// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/store-store-elimination.h"
#include "src/compiler/all-nodes.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/simplified-operator.h"
namespace v8 {
namespace internal {
namespace compiler {
#define TRACE(fmt, ...) \
do { \
if (FLAG_trace_store_elimination) { \
PrintF("StoreStoreElimination::ReduceEligibleNode: " fmt "\n", \
##__VA_ARGS__); \
} \
} while (false)
// A simple store-store elimination. When the effect chain contains the
// following sequence,
//
// - StoreField[[+off_1]](x1, y1)
// - StoreField[[+off_2]](x2, y2)
// - StoreField[[+off_3]](x3, y3)
// ...
// - StoreField[[+off_n]](xn, yn)
//
// where the xes are the objects and the ys are the values to be stored, then
// we are going to say that a store is superfluous if the same offset of the
// same object will be stored to in the future. If off_i == off_j and xi == xj
// and i < j, then we optimize the i'th StoreField away.
//
// This optimization should be initiated on the last StoreField in such a
// sequence.
//
// The algorithm works by walking the effect chain from the last StoreField
// upwards. While walking, we maintain a map {futureStore} from offsets to
// nodes; initially it is empty. As we walk the effect chain upwards, if
// futureStore[off] = n, then any store to node {n} with offset {off} is
// guaranteed to be useless because we do a full-width[1] store to that offset
// of that object in the near future anyway. For example, for this effect
// chain
//
// 71: StoreField(60, 0)
// 72: StoreField(65, 8)
// 73: StoreField(63, 8)
// 74: StoreField(65, 16)
// 75: StoreField(62, 8)
//
// just before we get to 72, we will have futureStore = {8: 63, 16: 65}.
//
// Here is the complete process.
//
// - We are at the end of a sequence of consecutive StoreFields.
// - We start out with futureStore = empty.
// - We then walk the effect chain upwards to find the next StoreField [2].
//
// 1. If the offset is not a key of {futureStore} yet, we put it in.
// 2. If the offset is a key of {futureStore}, but futureStore[offset] is a
// different node, we overwrite futureStore[offset] with the current node.
// 3. If the offset is a key of {futureStore} and futureStore[offset] equals
// this node, we eliminate this StoreField.
//
// As long as the current effect input points to a node with a single effect
// output, and as long as its opcode is StoreField, we keep traversing
// upwards.
//
// [1] This optimization is unsound if we optimize away a store to an offset
// because we store to the same offset in the future, even though the future
// store is narrower than the store we optimize away. Therefore, in case (1)
// and (2) we only add/overwrite to the dictionary when the field access has
// maximal size. For simplicity of implementation, we do not try to detect
// case (3).
//
// [2] We make sure that we only traverse the linear part, that is, the part
// where every node has exactly one incoming and one outgoing effect edge.
// Also, we only keep walking upwards as long as we keep finding consecutive
// StoreFields on the same node.
StoreStoreElimination::StoreStoreElimination(JSGraph* js_graph, Zone* temp_zone)
: jsgraph_(js_graph), temp_zone_(temp_zone) {}
StoreStoreElimination::~StoreStoreElimination() {}
void StoreStoreElimination::Run() {
// The store-store elimination performs work on chains of certain types of
// nodes. The elimination must be invoked on the lowest node in such a
// chain; we have a helper function IsEligibleNode that returns true
// precisely on the lowest node in such a chain.
//
// Because the elimination removes nodes from the graph, even remove nodes
// that the elimination was not invoked on, we cannot use a normal
// AdvancedReducer but we manually find which nodes to invoke the
// elimination on. Then in a next step, we invoke the elimination for each
// node that was eligible.
NodeVector eligible(temp_zone()); // loops over all nodes
AllNodes all(temp_zone(), jsgraph()->graph());
for (Node* node : all.live) {
if (IsEligibleNode(node)) {
eligible.push_back(node);
}
}
for (Node* node : eligible) {
ReduceEligibleNode(node);
}
}
namespace {
// 16 bits was chosen fairly arbitrarily; it seems enough now. 8 bits is too
// few.
typedef uint16_t Offset;
// To safely cast an offset from a FieldAccess, which has a wider range
// (namely int).
Offset ToOffset(int offset) {
CHECK(0 <= offset && offset < (1 << 8 * sizeof(Offset)));
return (Offset)offset;
}
Offset ToOffset(const FieldAccess& access) { return ToOffset(access.offset); }
// If node has a single effect use, return that node. If node has no or
// multiple effect uses, return nullptr.
Node* SingleEffectUse(Node* node) {
Node* last_use = nullptr;
for (Edge edge : node->use_edges()) {
if (!NodeProperties::IsEffectEdge(edge)) {
continue;
}
if (last_use != nullptr) {
// more than one
return nullptr;
}
last_use = edge.from();
DCHECK_NOT_NULL(last_use);
}
return last_use;
}
// Return true if node is the last consecutive StoreField node in a linear
// part of the effect chain.
bool IsEndOfStoreFieldChain(Node* node) {
Node* next_on_chain = SingleEffectUse(node);
return (next_on_chain == nullptr ||
next_on_chain->op()->opcode() != IrOpcode::kStoreField);
}
// The argument must be a StoreField node. If there is a node before it in the
// effect chain, and if this part of the effect chain is linear (no other
// effect uses of that previous node), then return that previous node.
// Otherwise, return nullptr.
//
// The returned node need not be a StoreField.
Node* PreviousEffectBeforeStoreField(Node* node) {
DCHECK_EQ(node->op()->opcode(), IrOpcode::kStoreField);
DCHECK_EQ(node->op()->EffectInputCount(), 1);
Node* previous = NodeProperties::GetEffectInput(node);
if (previous != nullptr && node == SingleEffectUse(previous)) {
return previous;
} else {
return nullptr;
}
}
size_t rep_size_of(MachineRepresentation rep) {
return ((size_t)1) << ElementSizeLog2Of(rep);
}
size_t rep_size_of(FieldAccess access) {
return rep_size_of(access.machine_type.representation());
}
} // namespace
bool StoreStoreElimination::IsEligibleNode(Node* node) {
return (node->op()->opcode() == IrOpcode::kStoreField) &&
IsEndOfStoreFieldChain(node);
}
void StoreStoreElimination::ReduceEligibleNode(Node* node) {
DCHECK(IsEligibleNode(node));
// if (FLAG_trace_store_elimination) {
// PrintF("** StoreStoreElimination::ReduceEligibleNode: activated:
// #%d\n",
// node->id());
// }
TRACE("activated: #%d", node->id());
// Initialize empty futureStore.
ZoneMap<Offset, Node*> futureStore(temp_zone());
Node* current_node = node;
do {
FieldAccess access = OpParameter<FieldAccess>(current_node->op());
Offset offset = ToOffset(access);
Node* object_input = current_node->InputAt(0);
Node* previous = PreviousEffectBeforeStoreField(current_node);
CHECK(rep_size_of(access) <= rep_size_of(MachineRepresentation::kTagged));
if (rep_size_of(access) == rep_size_of(MachineRepresentation::kTagged)) {
// Try to insert. If it was present, this will preserve the original
// value.
auto insert_result =
futureStore.insert(std::make_pair(offset, object_input));
if (insert_result.second) {
// Key was not present. This means that there is no matching
// StoreField to this offset in the future, so we cannot optimize
// current_node away. However, we will record the current StoreField
// in futureStore, and continue ascending up the chain.
TRACE("#%d[[+%d]] -- wide, key not present", current_node->id(),
offset);
} else if (insert_result.first->second != object_input) {
// Key was present, and the value did not equal object_input. This
// means
// that there is a StoreField to this offset in the future, but the
// object instance comes from a different Node. We pessimistically
// assume that we cannot optimize current_node away. However, we will
// record the current StoreField in futureStore, and continue
// ascending up the chain.
insert_result.first->second = object_input;
TRACE("#%d[[+%d]] -- wide, diff object", current_node->id(), offset);
} else {
// Key was present, and the value equalled object_input. This means
// that soon after in the effect chain, we will do a StoreField to the
// same object with the same offset, therefore current_node can be
// optimized away. We don't need to update futureStore.
Node* previous_effect = NodeProperties::GetEffectInput(current_node);
NodeProperties::ReplaceUses(current_node, nullptr, previous_effect,
nullptr, nullptr);
current_node->Kill();
TRACE("#%d[[+%d]] -- wide, eliminated", current_node->id(), offset);
}
} else {
TRACE("#%d[[+%d]] -- narrow, not eliminated", current_node->id(), offset);
}
// Regardless of whether we eliminated node {current}, we want to
// continue walking up the effect chain.
current_node = previous;
} while (current_node != nullptr &&
current_node->op()->opcode() == IrOpcode::kStoreField);
TRACE("finished");
}
} // namespace compiler
} // namespace internal
} // namespace v8