INT32);
}
LInstruction* instr() override { return instr_; }
private:
LNumberTagI* instr_;
};
Register src = ToRegister(instr->value());
Register dst = ToRegister(instr->result());
DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr);
#if V8_TARGET_ARCH_S390X
__ SmiTag(dst, src);
#else
// Add src to itself to defect SMI overflow.
__ Add32(dst, src, src);
__ b(overflow, deferred->entry());
#endif
__ bind(deferred->exit());
}
void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
class DeferredNumberTagU final : public LDeferredCode {
public:
DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override {
codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
instr_->temp2(), UNSIGNED_INT32);
}
LInstruction* instr() override { return instr_; }
private:
LNumberTagU* instr_;
};
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr);
__ CmpLogicalP(input, Operand(Smi::kMaxValue));
__ bgt(deferred->entry());
__ SmiTag(result, input);
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value,
LOperand* temp1, LOperand* temp2,
IntegerSignedness signedness) {
Label done, slow;
Register src = ToRegister(value);
Register dst = ToRegister(instr->result());
Register tmp1 = scratch0();
Register tmp2 = ToRegister(temp1);
Register tmp3 = ToRegister(temp2);
DoubleRegister dbl_scratch = double_scratch0();
if (signedness == SIGNED_INT32) {
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
if (dst.is(src)) {
__ SmiUntag(src, dst);
__ xilf(src, Operand(HeapNumber::kSignMask));
}
__ ConvertIntToDouble(src, dbl_scratch);
} else {
__ ConvertUnsignedIntToDouble(src, dbl_scratch);
}
if (FLAG_inline_new) {
__ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
__ b(&done);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
{
// TODO(3095996): Put a valid pointer value in the stack slot where the
// result register is stored, as this register is in the pointer map, but
// contains an integer value.
__ LoadImmP(dst, Operand::Zero());
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
// NumberTagI and NumberTagD use the context from the frame, rather than
// the environment's HContext or HInlinedContext value.
// They only call Runtime::kAllocateHeapNumber.
// The corresponding HChange instructions are added in a phase that does
// not have easy access to the local context.
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(instr->pointer_map(), 0,
Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(r2, dst);
}
// Done. Put the value in dbl_scratch into the value of the allocated heap
// number.
__ bind(&done);
__ StoreDouble(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD final : public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
LInstruction* instr() override { return instr_; }
private:
LNumberTagD* instr_;
};
DoubleRegister input_reg = ToDoubleRegister(instr->value());
Register scratch = scratch0();
Register reg = ToRegister(instr->result());
Register temp1 = ToRegister(instr->temp());
Register temp2 = ToRegister(instr->temp2());
DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
__ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
} else {
__ b(deferred->entry());
}
__ bind(deferred->exit());
__ StoreDouble(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ LoadImmP(reg, Operand::Zero());
PushSafepointRegistersScope scope(this);
// NumberTagI and NumberTagD use the context from the frame, rather than
// the environment's HContext or HInlinedContext value.
// They only call Runtime::kAllocateHeapNumber.
// The corresponding HChange instructions are added in a phase that does
// not have easy access to the local context.
__ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(instr->pointer_map(), 0,
Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(r2, reg);
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
HChange* hchange = instr->hydrogen();
Register input = ToRegister(instr->value());
Register output = ToRegister(instr->result());
if (hchange->CheckFlag(HValue::kCanOverflow) &&
hchange->value()->CheckFlag(HValue::kUint32)) {
__ TestUnsignedSmiCandidate(input, r0);
DeoptimizeIf(ne, instr, Deoptimizer::kOverflow, cr0);
}
#if !V8_TARGET_ARCH_S390X
if (hchange->CheckFlag(HValue::kCanOverflow) &&
!hchange->value()->CheckFlag(HValue::kUint32)) {
__ SmiTagCheckOverflow(output, input, r0);
DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
} else {
#endif
__ SmiTag(output, input);
#if !V8_TARGET_ARCH_S390X
}
#endif
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
if (instr->needs_check()) {
__ tmll(input, Operand(kHeapObjectTag));
DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
__ SmiUntag(result, input);
} else {
__ SmiUntag(result, input);
}
}
void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
DoubleRegister result_reg,
NumberUntagDMode mode) {
bool can_convert_undefined_to_nan =
instr->hydrogen()->can_convert_undefined_to_nan();
bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
Register scratch = scratch0();
DCHECK(!result_reg.is(double_scratch0()));
Label convert, load_smi, done;
if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
// Smi check.
__ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
// Heap number map check.
__ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ CmpP(scratch, RootMemOperand(Heap::kHeapNumberMapRootIndex));
if (can_convert_undefined_to_nan) {
__ bne(&convert, Label::kNear);
} else {
DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
}
// load heap number
__ ld(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
if (deoptimize_on_minus_zero) {
__ TestDoubleIsMinusZero(result_reg, scratch, ip);
DeoptimizeIf(eq, instr, Deoptimizer::kMinusZero);
}
__ b(&done, Label::kNear);
if (can_convert_undefined_to_nan) {
__ bind(&convert);
// Convert undefined (and hole) to NaN.
__ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
__ LoadRoot(scratch, Heap::kNanValueRootIndex);
__ ld(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
__ b(&done, Label::kNear);
}
} else {
__ SmiUntag(scratch, input_reg);
DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
}
// Smi to double register conversion
__ bind(&load_smi);
// scratch: untagged value of input_reg
__ ConvertIntToDouble(scratch, result_reg);
__ bind(&done);
}
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
Register input_reg = ToRegister(instr->value());
Register scratch1 = scratch0();
Register scratch2 = ToRegister(instr->temp());
DoubleRegister double_scratch = double_scratch0();
DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
Label done;
// Heap number map check.
__ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex);
if (instr->truncating()) {
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations.
Label no_heap_number, check_bools, check_false;
__ bne(&no_heap_number, Label::kNear);
__ LoadRR(scratch2, input_reg);
__ TruncateHeapNumberToI(input_reg, scratch2);
__ b(&done, Label::kNear);
// Check for Oddballs. Undefined/False is converted to zero and True to one
// for truncating conversions.
__ bind(&no_heap_number);
__ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
__ bne(&check_bools);
__ LoadImmP(input_reg, Operand::Zero());
__ b(&done, Label::kNear);
__ bind(&check_bools);
__ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
__ bne(&check_false, Label::kNear);
__ LoadImmP(input_reg, Operand(1));
__ b(&done, Label::kNear);
__ bind(&check_false);
__ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefinedBoolean);
__ LoadImmP(input_reg, Operand::Zero());
} else {
// Deoptimize if we don't have a heap number.
DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumber);
__ ld(double_scratch2,
FieldMemOperand(input_reg, HeapNumber::kValueOffset));
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// preserve heap number pointer in scratch2 for minus zero check below
__ LoadRR(scratch2, input_reg);
}
__ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1,
double_scratch);
DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ CmpP(input_reg, Operand::Zero());
__ bne(&done, Label::kNear);
__ TestHeapNumberSign(scratch2, scratch1);
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
}
}
__ bind(&done);
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
class DeferredTaggedToI final : public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override { codegen()->DoDeferredTaggedToI(instr_); }
LInstruction* instr() override { return instr_; }
private:
LTaggedToI* instr_;
};
LOperand* input = instr->value();
DCHECK(input->IsRegister());
DCHECK(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
if (instr->hydrogen()->value()->representation().IsSmi()) {
__ SmiUntag(input_reg);
} else {
DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr);
// Branch to deferred code if the input is a HeapObject.
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiUntag(input_reg);
__ bind(deferred->exit());
}
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->value();
DCHECK(input->IsRegister());
LOperand* result = instr->result();
DCHECK(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
DoubleRegister result_reg = ToDoubleRegister(result);
HValue* value = instr->hydrogen()->value();
NumberUntagDMode mode = value->representation().IsSmi()
? NUMBER_CANDIDATE_IS_SMI
: NUMBER_CANDIDATE_IS_ANY_TAGGED;
EmitNumberUntagD(instr, input_reg, result_reg, mode);
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
Register result_reg = ToRegister(instr->result());
Register scratch1 = scratch0();
DoubleRegister double_input = ToDoubleRegister(instr->value());
DoubleRegister double_scratch = double_scratch0();
if (instr->truncating()) {
__ TruncateDoubleToI(result_reg, double_input);
} else {
__ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
double_scratch);
// Deoptimize if the input wasn't a int32 (inside a double).
DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label done;
__ CmpP(result_reg, Operand::Zero());
__ bne(&done, Label::kNear);
__ TestDoubleSign(double_input, scratch1);
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
__ bind(&done);
}
}
}
void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
Register result_reg = ToRegister(instr->result());
Register scratch1 = scratch0();
DoubleRegister double_input = ToDoubleRegister(instr->value());
DoubleRegister double_scratch = double_scratch0();
if (instr->truncating()) {
__ TruncateDoubleToI(result_reg, double_input);
} else {
__ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
double_scratch);
// Deoptimize if the input wasn't a int32 (inside a double).
DeoptimizeIf(ne, instr, Deoptimizer::kLostPrecisionOrNaN);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label done;
__ CmpP(result_reg, Operand::Zero());
__ bne(&done, Label::kNear);
__ TestDoubleSign(double_input, scratch1);
DeoptimizeIf(lt, instr, Deoptimizer::kMinusZero);
__ bind(&done);
}
}
#if V8_TARGET_ARCH_S390X
__ SmiTag(result_reg);
#else
__ SmiTagCheckOverflow(result_reg, r0);
DeoptimizeIf(lt, instr, Deoptimizer::kOverflow, cr0);
#endif
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->value();
__ TestIfSmi(ToRegister(input));
DeoptimizeIf(ne, instr, Deoptimizer::kNotASmi, cr0);
}
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
LOperand* input = instr->value();
__ TestIfSmi(ToRegister(input));
DeoptimizeIf(eq, instr, Deoptimizer::kSmi, cr0);
}
}
void LCodeGen::DoCheckArrayBufferNotNeutered(
LCheckArrayBufferNotNeutered* instr) {
Register view = ToRegister(instr->view());
Register scratch = scratch0();
__ LoadP(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset));
__ LoadlW(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset));
__ And(r0, scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift));
DeoptimizeIf(ne, instr, Deoptimizer::kOutOfBounds, cr0);
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->value());
Register scratch = scratch0();
__ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
if (instr->hydrogen()->is_interval_check()) {
InstanceType first;
InstanceType last;
instr->hydrogen()->GetCheckInterval(&first, &last);
__ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
Operand(first));
// If there is only one type in the interval check for equality.
if (first == last) {
DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
} else {
DeoptimizeIf(lt, instr, Deoptimizer::kWrongInstanceType);
// Omit check for the last type.
if (last != LAST_TYPE) {
__ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset),
Operand(last));
DeoptimizeIf(gt, instr, Deoptimizer::kWrongInstanceType);
}
}
} else {
uint8_t mask;
uint8_t tag;
instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
__ LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
if (base::bits::IsPowerOfTwo32(mask)) {
DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
__ AndP(scratch, Operand(mask));
DeoptimizeIf(tag == 0 ? ne : eq, instr, Deoptimizer::kWrongInstanceType);
} else {
__ AndP(scratch, Operand(mask));
__ CmpP(scratch, Operand(tag));
DeoptimizeIf(ne, instr, Deoptimizer::kWrongInstanceType);
}
}
}
void LCodeGen::DoCheckValue(LCheckValue* instr) {
Register reg = ToRegister(instr->value());
Handle<HeapObject> object = instr->hydrogen()->object().handle();
AllowDeferredHandleDereference smi_check;
if (isolate()->heap()->InNewSpace(*object)) {
Register reg = ToRegister(instr->value());
Handle<Cell> cell = isolate()->factory()->NewCell(object);
__ mov(ip, Operand(cell));
__ CmpP(reg, FieldMemOperand(ip, Cell::kValueOffset));
} else {
__ CmpP(reg, Operand(object));
}
DeoptimizeIf(ne, instr, Deoptimizer::kValueMismatch);
}
void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
Register temp = ToRegister(instr->temp());
{
PushSafepointRegistersScope scope(this);
__ push(object);
__ LoadImmP(cp, Operand::Zero());
__ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
RecordSafepointWithRegisters(instr->pointer_map(), 1,
Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(r2, temp);
}
__ TestIfSmi(temp);
DeoptimizeIf(eq, instr, Deoptimizer::kInstanceMigrationFailed, cr0);
}
void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
class DeferredCheckMaps final : public LDeferredCode {
public:
DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
: LDeferredCode(codegen), instr_(instr), object_(object) {
SetExit(check_maps());
}
void Generate() override {
codegen()->DoDeferredInstanceMigration(instr_, object_);
}
Label* check_maps() { return &check_maps_; }
LInstruction* instr() override { return instr_; }
private:
LCheckMaps* instr_;
Label check_maps_;
Register object_;
};
if (instr->hydrogen()->IsStabilityCheck()) {
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
for (int i = 0; i < maps->size(); ++i) {
AddStabilityDependency(maps->at(i).handle());
}
return;
}
LOperand* input = instr->value();
DCHECK(input->IsRegister());
Register reg = ToRegister(input);
DeferredCheckMaps* deferred = NULL;
if (instr->hydrogen()->HasMigrationTarget()) {
deferred = new (zone()) DeferredCheckMaps(this, instr, reg);
__ bind(deferred->check_maps());
}
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
Label success;
for (int i = 0; i < maps->size() - 1; i++) {
Handle<Map> map = maps->at(i).handle();
__ CompareMap(reg, map, &success);
__ beq(&success);
}
Handle<Map> map = maps->at(maps->size() - 1).handle();
__ CompareMap(reg, map, &success);
if (instr->hydrogen()->HasMigrationTarget()) {
__ bne(deferred->entry());
} else {
DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
}
__ bind(&success);
}
void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
__ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
}
void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
Register unclamped_reg = ToRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
__ ClampUint8(result_reg, unclamped_reg);
}
void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
Register scratch = scratch0();
Register input_reg = ToRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
Label is_smi, done, heap_number;
// Both smi and heap number cases are handled.
__ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
// Check for heap number
__ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ CmpP(scratch, Operand(factory()->heap_number_map()));
__ beq(&heap_number, Label::kNear);
// Check for undefined. Undefined is converted to zero for clamping
// conversions.
__ CmpP(input_reg, Operand(factory()->undefined_value()));
DeoptimizeIf(ne, instr, Deoptimizer::kNotAHeapNumberUndefined);
__ LoadImmP(result_reg, Operand::Zero());
__ b(&done, Label::kNear);
// Heap number
__ bind(&heap_number);
__ ld(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
__ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
__ b(&done, Label::kNear);
// smi
__ bind(&is_smi);
__ ClampUint8(result_reg, result_reg);
__ bind(&done);
}
void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
DoubleRegister value_reg = ToDoubleRegister(instr->value());
Register result_reg = ToRegister(instr->result());
__ lgdr(result_reg, value_reg);
if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
__ srlg(result_reg, result_reg, Operand(32));
} else {
__ llgfr(result_reg, result_reg);
}
}
void LCodeGen::DoAllocate(LAllocate* instr) {
class DeferredAllocate final : public LDeferredCode {
public:
DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override { codegen()->DoDeferredAllocate(instr_); }
LInstruction* instr() override { return instr_; }
private:
LAllocate* instr_;
};
DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr);
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->temp1());
Register scratch2 = ToRegister(instr->temp2());
// Allocate memory for the object.
AllocationFlags flags = NO_ALLOCATION_FLAGS;
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
}
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
if (instr->hydrogen()->IsAllocationFoldingDominator()) {
flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
}
DCHECK(!instr->hydrogen()->IsAllocationFolded());
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
CHECK(size <= Page::kMaxRegularHeapObjectSize);
__ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
} else {
Register size = ToRegister(instr->size());
__ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
}
__ bind(deferred->exit());
if (instr->hydrogen()->MustPrefillWithFiller()) {
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
__ LoadIntLiteral(scratch, size);
} else {
scratch = ToRegister(instr->size());
}
__ lay(scratch, MemOperand(scratch, -kPointerSize));
Label loop;
__ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
__ bind(&loop);
__ StoreP(scratch2, MemOperand(scratch, result, -kHeapObjectTag));
#if V8_TARGET_ARCH_S390X
__ lay(scratch, MemOperand(scratch, -kPointerSize));
#else
// TODO(joransiu): Improve the following sequence.
// Need to use AHI instead of LAY as top nibble is not set with LAY, causing
// incorrect result with the signed compare
__ AddP(scratch, Operand(-kPointerSize));
#endif
__ CmpP(scratch, Operand::Zero());
__ bge(&loop);
}
}
void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ LoadSmiLiteral(result, Smi::FromInt(0));
PushSafepointRegistersScope scope(this);
if (instr->size()->IsRegister()) {
Register size = ToRegister(instr->size());
DCHECK(!size.is(result));
__ SmiTag(size);
__ push(size);
} else {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
#if !V8_TARGET_ARCH_S390X
if (size >= 0 && size <= Smi::kMaxValue) {
#endif
__ Push(Smi::FromInt(size));
#if !V8_TARGET_ARCH_S390X
} else {
// We should never get here at runtime => abort
__ stop("invalid allocation size");
return;
}
#endif
}
int flags = AllocateDoubleAlignFlag::encode(
instr->hydrogen()->MustAllocateDoubleAligned());
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = AllocateTargetSpace::update(flags, OLD_SPACE);
} else {
flags = AllocateTargetSpace::update(flags, NEW_SPACE);
}
__ Push(Smi::FromInt(flags));
CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr,
instr->context());
__ StoreToSafepointRegisterSlot(r2, result);
if (instr->hydrogen()->IsAllocationFoldingDominator()) {
AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
// If the allocation folding dominator allocate triggered a GC, allocation
// happend in the runtime. We have to reset the top pointer to virtually
// undo the allocation.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
Register top_address = scratch0();
__ SubP(r2, r2, Operand(kHeapObjectTag));
__ mov(top_address, Operand(allocation_top));
__ StoreP(r2, MemOperand(top_address));
__ AddP(r2, r2, Operand(kHeapObjectTag));
}
}
void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
DCHECK(instr->hydrogen()->IsAllocationFolded());
DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
Register result = ToRegister(instr->result());
Register scratch1 = ToRegister(instr->temp1());
Register scratch2 = ToRegister(instr->temp2());
AllocationFlags flags = ALLOCATION_FOLDED;
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
}
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
CHECK(size <= Page::kMaxRegularHeapObjectSize);
__ FastAllocate(size, result, scratch1, scratch2, flags);
} else {
Register size = ToRegister(instr->size());
__ FastAllocate(size, result, scratch1, scratch2, flags);
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
DCHECK(ToRegister(instr->value()).is(r5));
DCHECK(ToRegister(instr->result()).is(r2));
Label end, do_call;
Register value_register = ToRegister(instr->value());
__ JumpIfNotSmi(value_register, &do_call);
__ mov(r2, Operand(isolate()->factory()->number_string()));
__ b(&end);
__ bind(&do_call);
TypeofStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ bind(&end);
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->value());
Condition final_branch_condition =
EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input,
instr->type_literal());
if (final_branch_condition != kNoCondition) {
EmitBranch(instr, final_branch_condition);
}
}
Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label,
Register input, Handle<String> type_name) {
Condition final_branch_condition = kNoCondition;
Register scratch = scratch0();
Factory* factory = isolate()->factory();
if (String::Equals(type_name, factory->number_string())) {
__ JumpIfSmi(input, true_label);
__ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
final_branch_condition = eq;
} else if (String::Equals(type_name, factory->string_string())) {
__ JumpIfSmi(input, false_label);
__ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
final_branch_condition = lt;
} else if (String::Equals(type_name, factory->symbol_string())) {
__ JumpIfSmi(input, false_label);
__ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
final_branch_condition = eq;
} else if (String::Equals(type_name, factory->boolean_string())) {
__ CompareRoot(input, Heap::kTrueValueRootIndex);
__ beq(true_label);
__ CompareRoot(input, Heap::kFalseValueRootIndex);
final_branch_condition = eq;
} else if (String::Equals(type_name, factory->undefined_string())) {
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ beq(false_label);
__ JumpIfSmi(input, false_label);
// Check for undetectable objects => true.
__ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ ExtractBit(r0, scratch, Map::kIsUndetectable);
__ CmpP(r0, Operand::Zero());
final_branch_condition = ne;
} else if (String::Equals(type_name, factory->function_string())) {
__ JumpIfSmi(input, false_label);
__ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
__ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ AndP(scratch, scratch,
Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
__ CmpP(scratch, Operand(1 << Map::kIsCallable));
final_branch_condition = eq;
} else if (String::Equals(type_name, factory->object_string())) {
__ JumpIfSmi(input, false_label);
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ beq(true_label);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE);
__ blt(false_label);
// Check for callable or undetectable objects => false.
__ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ AndP(r0, scratch,
Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
__ CmpP(r0, Operand::Zero());
final_branch_condition = eq;
// clang-format off
#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
} else if (String::Equals(type_name, factory->type##_string())) { \
__ JumpIfSmi(input, false_label); \
__ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \
__ CompareRoot(scratch, Heap::k##Type##MapRootIndex); \
final_branch_condition = eq;
SIMD128_TYPES(SIMD128_TYPE)
#undef SIMD128_TYPE
// clang-format on
} else {
__ b(false_label);
}
return final_branch_condition;
}
void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
if (info()->ShouldEnsureSpaceForLazyDeopt()) {
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
if (current_pc < last_lazy_deopt_pc_ + space_needed) {
int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
DCHECK_EQ(0, padding_size % 2);
while (padding_size > 0) {
__ nop();
padding_size -= 2;
}
}
}
last_lazy_deopt_pc_ = masm()->pc_offset();
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
last_lazy_deopt_pc_ = masm()->pc_offset();
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
Deoptimizer::BailoutType type = instr->hydrogen()->type();
// TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
// needed return address), even though the implementation of LAZY and EAGER is
// now identical. When LAZY is eventually completely folded into EAGER, remove
// the special case below.
if (info()->IsStub() && type == Deoptimizer::EAGER) {
type = Deoptimizer::LAZY;
}
DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type);
}
void LCodeGen::DoDummy(LDummy* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDummyUse(LDummyUse* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
PushSafepointRegistersScope scope(this);
LoadContextFromDeferred(instr->context());
__ CallRuntimeSaveDoubles(Runtime::kStackGuard);
RecordSafepointWithLazyDeopt(
instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
class DeferredStackCheck final : public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
LInstruction* instr() override { return instr_; }
private:
LStackCheck* instr_;
};
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
// There is no LLazyBailout instruction for stack-checks. We have to
// prepare for lazy deoptimization explicitly here.
if (instr->hydrogen()->is_function_entry()) {
// Perform stack overflow check.
Label done;
__ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
__ bge(&done, Label::kNear);
DCHECK(instr->context()->IsRegister());
DCHECK(ToRegister(instr->context()).is(cp));
CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET,
instr);
__ bind(&done);
} else {
DCHECK(instr->hydrogen()->is_backwards_branch());
// Perform stack overflow check if this goto needs it before jumping.
DeferredStackCheck* deferred_stack_check =
new (zone()) DeferredStackCheck(this, instr);
__ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex));
__ blt(deferred_stack_check->entry());
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
__ bind(instr->done_label());
deferred_stack_check->SetExit(instr->done_label());
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
// Don't record a deoptimization index for the safepoint here.
// This will be done explicitly when emitting call and the safepoint in
// the deferred code.
}
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
DCHECK(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
GenerateOsrPrologue();
}
void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
Label use_cache, call_runtime;
__ CheckEnumCache(&call_runtime);
__ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
__ b(&use_cache);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(r2);
CallRuntime(Runtime::kForInEnumerate, instr);
__ bind(&use_cache);
}
void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
Register map = ToRegister(instr->map());
Register result = ToRegister(instr->result());
Label load_cache, done;
__ EnumLength(result, map);
__ CmpSmiLiteral(result, Smi::FromInt(0), r0);
__ bne(&load_cache, Label::kNear);
__ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
__ b(&done, Label::kNear);
__ bind(&load_cache);
__ LoadInstanceDescriptors(map, result);
__ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
__ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
__ CmpP(result, Operand::Zero());
DeoptimizeIf(eq, instr, Deoptimizer::kNoCache);
__ bind(&done);
}
void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
Register object = ToRegister(instr->value());
Register map = ToRegister(instr->map());
__ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
__ CmpP(map, scratch0());
DeoptimizeIf(ne, instr, Deoptimizer::kWrongMap);
}
void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
Register result, Register object,
Register index) {
PushSafepointRegistersScope scope(this);
__ Push(object, index);
__ LoadImmP(cp, Operand::Zero());
__ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
RecordSafepointWithRegisters(instr->pointer_map(), 2,
Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(r2, result);
}
void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
class DeferredLoadMutableDouble final : public LDeferredCode {
public:
DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr,
Register result, Register object, Register index)
: LDeferredCode(codegen),
instr_(instr),
result_(result),
object_(object),
index_(index) {}
void Generate() override {
codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
}
LInstruction* instr() override { return instr_; }
private:
LLoadFieldByIndex* instr_;
Register result_;
Register object_;
Register index_;
};
Register object = ToRegister(instr->object());
Register index = ToRegister(instr->index());
Register result = ToRegister(instr->result());
Register scratch = scratch0();
DeferredLoadMutableDouble* deferred;
deferred = new (zone())
DeferredLoadMutableDouble(this, instr, result, object, index);
Label out_of_object, done;
__ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0);
__ bne(deferred->entry());
__ ShiftRightArithP(index, index, Operand(1));
__ CmpP(index, Operand::Zero());
__ blt(&out_of_object, Label::kNear);
__ SmiToPtrArrayOffset(r0, index);
__ AddP(scratch, object, r0);
__ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
__ b(&done, Label::kNear);
__ bind(&out_of_object);
__ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
// Index is equal to negated out of object property index plus 1.
__ SmiToPtrArrayOffset(r0, index);
__ SubP(scratch, result, r0);
__ LoadP(result,
FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize));
__ bind(deferred->exit());
__ bind(&done);
}
#undef __
} // namespace internal
} // namespace v8