// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_NODE_H_
#define V8_COMPILER_NODE_H_
#include "src/compiler/opcodes.h"
#include "src/compiler/operator.h"
#include "src/types.h"
#include "src/zone-containers.h"
namespace v8 {
namespace internal {
namespace compiler {
// Forward declarations.
class Edge;
class Graph;
// Marks are used during traversal of the graph to distinguish states of nodes.
// Each node has a mark which is a monotonically increasing integer, and a
// {NodeMarker} has a range of values that indicate states of a node.
typedef uint32_t Mark;
// NodeIds are identifying numbers for nodes that can be used to index auxiliary
// out-of-line data associated with each node.
typedef uint32_t NodeId;
// A Node is the basic primitive of graphs. Nodes are chained together by
// input/use chains but by default otherwise contain only an identifying number
// which specific applications of graphs and nodes can use to index auxiliary
// out-of-line data, especially transient data.
//
// In addition Nodes only contain a mutable Operator that may change during
// compilation, e.g. during lowering passes. Other information that needs to be
// associated with Nodes during compilation must be stored out-of-line indexed
// by the Node's id.
class Node final {
public:
static Node* New(Zone* zone, NodeId id, const Operator* op, int input_count,
Node* const* inputs, bool has_extensible_inputs);
static Node* Clone(Zone* zone, NodeId id, const Node* node);
bool IsDead() const { return InputCount() > 0 && !InputAt(0); }
void Kill();
const Operator* op() const { return op_; }
IrOpcode::Value opcode() const {
DCHECK(op_->opcode() <= IrOpcode::kLast);
return static_cast<IrOpcode::Value>(op_->opcode());
}
NodeId id() const { return IdField::decode(bit_field_); }
int InputCount() const {
return has_inline_inputs() ? InlineCountField::decode(bit_field_)
: inputs_.outline_->count_;
}
#if DEBUG
void Verify();
#define BOUNDS_CHECK(index) \
do { \
if (index < 0 || index >= InputCount()) { \
V8_Fatal(__FILE__, __LINE__, "Node #%d:%s->InputAt(%d) out of bounds", \
id(), op()->mnemonic(), index); \
} \
} while (false)
#else
// No bounds checks or verification in release mode.
inline void Verify() {}
#define BOUNDS_CHECK(index) \
do { \
} while (false)
#endif
Node* InputAt(int index) const {
BOUNDS_CHECK(index);
return *GetInputPtrConst(index);
}
void ReplaceInput(int index, Node* new_to) {
BOUNDS_CHECK(index);
Node** input_ptr = GetInputPtr(index);
Node* old_to = *input_ptr;
if (old_to != new_to) {
Use* use = GetUsePtr(index);
if (old_to) old_to->RemoveUse(use);
*input_ptr = new_to;
if (new_to) new_to->AppendUse(use);
}
}
#undef BOUNDS_CHECK
void AppendInput(Zone* zone, Node* new_to);
void InsertInput(Zone* zone, int index, Node* new_to);
void RemoveInput(int index);
void NullAllInputs();
void TrimInputCount(int new_input_count);
int UseCount() const;
void ReplaceUses(Node* replace_to);
class InputEdges final {
public:
typedef Edge value_type;
class iterator;
inline iterator begin() const;
inline iterator end() const;
bool empty() const;
explicit InputEdges(Node* node) : node_(node) {}
private:
Node* node_;
};
InputEdges input_edges() { return InputEdges(this); }
class Inputs final {
public:
typedef Node* value_type;
class const_iterator;
inline const_iterator begin() const;
inline const_iterator end() const;
bool empty() const;
explicit Inputs(Node* node) : node_(node) {}
private:
Node* node_;
};
Inputs inputs() { return Inputs(this); }
class UseEdges final {
public:
typedef Edge value_type;
class iterator;
inline iterator begin() const;
inline iterator end() const;
bool empty() const;
explicit UseEdges(Node* node) : node_(node) {}
private:
Node* node_;
};
UseEdges use_edges() { return UseEdges(this); }
class Uses final {
public:
typedef Node* value_type;
class const_iterator;
inline const_iterator begin() const;
inline const_iterator end() const;
bool empty() const;
explicit Uses(Node* node) : node_(node) {}
private:
Node* node_;
};
Uses uses() { return Uses(this); }
// Returns true if {owner} is the user of {this} node.
bool OwnedBy(Node* owner) const {
return first_use_ && first_use_->from() == owner && !first_use_->next;
}
// Returns true if {owner1} and {owner2} are the only users of {this} node.
bool OwnedBy(Node const* owner1, Node const* owner2) const;
void Print() const;
private:
struct Use;
// Out of line storage for inputs when the number of inputs overflowed the
// capacity of the inline-allocated space.
struct OutOfLineInputs {
Node* node_;
int count_;
int capacity_;
Node* inputs_[1];
static OutOfLineInputs* New(Zone* zone, int capacity);
void ExtractFrom(Use* use_ptr, Node** input_ptr, int count);
};
// A link in the use chain for a node. Every input {i} to a node {n} has an
// associated {Use} which is linked into the use chain of the {i} node.
struct Use {
Use* next;
Use* prev;
uint32_t bit_field_;
int input_index() const { return InputIndexField::decode(bit_field_); }
bool is_inline_use() const { return InlineField::decode(bit_field_); }
Node** input_ptr() {
int index = input_index();
Use* start = this + 1 + index;
Node** inputs = is_inline_use()
? reinterpret_cast<Node*>(start)->inputs_.inline_
: reinterpret_cast<OutOfLineInputs*>(start)->inputs_;
return &inputs[index];
}
Node* from() {
Use* start = this + 1 + input_index();
return is_inline_use() ? reinterpret_cast<Node*>(start)
: reinterpret_cast<OutOfLineInputs*>(start)->node_;
}
typedef BitField<bool, 0, 1> InlineField;
typedef BitField<unsigned, 1, 17> InputIndexField;
// Leaving some space in the bitset in case we ever decide to record
// the output index.
};
//============================================================================
//== Memory layout ===========================================================
//============================================================================
// Saving space for big graphs is important. We use a memory layout trick to
// be able to map {Node} objects to {Use} objects and vice-versa in a
// space-efficient manner.
//
// {Use} links are laid out in memory directly before a {Node}, followed by
// direct pointers to input {Nodes}.
//
// inline case:
// |Use #N |Use #N-1|...|Use #1 |Use #0 |Node xxxx |I#0|I#1|...|I#N-1|I#N|
// ^ ^ ^
// + Use + Node + Input
//
// Since every {Use} instance records its {input_index}, pointer arithmetic
// can compute the {Node}.
//
// out-of-line case:
// |Node xxxx |
// ^ + outline ------------------+
// +----------------------------------------+
// | |
// v | node
// |Use #N |Use #N-1|...|Use #1 |Use #0 |OOL xxxxx |I#0|I#1|...|I#N-1|I#N|
// ^ ^
// + Use + Input
//
// Out-of-line storage of input lists is needed if appending an input to
// a node exceeds the maximum inline capacity.
Node(NodeId id, const Operator* op, int inline_count, int inline_capacity);
Node* const* GetInputPtrConst(int input_index) const {
return has_inline_inputs() ? &(inputs_.inline_[input_index])
: &inputs_.outline_->inputs_[input_index];
}
Node** GetInputPtr(int input_index) {
return has_inline_inputs() ? &(inputs_.inline_[input_index])
: &inputs_.outline_->inputs_[input_index];
}
Use* GetUsePtr(int input_index) {
Use* ptr = has_inline_inputs() ? reinterpret_cast<Use*>(this)
: reinterpret_cast<Use*>(inputs_.outline_);
return &ptr[-1 - input_index];
}
void AppendUse(Use* use);
void RemoveUse(Use* use);
void* operator new(size_t, void* location) { return location; }
// Only NodeProperties should manipulate the op.
void set_op(const Operator* op) { op_ = op; }
// Only NodeProperties should manipulate the type.
Type* type() const { return type_; }
void set_type(Type* type) { type_ = type; }
// Only NodeMarkers should manipulate the marks on nodes.
Mark mark() { return mark_; }
void set_mark(Mark mark) { mark_ = mark; }
inline bool has_inline_inputs() const {
return InlineCountField::decode(bit_field_) != kOutlineMarker;
}
void ClearInputs(int start, int count);
typedef BitField<NodeId, 0, 24> IdField;
typedef BitField<unsigned, 24, 4> InlineCountField;
typedef BitField<unsigned, 28, 4> InlineCapacityField;
static const int kOutlineMarker = InlineCountField::kMax;
static const int kMaxInlineCount = InlineCountField::kMax - 1;
static const int kMaxInlineCapacity = InlineCapacityField::kMax - 1;
const Operator* op_;
Type* type_;
Mark mark_;
uint32_t bit_field_;
Use* first_use_;
union {
// Inline storage for inputs or out-of-line storage.
Node* inline_[1];
OutOfLineInputs* outline_;
} inputs_;
friend class Edge;
friend class NodeMarkerBase;
friend class NodeProperties;
DISALLOW_COPY_AND_ASSIGN(Node);
};
std::ostream& operator<<(std::ostream& os, const Node& n);
// Typedefs to shorten commonly used Node containers.
typedef ZoneDeque<Node*> NodeDeque;
typedef ZoneSet<Node*> NodeSet;
typedef ZoneVector<Node*> NodeVector;
typedef ZoneVector<NodeVector> NodeVectorVector;
// Helper to extract parameters from Operator1<*> nodes.
template <typename T>
static inline const T& OpParameter(const Node* node) {
return OpParameter<T>(node->op());
}
// An encapsulation for information associated with a single use of node as a
// input from another node, allowing access to both the defining node and
// the node having the input.
class Edge final {
public:
Node* from() const { return use_->from(); }
Node* to() const { return *input_ptr_; }
int index() const {
int const index = use_->input_index();
DCHECK_LT(index, use_->from()->InputCount());
return index;
}
bool operator==(const Edge& other) { return input_ptr_ == other.input_ptr_; }
bool operator!=(const Edge& other) { return !(*this == other); }
void UpdateTo(Node* new_to) {
Node* old_to = *input_ptr_;
if (old_to != new_to) {
if (old_to) old_to->RemoveUse(use_);
*input_ptr_ = new_to;
if (new_to) new_to->AppendUse(use_);
}
}
private:
friend class Node::UseEdges::iterator;
friend class Node::InputEdges::iterator;
Edge(Node::Use* use, Node** input_ptr) : use_(use), input_ptr_(input_ptr) {
DCHECK_NOT_NULL(use);
DCHECK_NOT_NULL(input_ptr);
DCHECK_EQ(input_ptr, use->input_ptr());
}
Node::Use* use_;
Node** input_ptr_;
};
// A forward iterator to visit the edges for the input dependencies of a node.
class Node::InputEdges::iterator final {
public:
typedef std::forward_iterator_tag iterator_category;
typedef int difference_type;
typedef Edge value_type;
typedef Edge* pointer;
typedef Edge& reference;
iterator() : use_(nullptr), input_ptr_(nullptr) {}
iterator(const iterator& other)
: use_(other.use_), input_ptr_(other.input_ptr_) {}
Edge operator*() const { return Edge(use_, input_ptr_); }
bool operator==(const iterator& other) const {
return input_ptr_ == other.input_ptr_;
}
bool operator!=(const iterator& other) const { return !(*this == other); }
iterator& operator++() {
input_ptr_++;
use_--;
return *this;
}
iterator operator++(int);
private:
friend class Node;
explicit iterator(Node* from, int index = 0)
: use_(from->GetUsePtr(index)), input_ptr_(from->GetInputPtr(index)) {}
Use* use_;
Node** input_ptr_;
};
Node::InputEdges::iterator Node::InputEdges::begin() const {
return Node::InputEdges::iterator(this->node_, 0);
}
Node::InputEdges::iterator Node::InputEdges::end() const {
return Node::InputEdges::iterator(this->node_, this->node_->InputCount());
}
// A forward iterator to visit the inputs of a node.
class Node::Inputs::const_iterator final {
public:
typedef std::forward_iterator_tag iterator_category;
typedef int difference_type;
typedef Node* value_type;
typedef Node** pointer;
typedef Node*& reference;
const_iterator(const const_iterator& other) : iter_(other.iter_) {}
Node* operator*() const { return (*iter_).to(); }
bool operator==(const const_iterator& other) const {
return iter_ == other.iter_;
}
bool operator!=(const const_iterator& other) const {
return !(*this == other);
}
const_iterator& operator++() {
++iter_;
return *this;
}
const_iterator operator++(int);
private:
friend class Node::Inputs;
const_iterator(Node* node, int index) : iter_(node, index) {}
Node::InputEdges::iterator iter_;
};
Node::Inputs::const_iterator Node::Inputs::begin() const {
return const_iterator(this->node_, 0);
}
Node::Inputs::const_iterator Node::Inputs::end() const {
return const_iterator(this->node_, this->node_->InputCount());
}
// A forward iterator to visit the uses edges of a node.
class Node::UseEdges::iterator final {
public:
iterator(const iterator& other)
: current_(other.current_), next_(other.next_) {}
Edge operator*() const { return Edge(current_, current_->input_ptr()); }
bool operator==(const iterator& other) const {
return current_ == other.current_;
}
bool operator!=(const iterator& other) const { return !(*this == other); }
iterator& operator++() {
DCHECK_NOT_NULL(current_);
current_ = next_;
next_ = current_ ? current_->next : nullptr;
return *this;
}
iterator operator++(int);
private:
friend class Node::UseEdges;
iterator() : current_(nullptr), next_(nullptr) {}
explicit iterator(Node* node)
: current_(node->first_use_),
next_(current_ ? current_->next : nullptr) {}
Node::Use* current_;
Node::Use* next_;
};
Node::UseEdges::iterator Node::UseEdges::begin() const {
return Node::UseEdges::iterator(this->node_);
}
Node::UseEdges::iterator Node::UseEdges::end() const {
return Node::UseEdges::iterator();
}
// A forward iterator to visit the uses of a node.
class Node::Uses::const_iterator final {
public:
typedef std::forward_iterator_tag iterator_category;
typedef int difference_type;
typedef Node* value_type;
typedef Node** pointer;
typedef Node*& reference;
const_iterator(const const_iterator& other) : current_(other.current_) {}
Node* operator*() const { return current_->from(); }
bool operator==(const const_iterator& other) const {
return other.current_ == current_;
}
bool operator!=(const const_iterator& other) const {
return other.current_ != current_;
}
const_iterator& operator++() {
DCHECK_NOT_NULL(current_);
current_ = current_->next;
return *this;
}
const_iterator operator++(int);
private:
friend class Node::Uses;
const_iterator() : current_(nullptr) {}
explicit const_iterator(Node* node) : current_(node->first_use_) {}
Node::Use* current_;
};
Node::Uses::const_iterator Node::Uses::begin() const {
return const_iterator(this->node_);
}
Node::Uses::const_iterator Node::Uses::end() const { return const_iterator(); }
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_NODE_H_