// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/memory-optimizer.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/compiler/simplified-operator.h"
namespace v8 {
namespace internal {
namespace compiler {
MemoryOptimizer::MemoryOptimizer(JSGraph* jsgraph, Zone* zone)
: jsgraph_(jsgraph),
empty_state_(AllocationState::Empty(zone)),
pending_(zone),
tokens_(zone),
zone_(zone) {}
void MemoryOptimizer::Optimize() {
EnqueueUses(graph()->start(), empty_state());
while (!tokens_.empty()) {
Token const token = tokens_.front();
tokens_.pop();
VisitNode(token.node, token.state);
}
DCHECK(pending_.empty());
DCHECK(tokens_.empty());
}
MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node,
PretenureFlag pretenure,
Zone* zone)
: node_ids_(zone), pretenure_(pretenure), size_(nullptr) {
node_ids_.insert(node->id());
}
MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node,
PretenureFlag pretenure,
Node* size, Zone* zone)
: node_ids_(zone), pretenure_(pretenure), size_(size) {
node_ids_.insert(node->id());
}
void MemoryOptimizer::AllocationGroup::Add(Node* node) {
node_ids_.insert(node->id());
}
bool MemoryOptimizer::AllocationGroup::Contains(Node* node) const {
return node_ids_.find(node->id()) != node_ids_.end();
}
MemoryOptimizer::AllocationState::AllocationState()
: group_(nullptr), size_(std::numeric_limits<int>::max()), top_(nullptr) {}
MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group)
: group_(group), size_(std::numeric_limits<int>::max()), top_(nullptr) {}
MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group,
int size, Node* top)
: group_(group), size_(size), top_(top) {}
bool MemoryOptimizer::AllocationState::IsNewSpaceAllocation() const {
return group() && group()->IsNewSpaceAllocation();
}
void MemoryOptimizer::VisitNode(Node* node, AllocationState const* state) {
DCHECK(!node->IsDead());
DCHECK_LT(0, node->op()->EffectInputCount());
switch (node->opcode()) {
case IrOpcode::kAllocate:
return VisitAllocate(node, state);
case IrOpcode::kCall:
return VisitCall(node, state);
case IrOpcode::kLoadElement:
return VisitLoadElement(node, state);
case IrOpcode::kLoadField:
return VisitLoadField(node, state);
case IrOpcode::kStoreElement:
return VisitStoreElement(node, state);
case IrOpcode::kStoreField:
return VisitStoreField(node, state);
case IrOpcode::kCheckedLoad:
case IrOpcode::kCheckedStore:
case IrOpcode::kDeoptimizeIf:
case IrOpcode::kDeoptimizeUnless:
case IrOpcode::kIfException:
case IrOpcode::kLoad:
case IrOpcode::kStore:
return VisitOtherEffect(node, state);
default:
break;
}
DCHECK_EQ(0, node->op()->EffectOutputCount());
}
void MemoryOptimizer::VisitAllocate(Node* node, AllocationState const* state) {
DCHECK_EQ(IrOpcode::kAllocate, node->opcode());
Node* value;
Node* size = node->InputAt(0);
Node* effect = node->InputAt(1);
Node* control = node->InputAt(2);
PretenureFlag pretenure = OpParameter<PretenureFlag>(node->op());
// Determine the top/limit addresses.
Node* top_address = jsgraph()->ExternalConstant(
pretenure == NOT_TENURED
? ExternalReference::new_space_allocation_top_address(isolate())
: ExternalReference::old_space_allocation_top_address(isolate()));
Node* limit_address = jsgraph()->ExternalConstant(
pretenure == NOT_TENURED
? ExternalReference::new_space_allocation_limit_address(isolate())
: ExternalReference::old_space_allocation_limit_address(isolate()));
// Check if we can fold this allocation into a previous allocation represented
// by the incoming {state}.
Int32Matcher m(size);
if (m.HasValue() && m.Value() < Page::kMaxRegularHeapObjectSize) {
int32_t const object_size = m.Value();
if (state->size() <= Page::kMaxRegularHeapObjectSize - object_size &&
state->group()->pretenure() == pretenure) {
// We can fold this Allocate {node} into the allocation {group}
// represented by the given {state}. Compute the upper bound for
// the new {state}.
int32_t const state_size = state->size() + object_size;
// Update the reservation check to the actual maximum upper bound.
AllocationGroup* const group = state->group();
if (OpParameter<int32_t>(group->size()) < state_size) {
NodeProperties::ChangeOp(group->size(),
common()->Int32Constant(state_size));
}
// Update the allocation top with the new object allocation.
// TODO(bmeurer): Defer writing back top as much as possible.
Node* top = graph()->NewNode(machine()->IntAdd(), state->top(),
jsgraph()->IntPtrConstant(object_size));
effect = graph()->NewNode(
machine()->Store(StoreRepresentation(
MachineType::PointerRepresentation(), kNoWriteBarrier)),
top_address, jsgraph()->IntPtrConstant(0), top, effect, control);
// Compute the effective inner allocated address.
value = graph()->NewNode(
machine()->BitcastWordToTagged(),
graph()->NewNode(machine()->IntAdd(), state->top(),
jsgraph()->IntPtrConstant(kHeapObjectTag)));
// Extend the allocation {group}.
group->Add(value);
state = AllocationState::Open(group, state_size, top, zone());
} else {
// Setup a mutable reservation size node; will be patched as we fold
// additional allocations into this new group.
Node* size = graph()->NewNode(common()->Int32Constant(object_size));
// Load allocation top and limit.
Node* top = effect =
graph()->NewNode(machine()->Load(MachineType::Pointer()), top_address,
jsgraph()->IntPtrConstant(0), effect, control);
Node* limit = effect = graph()->NewNode(
machine()->Load(MachineType::Pointer()), limit_address,
jsgraph()->IntPtrConstant(0), effect, control);
// Check if we need to collect garbage before we can start bump pointer
// allocation (always done for folded allocations).
Node* check = graph()->NewNode(
machine()->UintLessThan(),
graph()->NewNode(
machine()->IntAdd(), top,
machine()->Is64()
? graph()->NewNode(machine()->ChangeInt32ToInt64(), size)
: size),
limit);
Node* branch =
graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control);
Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
Node* etrue = effect;
Node* vtrue = top;
Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
Node* efalse = effect;
Node* vfalse;
{
Node* target = pretenure == NOT_TENURED
? jsgraph()->AllocateInNewSpaceStubConstant()
: jsgraph()->AllocateInOldSpaceStubConstant();
if (!allocate_operator_.is_set()) {
CallDescriptor* descriptor =
Linkage::GetAllocateCallDescriptor(graph()->zone());
allocate_operator_.set(common()->Call(descriptor));
}
vfalse = efalse = graph()->NewNode(allocate_operator_.get(), target,
size, efalse, if_false);
vfalse = graph()->NewNode(machine()->IntSub(), vfalse,
jsgraph()->IntPtrConstant(kHeapObjectTag));
}
control = graph()->NewNode(common()->Merge(2), if_true, if_false);
effect = graph()->NewNode(common()->EffectPhi(2), etrue, efalse, control);
value = graph()->NewNode(
common()->Phi(MachineType::PointerRepresentation(), 2), vtrue, vfalse,
control);
// Compute the new top and write it back.
top = graph()->NewNode(machine()->IntAdd(), value,
jsgraph()->IntPtrConstant(object_size));
effect = graph()->NewNode(
machine()->Store(StoreRepresentation(
MachineType::PointerRepresentation(), kNoWriteBarrier)),
top_address, jsgraph()->IntPtrConstant(0), top, effect, control);
// Compute the initial object address.
value = graph()->NewNode(
machine()->BitcastWordToTagged(),
graph()->NewNode(machine()->IntAdd(), value,
jsgraph()->IntPtrConstant(kHeapObjectTag)));
// Start a new allocation group.
AllocationGroup* group =
new (zone()) AllocationGroup(value, pretenure, size, zone());
state = AllocationState::Open(group, object_size, top, zone());
}
} else {
// Load allocation top and limit.
Node* top = effect =
graph()->NewNode(machine()->Load(MachineType::Pointer()), top_address,
jsgraph()->IntPtrConstant(0), effect, control);
Node* limit = effect =
graph()->NewNode(machine()->Load(MachineType::Pointer()), limit_address,
jsgraph()->IntPtrConstant(0), effect, control);
// Compute the new top.
Node* new_top = graph()->NewNode(
machine()->IntAdd(), top,
machine()->Is64()
? graph()->NewNode(machine()->ChangeInt32ToInt64(), size)
: size);
// Check if we can do bump pointer allocation here.
Node* check = graph()->NewNode(machine()->UintLessThan(), new_top, limit);
Node* branch =
graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control);
Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
Node* etrue = effect;
Node* vtrue;
{
etrue = graph()->NewNode(
machine()->Store(StoreRepresentation(
MachineType::PointerRepresentation(), kNoWriteBarrier)),
top_address, jsgraph()->IntPtrConstant(0), new_top, etrue, if_true);
vtrue = graph()->NewNode(
machine()->BitcastWordToTagged(),
graph()->NewNode(machine()->IntAdd(), top,
jsgraph()->IntPtrConstant(kHeapObjectTag)));
}
Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
Node* efalse = effect;
Node* vfalse;
{
Node* target = pretenure == NOT_TENURED
? jsgraph()->AllocateInNewSpaceStubConstant()
: jsgraph()->AllocateInOldSpaceStubConstant();
if (!allocate_operator_.is_set()) {
CallDescriptor* descriptor =
Linkage::GetAllocateCallDescriptor(graph()->zone());
allocate_operator_.set(common()->Call(descriptor));
}
vfalse = efalse = graph()->NewNode(allocate_operator_.get(), target, size,
efalse, if_false);
}
control = graph()->NewNode(common()->Merge(2), if_true, if_false);
effect = graph()->NewNode(common()->EffectPhi(2), etrue, efalse, control);
value = graph()->NewNode(common()->Phi(MachineRepresentation::kTagged, 2),
vtrue, vfalse, control);
// Create an unfoldable allocation group.
AllocationGroup* group =
new (zone()) AllocationGroup(value, pretenure, zone());
state = AllocationState::Closed(group, zone());
}
// Replace all effect uses of {node} with the {effect}, enqueue the
// effect uses for further processing, and replace all value uses of
// {node} with the {value}.
for (Edge edge : node->use_edges()) {
if (NodeProperties::IsEffectEdge(edge)) {
EnqueueUse(edge.from(), edge.index(), state);
edge.UpdateTo(effect);
} else {
DCHECK(NodeProperties::IsValueEdge(edge));
edge.UpdateTo(value);
}
}
// Kill the {node} to make sure we don't leave dangling dead uses.
node->Kill();
}
void MemoryOptimizer::VisitCall(Node* node, AllocationState const* state) {
DCHECK_EQ(IrOpcode::kCall, node->opcode());
// If the call can allocate, we start with a fresh state.
if (!(CallDescriptorOf(node->op())->flags() & CallDescriptor::kNoAllocate)) {
state = empty_state();
}
EnqueueUses(node, state);
}
void MemoryOptimizer::VisitLoadElement(Node* node,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kLoadElement, node->opcode());
ElementAccess const& access = ElementAccessOf(node->op());
Node* index = node->InputAt(1);
node->ReplaceInput(1, ComputeIndex(access, index));
NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
EnqueueUses(node, state);
}
void MemoryOptimizer::VisitLoadField(Node* node, AllocationState const* state) {
DCHECK_EQ(IrOpcode::kLoadField, node->opcode());
FieldAccess const& access = FieldAccessOf(node->op());
Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag());
node->InsertInput(graph()->zone(), 1, offset);
NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
EnqueueUses(node, state);
}
void MemoryOptimizer::VisitStoreElement(Node* node,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kStoreElement, node->opcode());
ElementAccess const& access = ElementAccessOf(node->op());
Node* object = node->InputAt(0);
Node* index = node->InputAt(1);
WriteBarrierKind write_barrier_kind =
ComputeWriteBarrierKind(object, state, access.write_barrier_kind);
node->ReplaceInput(1, ComputeIndex(access, index));
NodeProperties::ChangeOp(
node, machine()->Store(StoreRepresentation(
access.machine_type.representation(), write_barrier_kind)));
EnqueueUses(node, state);
}
void MemoryOptimizer::VisitStoreField(Node* node,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kStoreField, node->opcode());
FieldAccess const& access = FieldAccessOf(node->op());
Node* object = node->InputAt(0);
WriteBarrierKind write_barrier_kind =
ComputeWriteBarrierKind(object, state, access.write_barrier_kind);
Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag());
node->InsertInput(graph()->zone(), 1, offset);
NodeProperties::ChangeOp(
node, machine()->Store(StoreRepresentation(
access.machine_type.representation(), write_barrier_kind)));
EnqueueUses(node, state);
}
void MemoryOptimizer::VisitOtherEffect(Node* node,
AllocationState const* state) {
EnqueueUses(node, state);
}
Node* MemoryOptimizer::ComputeIndex(ElementAccess const& access, Node* key) {
Node* index = key;
int element_size_shift =
ElementSizeLog2Of(access.machine_type.representation());
if (element_size_shift) {
index = graph()->NewNode(machine()->Word32Shl(), index,
jsgraph()->Int32Constant(element_size_shift));
}
const int fixed_offset = access.header_size - access.tag();
if (fixed_offset) {
index = graph()->NewNode(machine()->Int32Add(), index,
jsgraph()->Int32Constant(fixed_offset));
}
if (machine()->Is64()) {
// TODO(turbofan): This is probably only correct for typed arrays, and only
// if the typed arrays are at most 2GiB in size, which happens to match
// exactly our current situation.
index = graph()->NewNode(machine()->ChangeUint32ToUint64(), index);
}
return index;
}
WriteBarrierKind MemoryOptimizer::ComputeWriteBarrierKind(
Node* object, AllocationState const* state,
WriteBarrierKind write_barrier_kind) {
if (state->IsNewSpaceAllocation() && state->group()->Contains(object)) {
write_barrier_kind = kNoWriteBarrier;
}
return write_barrier_kind;
}
MemoryOptimizer::AllocationState const* MemoryOptimizer::MergeStates(
AllocationStates const& states) {
// Check if all states are the same; or at least if all allocation
// states belong to the same allocation group.
AllocationState const* state = states.front();
AllocationGroup* group = state->group();
for (size_t i = 1; i < states.size(); ++i) {
if (states[i] != state) state = nullptr;
if (states[i]->group() != group) group = nullptr;
}
if (state == nullptr) {
if (group != nullptr) {
// We cannot fold any more allocations into this group, but we can still
// eliminate write barriers on stores to this group.
// TODO(bmeurer): We could potentially just create a Phi here to merge
// the various tops; but we need to pay special attention not to create
// an unschedulable graph.
state = AllocationState::Closed(group, zone());
} else {
// The states are from different allocation groups.
state = empty_state();
}
}
return state;
}
void MemoryOptimizer::EnqueueMerge(Node* node, int index,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kEffectPhi, node->opcode());
int const input_count = node->InputCount() - 1;
DCHECK_LT(0, input_count);
Node* const control = node->InputAt(input_count);
if (control->opcode() == IrOpcode::kLoop) {
// For loops we always start with an empty state at the beginning.
if (index == 0) EnqueueUses(node, empty_state());
} else {
DCHECK_EQ(IrOpcode::kMerge, control->opcode());
// Check if we already know about this pending merge.
NodeId const id = node->id();
auto it = pending_.find(id);
if (it == pending_.end()) {
// Insert a new pending merge.
it = pending_.insert(std::make_pair(id, AllocationStates(zone()))).first;
}
// Add the next input state.
it->second.push_back(state);
// Check if states for all inputs are available by now.
if (it->second.size() == static_cast<size_t>(input_count)) {
// All inputs to this effect merge are done, merge the states given all
// input constraints, drop the pending merge and enqueue uses of the
// EffectPhi {node}.
state = MergeStates(it->second);
EnqueueUses(node, state);
pending_.erase(it);
}
}
}
void MemoryOptimizer::EnqueueUses(Node* node, AllocationState const* state) {
for (Edge const edge : node->use_edges()) {
if (NodeProperties::IsEffectEdge(edge)) {
EnqueueUse(edge.from(), edge.index(), state);
}
}
}
void MemoryOptimizer::EnqueueUse(Node* node, int index,
AllocationState const* state) {
if (node->opcode() == IrOpcode::kEffectPhi) {
// An EffectPhi represents a merge of different effect chains, which
// needs special handling depending on whether the merge is part of a
// loop or just a normal control join.
EnqueueMerge(node, index, state);
} else {
Token token = {node, state};
tokens_.push(token);
}
}
Graph* MemoryOptimizer::graph() const { return jsgraph()->graph(); }
Isolate* MemoryOptimizer::isolate() const { return jsgraph()->isolate(); }
CommonOperatorBuilder* MemoryOptimizer::common() const {
return jsgraph()->common();
}
MachineOperatorBuilder* MemoryOptimizer::machine() const {
return jsgraph()->machine();
}
} // namespace compiler
} // namespace internal
} // namespace v8