// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/code-stub-assembler.h"
#include "src/code-factory.h"
#include "src/frames-inl.h"
#include "src/frames.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
using compiler::Node;
CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
const CallInterfaceDescriptor& descriptor,
Code::Flags flags, const char* name,
size_t result_size)
: compiler::CodeAssembler(isolate, zone, descriptor, flags, name,
result_size) {}
CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
int parameter_count, Code::Flags flags,
const char* name)
: compiler::CodeAssembler(isolate, zone, parameter_count, flags, name) {}
void CodeStubAssembler::Assert(Node* condition) {
#if defined(DEBUG)
Label ok(this);
Comment("[ Assert");
GotoIf(condition, &ok);
DebugBreak();
Goto(&ok);
Bind(&ok);
Comment("] Assert");
#endif
}
Node* CodeStubAssembler::BooleanMapConstant() {
return HeapConstant(isolate()->factory()->boolean_map());
}
Node* CodeStubAssembler::EmptyStringConstant() {
return LoadRoot(Heap::kempty_stringRootIndex);
}
Node* CodeStubAssembler::HeapNumberMapConstant() {
return HeapConstant(isolate()->factory()->heap_number_map());
}
Node* CodeStubAssembler::NoContextConstant() {
return SmiConstant(Smi::FromInt(0));
}
Node* CodeStubAssembler::NullConstant() {
return LoadRoot(Heap::kNullValueRootIndex);
}
Node* CodeStubAssembler::UndefinedConstant() {
return LoadRoot(Heap::kUndefinedValueRootIndex);
}
Node* CodeStubAssembler::TheHoleConstant() {
return LoadRoot(Heap::kTheHoleValueRootIndex);
}
Node* CodeStubAssembler::HashSeed() {
return SmiToWord32(LoadRoot(Heap::kHashSeedRootIndex));
}
Node* CodeStubAssembler::StaleRegisterConstant() {
return LoadRoot(Heap::kStaleRegisterRootIndex);
}
Node* CodeStubAssembler::Float64Round(Node* x) {
Node* one = Float64Constant(1.0);
Node* one_half = Float64Constant(0.5);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this);
// Round up {x} towards Infinity.
var_x.Bind(Float64Ceil(x));
GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x),
&return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::Float64Ceil(Node* x) {
if (IsFloat64RoundUpSupported()) {
return Float64RoundUp(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this), return_minus_x(this);
var_x.Bind(x);
// Check if {x} is greater than zero.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
Bind(&if_xgreaterthanzero);
{
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoUnless(Float64LessThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Add(var_x.value(), one));
Goto(&return_x);
}
Bind(&if_xnotgreaterthanzero);
{
// Just return {x} unless it's in the range ]-2^52,0[
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoUnless(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards Infinity and return the result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_minus_x);
}
Bind(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::Float64Floor(Node* x) {
if (IsFloat64RoundDownSupported()) {
return Float64RoundDown(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this), return_minus_x(this);
var_x.Bind(x);
// Check if {x} is greater than zero.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
Bind(&if_xgreaterthanzero);
{
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards -Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_x);
}
Bind(&if_xnotgreaterthanzero);
{
// Just return {x} unless it's in the range ]-2^52,0[
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoUnless(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards -Infinity and return the result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoUnless(Float64LessThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Add(var_x.value(), one));
Goto(&return_minus_x);
}
Bind(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::Float64Trunc(Node* x) {
if (IsFloat64RoundTruncateSupported()) {
return Float64RoundTruncate(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this), return_minus_x(this);
var_x.Bind(x);
// Check if {x} is greater than 0.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
Bind(&if_xgreaterthanzero);
{
if (IsFloat64RoundDownSupported()) {
var_x.Bind(Float64RoundDown(x));
} else {
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards -Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
}
Goto(&return_x);
}
Bind(&if_xnotgreaterthanzero);
{
if (IsFloat64RoundUpSupported()) {
var_x.Bind(Float64RoundUp(x));
Goto(&return_x);
} else {
// Just return {x} unless its in the range ]-2^52,0[.
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoUnless(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards -Infinity and return result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_minus_x);
}
}
Bind(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::SmiFromWord32(Node* value) {
value = ChangeInt32ToIntPtr(value);
return WordShl(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiTag(Node* value) {
int32_t constant_value;
if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) {
return SmiConstant(Smi::FromInt(constant_value));
}
return WordShl(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiUntag(Node* value) {
return WordSar(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiToWord32(Node* value) {
Node* result = WordSar(value, SmiShiftBitsConstant());
if (Is64()) {
result = TruncateInt64ToInt32(result);
}
return result;
}
Node* CodeStubAssembler::SmiToFloat64(Node* value) {
return ChangeInt32ToFloat64(SmiToWord32(value));
}
Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) { return IntPtrAdd(a, b); }
Node* CodeStubAssembler::SmiAddWithOverflow(Node* a, Node* b) {
return IntPtrAddWithOverflow(a, b);
}
Node* CodeStubAssembler::SmiSub(Node* a, Node* b) { return IntPtrSub(a, b); }
Node* CodeStubAssembler::SmiSubWithOverflow(Node* a, Node* b) {
return IntPtrSubWithOverflow(a, b);
}
Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) { return WordEqual(a, b); }
Node* CodeStubAssembler::SmiAboveOrEqual(Node* a, Node* b) {
return UintPtrGreaterThanOrEqual(a, b);
}
Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) {
return IntPtrLessThan(a, b);
}
Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) {
return IntPtrLessThanOrEqual(a, b);
}
Node* CodeStubAssembler::SmiMin(Node* a, Node* b) {
// TODO(bmeurer): Consider using Select once available.
Variable min(this, MachineRepresentation::kTagged);
Label if_a(this), if_b(this), join(this);
BranchIfSmiLessThan(a, b, &if_a, &if_b);
Bind(&if_a);
min.Bind(a);
Goto(&join);
Bind(&if_b);
min.Bind(b);
Goto(&join);
Bind(&join);
return min.value();
}
Node* CodeStubAssembler::WordIsSmi(Node* a) {
return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask)), IntPtrConstant(0));
}
Node* CodeStubAssembler::WordIsPositiveSmi(Node* a) {
return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask | kSmiSignMask)),
IntPtrConstant(0));
}
Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes,
AllocationFlags flags,
Node* top_address,
Node* limit_address) {
Node* top = Load(MachineType::Pointer(), top_address);
Node* limit = Load(MachineType::Pointer(), limit_address);
// If there's not enough space, call the runtime.
Variable result(this, MachineRepresentation::kTagged);
Label runtime_call(this, Label::kDeferred), no_runtime_call(this);
Label merge_runtime(this, &result);
Node* new_top = IntPtrAdd(top, size_in_bytes);
Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call,
&no_runtime_call);
Bind(&runtime_call);
// AllocateInTargetSpace does not use the context.
Node* context = SmiConstant(Smi::FromInt(0));
Node* runtime_result;
if (flags & kPretenured) {
Node* runtime_flags = SmiConstant(
Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE)));
runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, context,
SmiTag(size_in_bytes), runtime_flags);
} else {
runtime_result = CallRuntime(Runtime::kAllocateInNewSpace, context,
SmiTag(size_in_bytes));
}
result.Bind(runtime_result);
Goto(&merge_runtime);
// When there is enough space, return `top' and bump it up.
Bind(&no_runtime_call);
Node* no_runtime_result = top;
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
new_top);
no_runtime_result = BitcastWordToTagged(
IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag)));
result.Bind(no_runtime_result);
Goto(&merge_runtime);
Bind(&merge_runtime);
return result.value();
}
Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes,
AllocationFlags flags,
Node* top_address,
Node* limit_address) {
Node* top = Load(MachineType::Pointer(), top_address);
Node* limit = Load(MachineType::Pointer(), limit_address);
Variable adjusted_size(this, MachineType::PointerRepresentation());
adjusted_size.Bind(size_in_bytes);
if (flags & kDoubleAlignment) {
// TODO(epertoso): Simd128 alignment.
Label aligned(this), not_aligned(this), merge(this, &adjusted_size);
Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), ¬_aligned,
&aligned);
Bind(¬_aligned);
Node* not_aligned_size =
IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize));
adjusted_size.Bind(not_aligned_size);
Goto(&merge);
Bind(&aligned);
Goto(&merge);
Bind(&merge);
}
Variable address(this, MachineRepresentation::kTagged);
address.Bind(AllocateRawUnaligned(adjusted_size.value(), kNone, top, limit));
Label needs_filler(this), doesnt_need_filler(this),
merge_address(this, &address);
Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &doesnt_need_filler,
&needs_filler);
Bind(&needs_filler);
// Store a filler and increase the address by kPointerSize.
// TODO(epertoso): this code assumes that we only align to kDoubleSize. Change
// it when Simd128 alignment is supported.
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top,
LoadRoot(Heap::kOnePointerFillerMapRootIndex));
address.Bind(BitcastWordToTagged(
IntPtrAdd(address.value(), IntPtrConstant(kPointerSize))));
Goto(&merge_address);
Bind(&doesnt_need_filler);
Goto(&merge_address);
Bind(&merge_address);
// Update the top.
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
IntPtrAdd(top, adjusted_size.value()));
return address.value();
}
Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) {
bool const new_space = !(flags & kPretenured);
Node* top_address = ExternalConstant(
new_space
? ExternalReference::new_space_allocation_top_address(isolate())
: ExternalReference::old_space_allocation_top_address(isolate()));
Node* limit_address = ExternalConstant(
new_space
? ExternalReference::new_space_allocation_limit_address(isolate())
: ExternalReference::old_space_allocation_limit_address(isolate()));
#ifdef V8_HOST_ARCH_32_BIT
if (flags & kDoubleAlignment) {
return AllocateRawAligned(size_in_bytes, flags, top_address, limit_address);
}
#endif
return AllocateRawUnaligned(size_in_bytes, flags, top_address, limit_address);
}
Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) {
return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
}
Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) {
return BitcastWordToTagged(IntPtrAdd(previous, offset));
}
Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) {
return InnerAllocate(previous, IntPtrConstant(offset));
}
compiler::Node* CodeStubAssembler::LoadFromFrame(int offset, MachineType rep) {
Node* frame_pointer = LoadFramePointer();
return Load(rep, frame_pointer, IntPtrConstant(offset));
}
compiler::Node* CodeStubAssembler::LoadFromParentFrame(int offset,
MachineType rep) {
Node* frame_pointer = LoadParentFramePointer();
return Load(rep, frame_pointer, IntPtrConstant(offset));
}
Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
MachineType rep) {
return Load(rep, buffer, IntPtrConstant(offset));
}
Node* CodeStubAssembler::LoadObjectField(Node* object, int offset,
MachineType rep) {
return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadObjectField(Node* object, Node* offset,
MachineType rep) {
return Load(rep, object, IntPtrSub(offset, IntPtrConstant(kHeapObjectTag)));
}
Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) {
return LoadObjectField(object, HeapNumber::kValueOffset,
MachineType::Float64());
}
Node* CodeStubAssembler::LoadMap(Node* object) {
return LoadObjectField(object, HeapObject::kMapOffset);
}
Node* CodeStubAssembler::LoadInstanceType(Node* object) {
return LoadMapInstanceType(LoadMap(object));
}
void CodeStubAssembler::AssertInstanceType(Node* object,
InstanceType instance_type) {
Assert(Word32Equal(LoadInstanceType(object), Int32Constant(instance_type)));
}
Node* CodeStubAssembler::LoadProperties(Node* object) {
return LoadObjectField(object, JSObject::kPropertiesOffset);
}
Node* CodeStubAssembler::LoadElements(Node* object) {
return LoadObjectField(object, JSObject::kElementsOffset);
}
Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) {
return LoadObjectField(array, FixedArrayBase::kLengthOffset);
}
Node* CodeStubAssembler::LoadMapBitField(Node* map) {
return LoadObjectField(map, Map::kBitFieldOffset, MachineType::Uint8());
}
Node* CodeStubAssembler::LoadMapBitField2(Node* map) {
return LoadObjectField(map, Map::kBitField2Offset, MachineType::Uint8());
}
Node* CodeStubAssembler::LoadMapBitField3(Node* map) {
return LoadObjectField(map, Map::kBitField3Offset, MachineType::Uint32());
}
Node* CodeStubAssembler::LoadMapInstanceType(Node* map) {
return LoadObjectField(map, Map::kInstanceTypeOffset, MachineType::Uint8());
}
Node* CodeStubAssembler::LoadMapDescriptors(Node* map) {
return LoadObjectField(map, Map::kDescriptorsOffset);
}
Node* CodeStubAssembler::LoadMapPrototype(Node* map) {
return LoadObjectField(map, Map::kPrototypeOffset);
}
Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) {
return LoadObjectField(map, Map::kInstanceSizeOffset, MachineType::Uint8());
}
Node* CodeStubAssembler::LoadMapInobjectProperties(Node* map) {
// See Map::GetInObjectProperties() for details.
STATIC_ASSERT(LAST_JS_OBJECT_TYPE == LAST_TYPE);
Assert(Int32GreaterThanOrEqual(LoadMapInstanceType(map),
Int32Constant(FIRST_JS_OBJECT_TYPE)));
return LoadObjectField(
map, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset,
MachineType::Uint8());
}
Node* CodeStubAssembler::LoadNameHashField(Node* name) {
return LoadObjectField(name, Name::kHashFieldOffset, MachineType::Uint32());
}
Node* CodeStubAssembler::LoadNameHash(Node* name, Label* if_hash_not_computed) {
Node* hash_field = LoadNameHashField(name);
if (if_hash_not_computed != nullptr) {
GotoIf(WordEqual(
Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)),
Int32Constant(0)),
if_hash_not_computed);
}
return Word32Shr(hash_field, Int32Constant(Name::kHashShift));
}
Node* CodeStubAssembler::LoadStringLength(Node* object) {
return LoadObjectField(object, String::kLengthOffset);
}
Node* CodeStubAssembler::LoadJSValueValue(Node* object) {
return LoadObjectField(object, JSValue::kValueOffset);
}
Node* CodeStubAssembler::LoadWeakCellValue(Node* weak_cell, Label* if_cleared) {
Node* value = LoadObjectField(weak_cell, WeakCell::kValueOffset);
if (if_cleared != nullptr) {
GotoIf(WordEqual(value, IntPtrConstant(0)), if_cleared);
}
return value;
}
Node* CodeStubAssembler::AllocateUninitializedFixedArray(Node* length) {
Node* header_size = IntPtrConstant(FixedArray::kHeaderSize);
Node* data_size = WordShl(length, IntPtrConstant(kPointerSizeLog2));
Node* total_size = IntPtrAdd(data_size, header_size);
Node* result = Allocate(total_size, kNone);
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kFixedArrayMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset,
SmiTag(length));
return result;
}
Node* CodeStubAssembler::LoadFixedArrayElement(Node* object, Node* index_node,
int additional_offset,
ParameterMode parameter_mode) {
int32_t header_size =
FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS,
parameter_mode, header_size);
return Load(MachineType::AnyTagged(), object, offset);
}
Node* CodeStubAssembler::LoadFixedDoubleArrayElement(
Node* object, Node* index_node, MachineType machine_type,
int additional_offset, ParameterMode parameter_mode) {
int32_t header_size =
FixedDoubleArray::kHeaderSize + additional_offset - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_DOUBLE_ELEMENTS,
parameter_mode, header_size);
return Load(machine_type, object, offset);
}
Node* CodeStubAssembler::LoadNativeContext(Node* context) {
return LoadFixedArrayElement(context,
Int32Constant(Context::NATIVE_CONTEXT_INDEX));
}
Node* CodeStubAssembler::LoadJSArrayElementsMap(ElementsKind kind,
Node* native_context) {
return LoadFixedArrayElement(native_context,
Int32Constant(Context::ArrayMapIndex(kind)));
}
Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) {
return StoreNoWriteBarrier(
MachineRepresentation::kFloat64, object,
IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag), value);
}
Node* CodeStubAssembler::StoreObjectField(
Node* object, int offset, Node* value) {
return Store(MachineRepresentation::kTagged, object,
IntPtrConstant(offset - kHeapObjectTag), value);
}
Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
Node* object, int offset, Node* value, MachineRepresentation rep) {
return StoreNoWriteBarrier(rep, object,
IntPtrConstant(offset - kHeapObjectTag), value);
}
Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) {
return StoreNoWriteBarrier(
MachineRepresentation::kTagged, object,
IntPtrConstant(HeapNumber::kMapOffset - kHeapObjectTag), map);
}
Node* CodeStubAssembler::StoreFixedArrayElement(Node* object, Node* index_node,
Node* value,
WriteBarrierMode barrier_mode,
ParameterMode parameter_mode) {
DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
barrier_mode == UPDATE_WRITE_BARRIER);
Node* offset =
ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode,
FixedArray::kHeaderSize - kHeapObjectTag);
MachineRepresentation rep = MachineRepresentation::kTagged;
if (barrier_mode == SKIP_WRITE_BARRIER) {
return StoreNoWriteBarrier(rep, object, offset, value);
} else {
return Store(rep, object, offset, value);
}
}
Node* CodeStubAssembler::StoreFixedDoubleArrayElement(
Node* object, Node* index_node, Node* value, ParameterMode parameter_mode) {
Node* offset =
ElementOffsetFromIndex(index_node, FAST_DOUBLE_ELEMENTS, parameter_mode,
FixedArray::kHeaderSize - kHeapObjectTag);
MachineRepresentation rep = MachineRepresentation::kFloat64;
return StoreNoWriteBarrier(rep, object, offset, value);
}
Node* CodeStubAssembler::AllocateHeapNumber() {
Node* result = Allocate(HeapNumber::kSize, kNone);
StoreMapNoWriteBarrier(result, HeapNumberMapConstant());
return result;
}
Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value) {
Node* result = AllocateHeapNumber();
StoreHeapNumberValue(result, value);
return result;
}
Node* CodeStubAssembler::AllocateSeqOneByteString(int length) {
Node* result = Allocate(SeqOneByteString::SizeFor(length));
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
SmiConstant(Smi::FromInt(length)));
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
IntPtrConstant(String::kEmptyHashField),
MachineRepresentation::kWord32);
return result;
}
Node* CodeStubAssembler::AllocateSeqOneByteString(Node* context, Node* length) {
Variable var_result(this, MachineRepresentation::kTagged);
// Compute the SeqOneByteString size and check if it fits into new space.
Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred),
if_join(this);
Node* size = WordAnd(
IntPtrAdd(
IntPtrAdd(length, IntPtrConstant(SeqOneByteString::kHeaderSize)),
IntPtrConstant(kObjectAlignmentMask)),
IntPtrConstant(~kObjectAlignmentMask));
Branch(IntPtrLessThanOrEqual(size,
IntPtrConstant(Page::kMaxRegularHeapObjectSize)),
&if_sizeissmall, &if_notsizeissmall);
Bind(&if_sizeissmall);
{
// Just allocate the SeqOneByteString in new space.
Node* result = Allocate(size);
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
SmiFromWord(length));
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldOffset,
IntPtrConstant(String::kEmptyHashField),
MachineRepresentation::kWord32);
var_result.Bind(result);
Goto(&if_join);
}
Bind(&if_notsizeissmall);
{
// We might need to allocate in large object space, go to the runtime.
Node* result = CallRuntime(Runtime::kAllocateSeqOneByteString, context,
SmiFromWord(length));
var_result.Bind(result);
Goto(&if_join);
}
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::AllocateSeqTwoByteString(int length) {
Node* result = Allocate(SeqTwoByteString::SizeFor(length));
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
SmiConstant(Smi::FromInt(length)));
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
IntPtrConstant(String::kEmptyHashField),
MachineRepresentation::kWord32);
return result;
}
Node* CodeStubAssembler::AllocateSeqTwoByteString(Node* context, Node* length) {
Variable var_result(this, MachineRepresentation::kTagged);
// Compute the SeqTwoByteString size and check if it fits into new space.
Label if_sizeissmall(this), if_notsizeissmall(this, Label::kDeferred),
if_join(this);
Node* size = WordAnd(
IntPtrAdd(IntPtrAdd(WordShl(length, 1),
IntPtrConstant(SeqTwoByteString::kHeaderSize)),
IntPtrConstant(kObjectAlignmentMask)),
IntPtrConstant(~kObjectAlignmentMask));
Branch(IntPtrLessThanOrEqual(size,
IntPtrConstant(Page::kMaxRegularHeapObjectSize)),
&if_sizeissmall, &if_notsizeissmall);
Bind(&if_sizeissmall);
{
// Just allocate the SeqTwoByteString in new space.
Node* result = Allocate(size);
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
SmiFromWord(length));
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldOffset,
IntPtrConstant(String::kEmptyHashField),
MachineRepresentation::kWord32);
var_result.Bind(result);
Goto(&if_join);
}
Bind(&if_notsizeissmall);
{
// We might need to allocate in large object space, go to the runtime.
Node* result = CallRuntime(Runtime::kAllocateSeqTwoByteString, context,
SmiFromWord(length));
var_result.Bind(result);
Goto(&if_join);
}
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map,
Node* capacity_node, Node* length_node,
compiler::Node* allocation_site,
ParameterMode mode) {
bool is_double = IsFastDoubleElementsKind(kind);
int base_size = JSArray::kSize + FixedArray::kHeaderSize;
int elements_offset = JSArray::kSize;
Comment("begin allocation of JSArray");
if (allocation_site != nullptr) {
base_size += AllocationMemento::kSize;
elements_offset += AllocationMemento::kSize;
}
int32_t capacity;
bool constant_capacity = ToInt32Constant(capacity_node, capacity);
Node* total_size =
ElementOffsetFromIndex(capacity_node, kind, mode, base_size);
// Allocate both array and elements object, and initialize the JSArray.
Heap* heap = isolate()->heap();
Node* array = Allocate(total_size);
StoreMapNoWriteBarrier(array, array_map);
Node* empty_properties =
HeapConstant(Handle<HeapObject>(heap->empty_fixed_array()));
StoreObjectFieldNoWriteBarrier(array, JSArray::kPropertiesOffset,
empty_properties);
StoreObjectFieldNoWriteBarrier(
array, JSArray::kLengthOffset,
mode == SMI_PARAMETERS ? length_node : SmiTag(length_node));
if (allocation_site != nullptr) {
InitializeAllocationMemento(array, JSArray::kSize, allocation_site);
}
// Setup elements object.
Node* elements = InnerAllocate(array, elements_offset);
StoreObjectFieldNoWriteBarrier(array, JSArray::kElementsOffset, elements);
Handle<Map> elements_map(is_double ? heap->fixed_double_array_map()
: heap->fixed_array_map());
StoreMapNoWriteBarrier(elements, HeapConstant(elements_map));
StoreObjectFieldNoWriteBarrier(
elements, FixedArray::kLengthOffset,
mode == SMI_PARAMETERS ? capacity_node : SmiTag(capacity_node));
int const first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
Node* hole = HeapConstant(Handle<HeapObject>(heap->the_hole_value()));
Node* double_hole =
Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32);
DCHECK_EQ(kHoleNanLower32, kHoleNanUpper32);
if (constant_capacity && capacity <= kElementLoopUnrollThreshold) {
for (int i = 0; i < capacity; ++i) {
if (is_double) {
Node* offset = ElementOffsetFromIndex(Int32Constant(i), kind, mode,
first_element_offset);
// Don't use doubles to store the hole double, since manipulating the
// signaling NaN used for the hole in C++, e.g. with bit_cast, will
// change its value on ia32 (the x87 stack is used to return values
// and stores to the stack silently clear the signalling bit).
//
// TODO(danno): When we have a Float32/Float64 wrapper class that
// preserves double bits during manipulation, remove this code/change
// this to an indexed Float64 store.
if (Is64()) {
StoreNoWriteBarrier(MachineRepresentation::kWord64, elements, offset,
double_hole);
} else {
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset,
double_hole);
offset = ElementOffsetFromIndex(Int32Constant(i), kind, mode,
first_element_offset + kPointerSize);
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset,
double_hole);
}
} else {
StoreFixedArrayElement(elements, Int32Constant(i), hole,
SKIP_WRITE_BARRIER);
}
}
} else {
Variable current(this, MachineRepresentation::kTagged);
Label test(this);
Label decrement(this, ¤t);
Label done(this);
Node* limit = IntPtrAdd(elements, IntPtrConstant(first_element_offset));
current.Bind(
IntPtrAdd(limit, ElementOffsetFromIndex(capacity_node, kind, mode, 0)));
Branch(WordEqual(current.value(), limit), &done, &decrement);
Bind(&decrement);
current.Bind(IntPtrSub(
current.value(),
Int32Constant(IsFastDoubleElementsKind(kind) ? kDoubleSize
: kPointerSize)));
if (is_double) {
// Don't use doubles to store the hole double, since manipulating the
// signaling NaN used for the hole in C++, e.g. with bit_cast, will
// change its value on ia32 (the x87 stack is used to return values
// and stores to the stack silently clear the signalling bit).
//
// TODO(danno): When we have a Float32/Float64 wrapper class that
// preserves double bits during manipulation, remove this code/change
// this to an indexed Float64 store.
if (Is64()) {
StoreNoWriteBarrier(MachineRepresentation::kWord64, current.value(),
double_hole);
} else {
StoreNoWriteBarrier(MachineRepresentation::kWord32, current.value(),
double_hole);
StoreNoWriteBarrier(
MachineRepresentation::kWord32,
IntPtrAdd(current.value(), Int32Constant(kPointerSize)),
double_hole);
}
} else {
StoreNoWriteBarrier(MachineRepresentation::kTagged, current.value(),
hole);
}
Node* compare = WordNotEqual(current.value(), limit);
Branch(compare, &decrement, &done);
Bind(&done);
}
return array;
}
void CodeStubAssembler::InitializeAllocationMemento(
compiler::Node* base_allocation, int base_allocation_size,
compiler::Node* allocation_site) {
StoreObjectFieldNoWriteBarrier(
base_allocation, AllocationMemento::kMapOffset + base_allocation_size,
HeapConstant(Handle<Map>(isolate()->heap()->allocation_memento_map())));
StoreObjectFieldNoWriteBarrier(
base_allocation,
AllocationMemento::kAllocationSiteOffset + base_allocation_size,
allocation_site);
if (FLAG_allocation_site_pretenuring) {
Node* count = LoadObjectField(allocation_site,
AllocationSite::kPretenureCreateCountOffset);
Node* incremented_count = IntPtrAdd(count, SmiConstant(Smi::FromInt(1)));
StoreObjectFieldNoWriteBarrier(allocation_site,
AllocationSite::kPretenureCreateCountOffset,
incremented_count);
}
}
Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) {
// We might need to loop once due to ToNumber conversion.
Variable var_value(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kFloat64);
Label loop(this, &var_value), done_loop(this, &var_result);
var_value.Bind(value);
Goto(&loop);
Bind(&loop);
{
// Load the current {value}.
value = var_value.value();
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this), if_valueisnotsmi(this);
Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
Bind(&if_valueissmi);
{
// Convert the Smi {value}.
var_result.Bind(SmiToFloat64(value));
Goto(&done_loop);
}
Bind(&if_valueisnotsmi);
{
// Check if {value} is a HeapNumber.
Label if_valueisheapnumber(this),
if_valueisnotheapnumber(this, Label::kDeferred);
Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
&if_valueisheapnumber, &if_valueisnotheapnumber);
Bind(&if_valueisheapnumber);
{
// Load the floating point value.
var_result.Bind(LoadHeapNumberValue(value));
Goto(&done_loop);
}
Bind(&if_valueisnotheapnumber);
{
// Convert the {value} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&loop);
}
}
}
Bind(&done_loop);
return var_result.value();
}
Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) {
// We might need to loop once due to ToNumber conversion.
Variable var_value(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kWord32);
Label loop(this, &var_value), done_loop(this, &var_result);
var_value.Bind(value);
Goto(&loop);
Bind(&loop);
{
// Load the current {value}.
value = var_value.value();
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this), if_valueisnotsmi(this);
Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
Bind(&if_valueissmi);
{
// Convert the Smi {value}.
var_result.Bind(SmiToWord32(value));
Goto(&done_loop);
}
Bind(&if_valueisnotsmi);
{
// Check if {value} is a HeapNumber.
Label if_valueisheapnumber(this),
if_valueisnotheapnumber(this, Label::kDeferred);
Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
&if_valueisheapnumber, &if_valueisnotheapnumber);
Bind(&if_valueisheapnumber);
{
// Truncate the floating point value.
var_result.Bind(TruncateHeapNumberValueToWord32(value));
Goto(&done_loop);
}
Bind(&if_valueisnotheapnumber);
{
// Convert the {value} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&loop);
}
}
}
Bind(&done_loop);
return var_result.value();
}
Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) {
Node* value = LoadHeapNumberValue(object);
return TruncateFloat64ToWord32(value);
}
Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) {
Node* value32 = RoundFloat64ToInt32(value);
Node* value64 = ChangeInt32ToFloat64(value32);
Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this);
Label if_valueisequal(this), if_valueisnotequal(this);
Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal);
Bind(&if_valueisequal);
{
GotoUnless(Word32Equal(value32, Int32Constant(0)), &if_valueisint32);
BranchIfInt32LessThan(Float64ExtractHighWord32(value), Int32Constant(0),
&if_valueisheapnumber, &if_valueisint32);
}
Bind(&if_valueisnotequal);
Goto(&if_valueisheapnumber);
Variable var_result(this, MachineRepresentation::kTagged);
Bind(&if_valueisint32);
{
if (Is64()) {
Node* result = SmiTag(ChangeInt32ToInt64(value32));
var_result.Bind(result);
Goto(&if_join);
} else {
Node* pair = Int32AddWithOverflow(value32, value32);
Node* overflow = Projection(1, pair);
Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
Bind(&if_overflow);
Goto(&if_valueisheapnumber);
Bind(&if_notoverflow);
{
Node* result = Projection(0, pair);
var_result.Bind(result);
Goto(&if_join);
}
}
}
Bind(&if_valueisheapnumber);
{
Node* result = AllocateHeapNumberWithValue(value);
var_result.Bind(result);
Goto(&if_join);
}
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) {
if (Is64()) {
return SmiTag(ChangeInt32ToInt64(value));
}
Variable var_result(this, MachineRepresentation::kTagged);
Node* pair = Int32AddWithOverflow(value, value);
Node* overflow = Projection(1, pair);
Label if_overflow(this, Label::kDeferred), if_notoverflow(this),
if_join(this);
Branch(overflow, &if_overflow, &if_notoverflow);
Bind(&if_overflow);
{
Node* value64 = ChangeInt32ToFloat64(value);
Node* result = AllocateHeapNumberWithValue(value64);
var_result.Bind(result);
}
Goto(&if_join);
Bind(&if_notoverflow);
{
Node* result = Projection(0, pair);
var_result.Bind(result);
}
Goto(&if_join);
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) {
Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
if_join(this);
Variable var_result(this, MachineRepresentation::kTagged);
// If {value} > 2^31 - 1, we need to store it in a HeapNumber.
Branch(Int32LessThan(value, Int32Constant(0)), &if_overflow,
&if_not_overflow);
Bind(&if_not_overflow);
{
if (Is64()) {
var_result.Bind(SmiTag(ChangeUint32ToUint64(value)));
} else {
// If tagging {value} results in an overflow, we need to use a HeapNumber
// to represent it.
Node* pair = Int32AddWithOverflow(value, value);
Node* overflow = Projection(1, pair);
GotoIf(overflow, &if_overflow);
Node* result = Projection(0, pair);
var_result.Bind(result);
}
}
Goto(&if_join);
Bind(&if_overflow);
{
Node* float64_value = ChangeUint32ToFloat64(value);
var_result.Bind(AllocateHeapNumberWithValue(float64_value));
}
Goto(&if_join);
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::ToThisString(Node* context, Node* value,
char const* method_name) {
Variable var_value(this, MachineRepresentation::kTagged);
var_value.Bind(value);
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this),
if_valueisstring(this);
Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
Bind(&if_valueisnotsmi);
{
// Load the instance type of the {value}.
Node* value_instance_type = LoadInstanceType(value);
// Check if the {value} is already String.
Label if_valueisnotstring(this, Label::kDeferred);
Branch(
Int32LessThan(value_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)),
&if_valueisstring, &if_valueisnotstring);
Bind(&if_valueisnotstring);
{
// Check if the {value} is null.
Label if_valueisnullorundefined(this, Label::kDeferred),
if_valueisnotnullorundefined(this, Label::kDeferred),
if_valueisnotnull(this, Label::kDeferred);
Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined,
&if_valueisnotnull);
Bind(&if_valueisnotnull);
{
// Check if the {value} is undefined.
Branch(WordEqual(value, UndefinedConstant()),
&if_valueisnullorundefined, &if_valueisnotnullorundefined);
Bind(&if_valueisnotnullorundefined);
{
// Convert the {value} to a String.
Callable callable = CodeFactory::ToString(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&if_valueisstring);
}
}
Bind(&if_valueisnullorundefined);
{
// The {value} is either null or undefined.
CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context,
HeapConstant(factory()->NewStringFromAsciiChecked(
method_name, TENURED)));
Goto(&if_valueisstring); // Never reached.
}
}
}
Bind(&if_valueissmi);
{
// The {value} is a Smi, convert it to a String.
Callable callable = CodeFactory::NumberToString(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&if_valueisstring);
}
Bind(&if_valueisstring);
return var_value.value();
}
Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index) {
// Translate the {index} into a Word.
index = SmiToWord(index);
// We may need to loop in case of cons or sliced strings.
Variable var_index(this, MachineType::PointerRepresentation());
Variable var_result(this, MachineRepresentation::kWord32);
Variable var_string(this, MachineRepresentation::kTagged);
Variable* loop_vars[] = {&var_index, &var_string};
Label done_loop(this, &var_result), loop(this, 2, loop_vars);
var_string.Bind(string);
var_index.Bind(index);
Goto(&loop);
Bind(&loop);
{
// Load the current {index}.
index = var_index.value();
// Load the current {string}.
string = var_string.value();
// Load the instance type of the {string}.
Node* string_instance_type = LoadInstanceType(string);
// Check if the {string} is a SeqString.
Label if_stringissequential(this), if_stringisnotsequential(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringRepresentationMask)),
Int32Constant(kSeqStringTag)),
&if_stringissequential, &if_stringisnotsequential);
Bind(&if_stringissequential);
{
// Check if the {string} is a TwoByteSeqString or a OneByteSeqString.
Label if_stringistwobyte(this), if_stringisonebyte(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringEncodingMask)),
Int32Constant(kTwoByteStringTag)),
&if_stringistwobyte, &if_stringisonebyte);
Bind(&if_stringisonebyte);
{
var_result.Bind(
Load(MachineType::Uint8(), string,
IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag))));
Goto(&done_loop);
}
Bind(&if_stringistwobyte);
{
var_result.Bind(
Load(MachineType::Uint16(), string,
IntPtrAdd(WordShl(index, IntPtrConstant(1)),
IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag))));
Goto(&done_loop);
}
}
Bind(&if_stringisnotsequential);
{
// Check if the {string} is a ConsString.
Label if_stringiscons(this), if_stringisnotcons(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringRepresentationMask)),
Int32Constant(kConsStringTag)),
&if_stringiscons, &if_stringisnotcons);
Bind(&if_stringiscons);
{
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we flatten the string first.
Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred);
Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty,
&if_rhsisnotempty);
Bind(&if_rhsisempty);
{
// Just operate on the left hand side of the {string}.
var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset));
Goto(&loop);
}
Bind(&if_rhsisnotempty);
{
// Flatten the {string} and lookup in the resulting string.
var_string.Bind(CallRuntime(Runtime::kFlattenString,
NoContextConstant(), string));
Goto(&loop);
}
}
Bind(&if_stringisnotcons);
{
// Check if the {string} is an ExternalString.
Label if_stringisexternal(this), if_stringisnotexternal(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringRepresentationMask)),
Int32Constant(kExternalStringTag)),
&if_stringisexternal, &if_stringisnotexternal);
Bind(&if_stringisexternal);
{
// Check if the {string} is a short external string.
Label if_stringisshort(this),
if_stringisnotshort(this, Label::kDeferred);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kShortExternalStringMask)),
Int32Constant(0)),
&if_stringisshort, &if_stringisnotshort);
Bind(&if_stringisshort);
{
// Load the actual resource data from the {string}.
Node* string_resource_data =
LoadObjectField(string, ExternalString::kResourceDataOffset,
MachineType::Pointer());
// Check if the {string} is a TwoByteExternalString or a
// OneByteExternalString.
Label if_stringistwobyte(this), if_stringisonebyte(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringEncodingMask)),
Int32Constant(kTwoByteStringTag)),
&if_stringistwobyte, &if_stringisonebyte);
Bind(&if_stringisonebyte);
{
var_result.Bind(
Load(MachineType::Uint8(), string_resource_data, index));
Goto(&done_loop);
}
Bind(&if_stringistwobyte);
{
var_result.Bind(Load(MachineType::Uint16(), string_resource_data,
WordShl(index, IntPtrConstant(1))));
Goto(&done_loop);
}
}
Bind(&if_stringisnotshort);
{
// The {string} might be compressed, call the runtime.
var_result.Bind(SmiToWord32(
CallRuntime(Runtime::kExternalStringGetChar,
NoContextConstant(), string, SmiTag(index))));
Goto(&done_loop);
}
}
Bind(&if_stringisnotexternal);
{
// The {string} is a SlicedString, continue with its parent.
Node* string_offset =
SmiToWord(LoadObjectField(string, SlicedString::kOffsetOffset));
Node* string_parent =
LoadObjectField(string, SlicedString::kParentOffset);
var_index.Bind(IntPtrAdd(index, string_offset));
var_string.Bind(string_parent);
Goto(&loop);
}
}
}
}
Bind(&done_loop);
return var_result.value();
}
Node* CodeStubAssembler::StringFromCharCode(Node* code) {
Variable var_result(this, MachineRepresentation::kTagged);
// Check if the {code} is a one-byte char code.
Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred),
if_done(this);
Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)),
&if_codeisonebyte, &if_codeistwobyte);
Bind(&if_codeisonebyte);
{
// Load the isolate wide single character string cache.
Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex);
// Check if we have an entry for the {code} in the single character string
// cache already.
Label if_entryisundefined(this, Label::kDeferred),
if_entryisnotundefined(this);
Node* entry = LoadFixedArrayElement(cache, code);
Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined,
&if_entryisnotundefined);
Bind(&if_entryisundefined);
{
// Allocate a new SeqOneByteString for {code} and store it in the {cache}.
Node* result = AllocateSeqOneByteString(1);
StoreNoWriteBarrier(
MachineRepresentation::kWord8, result,
IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code);
StoreFixedArrayElement(cache, code, result);
var_result.Bind(result);
Goto(&if_done);
}
Bind(&if_entryisnotundefined);
{
// Return the entry from the {cache}.
var_result.Bind(entry);
Goto(&if_done);
}
}
Bind(&if_codeistwobyte);
{
// Allocate a new SeqTwoByteString for {code}.
Node* result = AllocateSeqTwoByteString(1);
StoreNoWriteBarrier(
MachineRepresentation::kWord16, result,
IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code);
var_result.Bind(result);
Goto(&if_done);
}
Bind(&if_done);
return var_result.value();
}
Node* CodeStubAssembler::BitFieldDecode(Node* word32, uint32_t shift,
uint32_t mask) {
return Word32Shr(Word32And(word32, Int32Constant(mask)),
Int32Constant(shift));
}
void CodeStubAssembler::SetCounter(StatsCounter* counter, int value) {
if (FLAG_native_code_counters && counter->Enabled()) {
Node* counter_address = ExternalConstant(ExternalReference(counter));
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address,
Int32Constant(value));
}
}
void CodeStubAssembler::IncrementCounter(StatsCounter* counter, int delta) {
DCHECK(delta > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Node* counter_address = ExternalConstant(ExternalReference(counter));
Node* value = Load(MachineType::Int32(), counter_address);
value = Int32Add(value, Int32Constant(delta));
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
}
}
void CodeStubAssembler::DecrementCounter(StatsCounter* counter, int delta) {
DCHECK(delta > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Node* counter_address = ExternalConstant(ExternalReference(counter));
Node* value = Load(MachineType::Int32(), counter_address);
value = Int32Sub(value, Int32Constant(delta));
StoreNoWriteBarrier(MachineRepresentation::kWord32, counter_address, value);
}
}
void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex,
Variable* var_index, Label* if_keyisunique,
Label* if_bailout) {
DCHECK_EQ(MachineRepresentation::kWord32, var_index->rep());
Comment("TryToName");
Label if_keyissmi(this), if_keyisnotsmi(this);
Branch(WordIsSmi(key), &if_keyissmi, &if_keyisnotsmi);
Bind(&if_keyissmi);
{
// Negative smi keys are named properties. Handle in the runtime.
GotoUnless(WordIsPositiveSmi(key), if_bailout);
var_index->Bind(SmiToWord32(key));
Goto(if_keyisindex);
}
Bind(&if_keyisnotsmi);
Node* key_instance_type = LoadInstanceType(key);
// Symbols are unique.
GotoIf(Word32Equal(key_instance_type, Int32Constant(SYMBOL_TYPE)),
if_keyisunique);
Label if_keyisinternalized(this);
Node* bits =
WordAnd(key_instance_type,
Int32Constant(kIsNotStringMask | kIsNotInternalizedMask));
Branch(Word32Equal(bits, Int32Constant(kStringTag | kInternalizedTag)),
&if_keyisinternalized, if_bailout);
Bind(&if_keyisinternalized);
// Check whether the key is an array index passed in as string. Handle
// uniform with smi keys if so.
// TODO(verwaest): Also support non-internalized strings.
Node* hash = LoadNameHashField(key);
Node* bit = Word32And(hash, Int32Constant(Name::kIsNotArrayIndexMask));
GotoIf(Word32NotEqual(bit, Int32Constant(0)), if_keyisunique);
// Key is an index. Check if it is small enough to be encoded in the
// hash_field. Handle too big array index in runtime.
bit = Word32And(hash, Int32Constant(Name::kContainsCachedArrayIndexMask));
GotoIf(Word32NotEqual(bit, Int32Constant(0)), if_bailout);
var_index->Bind(BitFieldDecode<Name::ArrayIndexValueBits>(hash));
Goto(if_keyisindex);
}
template <typename Dictionary>
Node* CodeStubAssembler::EntryToIndex(Node* entry, int field_index) {
Node* entry_index = Int32Mul(entry, Int32Constant(Dictionary::kEntrySize));
return Int32Add(entry_index,
Int32Constant(Dictionary::kElementsStartIndex + field_index));
}
template <typename Dictionary>
void CodeStubAssembler::NameDictionaryLookup(Node* dictionary,
Node* unique_name, Label* if_found,
Variable* var_name_index,
Label* if_not_found,
int inlined_probes) {
DCHECK_EQ(MachineRepresentation::kWord32, var_name_index->rep());
Comment("NameDictionaryLookup");
Node* capacity = SmiToWord32(LoadFixedArrayElement(
dictionary, Int32Constant(Dictionary::kCapacityIndex)));
Node* mask = Int32Sub(capacity, Int32Constant(1));
Node* hash = LoadNameHash(unique_name);
// See Dictionary::FirstProbe().
Node* count = Int32Constant(0);
Node* entry = Word32And(hash, mask);
for (int i = 0; i < inlined_probes; i++) {
Node* index = EntryToIndex<Dictionary>(entry);
var_name_index->Bind(index);
Node* current = LoadFixedArrayElement(dictionary, index);
GotoIf(WordEqual(current, unique_name), if_found);
// See Dictionary::NextProbe().
count = Int32Constant(i + 1);
entry = Word32And(Int32Add(entry, count), mask);
}
Node* undefined = UndefinedConstant();
Variable var_count(this, MachineRepresentation::kWord32);
Variable var_entry(this, MachineRepresentation::kWord32);
Variable* loop_vars[] = {&var_count, &var_entry, var_name_index};
Label loop(this, 3, loop_vars);
var_count.Bind(count);
var_entry.Bind(entry);
Goto(&loop);
Bind(&loop);
{
Node* count = var_count.value();
Node* entry = var_entry.value();
Node* index = EntryToIndex<Dictionary>(entry);
var_name_index->Bind(index);
Node* current = LoadFixedArrayElement(dictionary, index);
GotoIf(WordEqual(current, undefined), if_not_found);
GotoIf(WordEqual(current, unique_name), if_found);
// See Dictionary::NextProbe().
count = Int32Add(count, Int32Constant(1));
entry = Word32And(Int32Add(entry, count), mask);
var_count.Bind(count);
var_entry.Bind(entry);
Goto(&loop);
}
}
// Instantiate template methods to workaround GCC compilation issue.
template void CodeStubAssembler::NameDictionaryLookup<NameDictionary>(
Node*, Node*, Label*, Variable*, Label*, int);
template void CodeStubAssembler::NameDictionaryLookup<GlobalDictionary>(
Node*, Node*, Label*, Variable*, Label*, int);
Node* CodeStubAssembler::ComputeIntegerHash(Node* key, Node* seed) {
// See v8::internal::ComputeIntegerHash()
Node* hash = key;
hash = Word32Xor(hash, seed);
hash = Int32Add(Word32Xor(hash, Int32Constant(0xffffffff)),
Word32Shl(hash, Int32Constant(15)));
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(12)));
hash = Int32Add(hash, Word32Shl(hash, Int32Constant(2)));
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(4)));
hash = Int32Mul(hash, Int32Constant(2057));
hash = Word32Xor(hash, Word32Shr(hash, Int32Constant(16)));
return Word32And(hash, Int32Constant(0x3fffffff));
}
template <typename Dictionary>
void CodeStubAssembler::NumberDictionaryLookup(Node* dictionary, Node* key,
Label* if_found,
Variable* var_entry,
Label* if_not_found) {
DCHECK_EQ(MachineRepresentation::kWord32, var_entry->rep());
Comment("NumberDictionaryLookup");
Node* capacity = SmiToWord32(LoadFixedArrayElement(
dictionary, Int32Constant(Dictionary::kCapacityIndex)));
Node* mask = Int32Sub(capacity, Int32Constant(1));
Node* seed;
if (Dictionary::ShapeT::UsesSeed) {
seed = HashSeed();
} else {
seed = Int32Constant(kZeroHashSeed);
}
Node* hash = ComputeIntegerHash(key, seed);
Node* key_as_float64 = ChangeUint32ToFloat64(key);
// See Dictionary::FirstProbe().
Node* count = Int32Constant(0);
Node* entry = Word32And(hash, mask);
Node* undefined = UndefinedConstant();
Node* the_hole = TheHoleConstant();
Variable var_count(this, MachineRepresentation::kWord32);
Variable* loop_vars[] = {&var_count, var_entry};
Label loop(this, 2, loop_vars);
var_count.Bind(count);
var_entry->Bind(entry);
Goto(&loop);
Bind(&loop);
{
Node* count = var_count.value();
Node* entry = var_entry->value();
Node* index = EntryToIndex<Dictionary>(entry);
Node* current = LoadFixedArrayElement(dictionary, index);
GotoIf(WordEqual(current, undefined), if_not_found);
Label next_probe(this);
{
Label if_currentissmi(this), if_currentisnotsmi(this);
Branch(WordIsSmi(current), &if_currentissmi, &if_currentisnotsmi);
Bind(&if_currentissmi);
{
Node* current_value = SmiToWord32(current);
Branch(Word32Equal(current_value, key), if_found, &next_probe);
}
Bind(&if_currentisnotsmi);
{
GotoIf(WordEqual(current, the_hole), &next_probe);
// Current must be the Number.
Node* current_value = LoadHeapNumberValue(current);
Branch(Float64Equal(current_value, key_as_float64), if_found,
&next_probe);
}
}
Bind(&next_probe);
// See Dictionary::NextProbe().
count = Int32Add(count, Int32Constant(1));
entry = Word32And(Int32Add(entry, count), mask);
var_count.Bind(count);
var_entry->Bind(entry);
Goto(&loop);
}
}
void CodeStubAssembler::TryLookupProperty(
Node* object, Node* map, Node* instance_type, Node* unique_name,
Label* if_found_fast, Label* if_found_dict, Label* if_found_global,
Variable* var_meta_storage, Variable* var_name_index, Label* if_not_found,
Label* if_bailout) {
DCHECK_EQ(MachineRepresentation::kTagged, var_meta_storage->rep());
DCHECK_EQ(MachineRepresentation::kWord32, var_name_index->rep());
Label if_objectisspecial(this);
STATIC_ASSERT(JS_GLOBAL_OBJECT_TYPE <= LAST_SPECIAL_RECEIVER_TYPE);
GotoIf(Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)),
&if_objectisspecial);
Node* bit_field = LoadMapBitField(map);
Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor |
1 << Map::kIsAccessCheckNeeded);
Assert(Word32Equal(Word32And(bit_field, mask), Int32Constant(0)));
Node* bit_field3 = LoadMapBitField3(map);
Node* bit = BitFieldDecode<Map::DictionaryMap>(bit_field3);
Label if_isfastmap(this), if_isslowmap(this);
Branch(Word32Equal(bit, Int32Constant(0)), &if_isfastmap, &if_isslowmap);
Bind(&if_isfastmap);
{
Comment("DescriptorArrayLookup");
Node* nof = BitFieldDecode<Map::NumberOfOwnDescriptorsBits>(bit_field3);
// Bail out to the runtime for large numbers of own descriptors. The stub
// only does linear search, which becomes too expensive in that case.
{
static const int32_t kMaxLinear = 210;
GotoIf(Int32GreaterThan(nof, Int32Constant(kMaxLinear)), if_bailout);
}
Node* descriptors = LoadMapDescriptors(map);
var_meta_storage->Bind(descriptors);
Variable var_descriptor(this, MachineRepresentation::kWord32);
Label loop(this, &var_descriptor);
var_descriptor.Bind(Int32Constant(0));
Goto(&loop);
Bind(&loop);
{
Node* index = var_descriptor.value();
Node* name_offset = Int32Constant(DescriptorArray::ToKeyIndex(0));
Node* factor = Int32Constant(DescriptorArray::kDescriptorSize);
GotoIf(Word32Equal(index, nof), if_not_found);
Node* name_index = Int32Add(name_offset, Int32Mul(index, factor));
Node* name = LoadFixedArrayElement(descriptors, name_index);
var_name_index->Bind(name_index);
GotoIf(WordEqual(name, unique_name), if_found_fast);
var_descriptor.Bind(Int32Add(index, Int32Constant(1)));
Goto(&loop);
}
}
Bind(&if_isslowmap);
{
Node* dictionary = LoadProperties(object);
var_meta_storage->Bind(dictionary);
NameDictionaryLookup<NameDictionary>(dictionary, unique_name, if_found_dict,
var_name_index, if_not_found);
}
Bind(&if_objectisspecial);
{
// Handle global object here and other special objects in runtime.
GotoUnless(Word32Equal(instance_type, Int32Constant(JS_GLOBAL_OBJECT_TYPE)),
if_bailout);
// Handle interceptors and access checks in runtime.
Node* bit_field = LoadMapBitField(map);
Node* mask = Int32Constant(1 << Map::kHasNamedInterceptor |
1 << Map::kIsAccessCheckNeeded);
GotoIf(Word32NotEqual(Word32And(bit_field, mask), Int32Constant(0)),
if_bailout);
Node* dictionary = LoadProperties(object);
var_meta_storage->Bind(dictionary);
NameDictionaryLookup<GlobalDictionary>(
dictionary, unique_name, if_found_global, var_name_index, if_not_found);
}
}
void CodeStubAssembler::TryHasOwnProperty(compiler::Node* object,
compiler::Node* map,
compiler::Node* instance_type,
compiler::Node* unique_name,
Label* if_found, Label* if_not_found,
Label* if_bailout) {
Comment("TryHasOwnProperty");
Variable var_meta_storage(this, MachineRepresentation::kTagged);
Variable var_name_index(this, MachineRepresentation::kWord32);
Label if_found_global(this);
TryLookupProperty(object, map, instance_type, unique_name, if_found, if_found,
&if_found_global, &var_meta_storage, &var_name_index,
if_not_found, if_bailout);
Bind(&if_found_global);
{
Variable var_value(this, MachineRepresentation::kTagged);
Variable var_details(this, MachineRepresentation::kWord32);
// Check if the property cell is not deleted.
LoadPropertyFromGlobalDictionary(var_meta_storage.value(),
var_name_index.value(), &var_value,
&var_details, if_not_found);
Goto(if_found);
}
}
void CodeStubAssembler::LoadPropertyFromFastObject(Node* object, Node* map,
Node* descriptors,
Node* name_index,
Variable* var_details,
Variable* var_value) {
DCHECK_EQ(MachineRepresentation::kWord32, var_details->rep());
DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
Comment("[ LoadPropertyFromFastObject");
const int name_to_details_offset =
(DescriptorArray::kDescriptorDetails - DescriptorArray::kDescriptorKey) *
kPointerSize;
const int name_to_value_offset =
(DescriptorArray::kDescriptorValue - DescriptorArray::kDescriptorKey) *
kPointerSize;
Node* details = SmiToWord32(
LoadFixedArrayElement(descriptors, name_index, name_to_details_offset));
var_details->Bind(details);
Node* location = BitFieldDecode<PropertyDetails::LocationField>(details);
Label if_in_field(this), if_in_descriptor(this), done(this);
Branch(Word32Equal(location, Int32Constant(kField)), &if_in_field,
&if_in_descriptor);
Bind(&if_in_field);
{
Node* field_index =
BitFieldDecode<PropertyDetails::FieldIndexField>(details);
Node* representation =
BitFieldDecode<PropertyDetails::RepresentationField>(details);
Node* inobject_properties = LoadMapInobjectProperties(map);
Label if_inobject(this), if_backing_store(this);
Variable var_double_value(this, MachineRepresentation::kFloat64);
Label rebox_double(this, &var_double_value);
BranchIfInt32LessThan(field_index, inobject_properties, &if_inobject,
&if_backing_store);
Bind(&if_inobject);
{
Comment("if_inobject");
Node* field_offset = ChangeInt32ToIntPtr(
Int32Mul(Int32Sub(LoadMapInstanceSize(map),
Int32Sub(inobject_properties, field_index)),
Int32Constant(kPointerSize)));
Label if_double(this), if_tagged(this);
BranchIfWord32NotEqual(representation,
Int32Constant(Representation::kDouble), &if_tagged,
&if_double);
Bind(&if_tagged);
{
var_value->Bind(LoadObjectField(object, field_offset));
Goto(&done);
}
Bind(&if_double);
{
if (FLAG_unbox_double_fields) {
var_double_value.Bind(
LoadObjectField(object, field_offset, MachineType::Float64()));
} else {
Node* mutable_heap_number = LoadObjectField(object, field_offset);
var_double_value.Bind(LoadHeapNumberValue(mutable_heap_number));
}
Goto(&rebox_double);
}
}
Bind(&if_backing_store);
{
Comment("if_backing_store");
Node* properties = LoadProperties(object);
field_index = Int32Sub(field_index, inobject_properties);
Node* value = LoadFixedArrayElement(properties, field_index);
Label if_double(this), if_tagged(this);
BranchIfWord32NotEqual(representation,
Int32Constant(Representation::kDouble), &if_tagged,
&if_double);
Bind(&if_tagged);
{
var_value->Bind(value);
Goto(&done);
}
Bind(&if_double);
{
var_double_value.Bind(LoadHeapNumberValue(value));
Goto(&rebox_double);
}
}
Bind(&rebox_double);
{
Comment("rebox_double");
Node* heap_number = AllocateHeapNumber();
StoreHeapNumberValue(heap_number, var_double_value.value());
var_value->Bind(heap_number);
Goto(&done);
}
}
Bind(&if_in_descriptor);
{
Node* value =
LoadFixedArrayElement(descriptors, name_index, name_to_value_offset);
var_value->Bind(value);
Goto(&done);
}
Bind(&done);
Comment("] LoadPropertyFromFastObject");
}
void CodeStubAssembler::LoadPropertyFromNameDictionary(Node* dictionary,
Node* name_index,
Variable* var_details,
Variable* var_value) {
Comment("LoadPropertyFromNameDictionary");
const int name_to_details_offset =
(NameDictionary::kEntryDetailsIndex - NameDictionary::kEntryKeyIndex) *
kPointerSize;
const int name_to_value_offset =
(NameDictionary::kEntryValueIndex - NameDictionary::kEntryKeyIndex) *
kPointerSize;
Node* details = SmiToWord32(
LoadFixedArrayElement(dictionary, name_index, name_to_details_offset));
var_details->Bind(details);
var_value->Bind(
LoadFixedArrayElement(dictionary, name_index, name_to_value_offset));
Comment("] LoadPropertyFromNameDictionary");
}
void CodeStubAssembler::LoadPropertyFromGlobalDictionary(Node* dictionary,
Node* name_index,
Variable* var_details,
Variable* var_value,
Label* if_deleted) {
Comment("[ LoadPropertyFromGlobalDictionary");
const int name_to_value_offset =
(GlobalDictionary::kEntryValueIndex - GlobalDictionary::kEntryKeyIndex) *
kPointerSize;
Node* property_cell =
LoadFixedArrayElement(dictionary, name_index, name_to_value_offset);
Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
GotoIf(WordEqual(value, TheHoleConstant()), if_deleted);
var_value->Bind(value);
Node* details =
SmiToWord32(LoadObjectField(property_cell, PropertyCell::kDetailsOffset));
var_details->Bind(details);
Comment("] LoadPropertyFromGlobalDictionary");
}
void CodeStubAssembler::TryGetOwnProperty(
Node* context, Node* receiver, Node* object, Node* map, Node* instance_type,
Node* unique_name, Label* if_found_value, Variable* var_value,
Label* if_not_found, Label* if_bailout) {
DCHECK_EQ(MachineRepresentation::kTagged, var_value->rep());
Comment("TryGetOwnProperty");
Variable var_meta_storage(this, MachineRepresentation::kTagged);
Variable var_entry(this, MachineRepresentation::kWord32);
Label if_found_fast(this), if_found_dict(this), if_found_global(this);
Variable var_details(this, MachineRepresentation::kWord32);
Variable* vars[] = {var_value, &var_details};
Label if_found(this, 2, vars);
TryLookupProperty(object, map, instance_type, unique_name, &if_found_fast,
&if_found_dict, &if_found_global, &var_meta_storage,
&var_entry, if_not_found, if_bailout);
Bind(&if_found_fast);
{
Node* descriptors = var_meta_storage.value();
Node* name_index = var_entry.value();
LoadPropertyFromFastObject(object, map, descriptors, name_index,
&var_details, var_value);
Goto(&if_found);
}
Bind(&if_found_dict);
{
Node* dictionary = var_meta_storage.value();
Node* entry = var_entry.value();
LoadPropertyFromNameDictionary(dictionary, entry, &var_details, var_value);
Goto(&if_found);
}
Bind(&if_found_global);
{
Node* dictionary = var_meta_storage.value();
Node* entry = var_entry.value();
LoadPropertyFromGlobalDictionary(dictionary, entry, &var_details, var_value,
if_not_found);
Goto(&if_found);
}
// Here we have details and value which could be an accessor.
Bind(&if_found);
{
Node* details = var_details.value();
Node* kind = BitFieldDecode<PropertyDetails::KindField>(details);
Label if_accessor(this);
Branch(Word32Equal(kind, Int32Constant(kData)), if_found_value,
&if_accessor);
Bind(&if_accessor);
{
Node* accessor_pair = var_value->value();
GotoIf(Word32Equal(LoadInstanceType(accessor_pair),
Int32Constant(ACCESSOR_INFO_TYPE)),
if_bailout);
AssertInstanceType(accessor_pair, ACCESSOR_PAIR_TYPE);
Node* getter =
LoadObjectField(accessor_pair, AccessorPair::kGetterOffset);
Node* getter_map = LoadMap(getter);
Node* instance_type = LoadMapInstanceType(getter_map);
// FunctionTemplateInfo getters are not supported yet.
GotoIf(Word32Equal(instance_type,
Int32Constant(FUNCTION_TEMPLATE_INFO_TYPE)),
if_bailout);
// Return undefined if the {getter} is not callable.
var_value->Bind(UndefinedConstant());
GotoIf(Word32Equal(Word32And(LoadMapBitField(getter_map),
Int32Constant(1 << Map::kIsCallable)),
Int32Constant(0)),
if_found_value);
// Call the accessor.
Callable callable = CodeFactory::Call(isolate());
Node* result = CallJS(callable, context, getter, receiver);
var_value->Bind(result);
Goto(if_found_value);
}
}
}
void CodeStubAssembler::TryLookupElement(Node* object, Node* map,
Node* instance_type, Node* index,
Label* if_found, Label* if_not_found,
Label* if_bailout) {
// Handle special objects in runtime.
GotoIf(Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)),
if_bailout);
Node* bit_field2 = LoadMapBitField2(map);
Node* elements_kind = BitFieldDecode<Map::ElementsKindBits>(bit_field2);
// TODO(verwaest): Support other elements kinds as well.
Label if_isobjectorsmi(this), if_isdouble(this), if_isdictionary(this),
if_isfaststringwrapper(this), if_isslowstringwrapper(this);
// clang-format off
int32_t values[] = {
// Handled by {if_isobjectorsmi}.
FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS,
FAST_HOLEY_ELEMENTS,
// Handled by {if_isdouble}.
FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS,
// Handled by {if_isdictionary}.
DICTIONARY_ELEMENTS,
// Handled by {if_isfaststringwrapper}.
FAST_STRING_WRAPPER_ELEMENTS,
// Handled by {if_isslowstringwrapper}.
SLOW_STRING_WRAPPER_ELEMENTS,
// Handled by {if_not_found}.
NO_ELEMENTS,
};
Label* labels[] = {
&if_isobjectorsmi, &if_isobjectorsmi, &if_isobjectorsmi,
&if_isobjectorsmi,
&if_isdouble, &if_isdouble,
&if_isdictionary,
&if_isfaststringwrapper,
&if_isslowstringwrapper,
if_not_found,
};
// clang-format on
STATIC_ASSERT(arraysize(values) == arraysize(labels));
Switch(elements_kind, if_bailout, values, labels, arraysize(values));
Bind(&if_isobjectorsmi);
{
Node* elements = LoadElements(object);
Node* length = LoadFixedArrayBaseLength(elements);
GotoIf(Int32GreaterThanOrEqual(index, SmiToWord32(length)), if_not_found);
Node* element = LoadFixedArrayElement(elements, index);
Node* the_hole = TheHoleConstant();
Branch(WordEqual(element, the_hole), if_not_found, if_found);
}
Bind(&if_isdouble);
{
Node* elements = LoadElements(object);
Node* length = LoadFixedArrayBaseLength(elements);
GotoIf(Int32GreaterThanOrEqual(index, SmiToWord32(length)), if_not_found);
if (kPointerSize == kDoubleSize) {
Node* element =
LoadFixedDoubleArrayElement(elements, index, MachineType::Uint64());
Node* the_hole = Int64Constant(kHoleNanInt64);
Branch(Word64Equal(element, the_hole), if_not_found, if_found);
} else {
Node* element_upper =
LoadFixedDoubleArrayElement(elements, index, MachineType::Uint32(),
kIeeeDoubleExponentWordOffset);
Branch(Word32Equal(element_upper, Int32Constant(kHoleNanUpper32)),
if_not_found, if_found);
}
}
Bind(&if_isdictionary);
{
Variable var_entry(this, MachineRepresentation::kWord32);
Node* elements = LoadElements(object);
NumberDictionaryLookup<SeededNumberDictionary>(elements, index, if_found,
&var_entry, if_not_found);
}
Bind(&if_isfaststringwrapper);
{
AssertInstanceType(object, JS_VALUE_TYPE);
Node* string = LoadJSValueValue(object);
Assert(Int32LessThan(LoadInstanceType(string),
Int32Constant(FIRST_NONSTRING_TYPE)));
Node* length = LoadStringLength(string);
GotoIf(Int32LessThan(index, SmiToWord32(length)), if_found);
Goto(&if_isobjectorsmi);
}
Bind(&if_isslowstringwrapper);
{
AssertInstanceType(object, JS_VALUE_TYPE);
Node* string = LoadJSValueValue(object);
Assert(Int32LessThan(LoadInstanceType(string),
Int32Constant(FIRST_NONSTRING_TYPE)));
Node* length = LoadStringLength(string);
GotoIf(Int32LessThan(index, SmiToWord32(length)), if_found);
Goto(&if_isdictionary);
}
}
// Instantiate template methods to workaround GCC compilation issue.
template void CodeStubAssembler::NumberDictionaryLookup<SeededNumberDictionary>(
Node*, Node*, Label*, Variable*, Label*);
template void CodeStubAssembler::NumberDictionaryLookup<
UnseededNumberDictionary>(Node*, Node*, Label*, Variable*, Label*);
Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable,
Node* object) {
Variable var_result(this, MachineRepresentation::kTagged);
Label return_false(this), return_true(this),
return_runtime(this, Label::kDeferred), return_result(this);
// Goto runtime if {object} is a Smi.
GotoIf(WordIsSmi(object), &return_runtime);
// Load map of {object}.
Node* object_map = LoadMap(object);
// Lookup the {callable} and {object} map in the global instanceof cache.
// Note: This is safe because we clear the global instanceof cache whenever
// we change the prototype of any object.
Node* instanceof_cache_function =
LoadRoot(Heap::kInstanceofCacheFunctionRootIndex);
Node* instanceof_cache_map = LoadRoot(Heap::kInstanceofCacheMapRootIndex);
{
Label instanceof_cache_miss(this);
GotoUnless(WordEqual(instanceof_cache_function, callable),
&instanceof_cache_miss);
GotoUnless(WordEqual(instanceof_cache_map, object_map),
&instanceof_cache_miss);
var_result.Bind(LoadRoot(Heap::kInstanceofCacheAnswerRootIndex));
Goto(&return_result);
Bind(&instanceof_cache_miss);
}
// Goto runtime if {callable} is a Smi.
GotoIf(WordIsSmi(callable), &return_runtime);
// Load map of {callable}.
Node* callable_map = LoadMap(callable);
// Goto runtime if {callable} is not a JSFunction.
Node* callable_instance_type = LoadMapInstanceType(callable_map);
GotoUnless(
Word32Equal(callable_instance_type, Int32Constant(JS_FUNCTION_TYPE)),
&return_runtime);
// Goto runtime if {callable} is not a constructor or has
// a non-instance "prototype".
Node* callable_bitfield = LoadMapBitField(callable_map);
GotoUnless(
Word32Equal(Word32And(callable_bitfield,
Int32Constant((1 << Map::kHasNonInstancePrototype) |
(1 << Map::kIsConstructor))),
Int32Constant(1 << Map::kIsConstructor)),
&return_runtime);
// Get the "prototype" (or initial map) of the {callable}.
Node* callable_prototype =
LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset);
{
Variable var_callable_prototype(this, MachineRepresentation::kTagged);
Label callable_prototype_valid(this);
var_callable_prototype.Bind(callable_prototype);
// Resolve the "prototype" if the {callable} has an initial map. Afterwards
// the {callable_prototype} will be either the JSReceiver prototype object
// or the hole value, which means that no instances of the {callable} were
// created so far and hence we should return false.
Node* callable_prototype_instance_type =
LoadInstanceType(callable_prototype);
GotoUnless(
Word32Equal(callable_prototype_instance_type, Int32Constant(MAP_TYPE)),
&callable_prototype_valid);
var_callable_prototype.Bind(
LoadObjectField(callable_prototype, Map::kPrototypeOffset));
Goto(&callable_prototype_valid);
Bind(&callable_prototype_valid);
callable_prototype = var_callable_prototype.value();
}
// Update the global instanceof cache with the current {object} map and
// {callable}. The cached answer will be set when it is known below.
StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, callable);
StoreRoot(Heap::kInstanceofCacheMapRootIndex, object_map);
// Loop through the prototype chain looking for the {callable} prototype.
Variable var_object_map(this, MachineRepresentation::kTagged);
var_object_map.Bind(object_map);
Label loop(this, &var_object_map);
Goto(&loop);
Bind(&loop);
{
Node* object_map = var_object_map.value();
// Check if the current {object} needs to be access checked.
Node* object_bitfield = LoadMapBitField(object_map);
GotoUnless(
Word32Equal(Word32And(object_bitfield,
Int32Constant(1 << Map::kIsAccessCheckNeeded)),
Int32Constant(0)),
&return_runtime);
// Check if the current {object} is a proxy.
Node* object_instance_type = LoadMapInstanceType(object_map);
GotoIf(Word32Equal(object_instance_type, Int32Constant(JS_PROXY_TYPE)),
&return_runtime);
// Check the current {object} prototype.
Node* object_prototype = LoadMapPrototype(object_map);
GotoIf(WordEqual(object_prototype, NullConstant()), &return_false);
GotoIf(WordEqual(object_prototype, callable_prototype), &return_true);
// Continue with the prototype.
var_object_map.Bind(LoadMap(object_prototype));
Goto(&loop);
}
Bind(&return_true);
StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(true));
var_result.Bind(BooleanConstant(true));
Goto(&return_result);
Bind(&return_false);
StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(false));
var_result.Bind(BooleanConstant(false));
Goto(&return_result);
Bind(&return_runtime);
{
// Invalidate the global instanceof cache.
StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, SmiConstant(0));
// Fallback to the runtime implementation.
var_result.Bind(
CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object));
}
Goto(&return_result);
Bind(&return_result);
return var_result.value();
}
compiler::Node* CodeStubAssembler::ElementOffsetFromIndex(Node* index_node,
ElementsKind kind,
ParameterMode mode,
int base_size) {
bool is_double = IsFastDoubleElementsKind(kind);
int element_size_shift = is_double ? kDoubleSizeLog2 : kPointerSizeLog2;
int element_size = 1 << element_size_shift;
int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
int32_t index = 0;
bool constant_index = false;
if (mode == SMI_PARAMETERS) {
element_size_shift -= kSmiShiftBits;
intptr_t temp = 0;
constant_index = ToIntPtrConstant(index_node, temp);
index = temp >> kSmiShiftBits;
} else {
constant_index = ToInt32Constant(index_node, index);
}
if (constant_index) {
return IntPtrConstant(base_size + element_size * index);
}
if (Is64() && mode == INTEGER_PARAMETERS) {
index_node = ChangeInt32ToInt64(index_node);
}
if (base_size == 0) {
return (element_size_shift >= 0)
? WordShl(index_node, IntPtrConstant(element_size_shift))
: WordShr(index_node, IntPtrConstant(-element_size_shift));
}
return IntPtrAdd(
IntPtrConstant(base_size),
(element_size_shift >= 0)
? WordShl(index_node, IntPtrConstant(element_size_shift))
: WordShr(index_node, IntPtrConstant(-element_size_shift)));
}
compiler::Node* CodeStubAssembler::LoadTypeFeedbackVectorForStub() {
Node* function =
LoadFromParentFrame(JavaScriptFrameConstants::kFunctionOffset);
Node* literals = LoadObjectField(function, JSFunction::kLiteralsOffset);
return LoadObjectField(literals, LiteralsArray::kFeedbackVectorOffset);
}
compiler::Node* CodeStubAssembler::LoadReceiverMap(compiler::Node* receiver) {
Variable var_receiver_map(this, MachineRepresentation::kTagged);
// TODO(ishell): defer blocks when it works.
Label load_smi_map(this /*, Label::kDeferred*/), load_receiver_map(this),
if_result(this);
Branch(WordIsSmi(receiver), &load_smi_map, &load_receiver_map);
Bind(&load_smi_map);
{
var_receiver_map.Bind(LoadRoot(Heap::kHeapNumberMapRootIndex));
Goto(&if_result);
}
Bind(&load_receiver_map);
{
var_receiver_map.Bind(LoadMap(receiver));
Goto(&if_result);
}
Bind(&if_result);
return var_receiver_map.value();
}
compiler::Node* CodeStubAssembler::TryMonomorphicCase(
const LoadICParameters* p, compiler::Node* receiver_map, Label* if_handler,
Variable* var_handler, Label* if_miss) {
DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
// TODO(ishell): add helper class that hides offset computations for a series
// of loads.
int32_t header_size = FixedArray::kHeaderSize - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(p->slot, FAST_HOLEY_ELEMENTS,
SMI_PARAMETERS, header_size);
Node* feedback = Load(MachineType::AnyTagged(), p->vector, offset);
// Try to quickly handle the monomorphic case without knowing for sure
// if we have a weak cell in feedback. We do know it's safe to look
// at WeakCell::kValueOffset.
GotoUnless(WordEqual(receiver_map, LoadWeakCellValue(feedback)), if_miss);
Node* handler = Load(MachineType::AnyTagged(), p->vector,
IntPtrAdd(offset, IntPtrConstant(kPointerSize)));
var_handler->Bind(handler);
Goto(if_handler);
return feedback;
}
void CodeStubAssembler::HandlePolymorphicCase(
const LoadICParameters* p, compiler::Node* receiver_map,
compiler::Node* feedback, Label* if_handler, Variable* var_handler,
Label* if_miss, int unroll_count) {
DCHECK_EQ(MachineRepresentation::kTagged, var_handler->rep());
// Iterate {feedback} array.
const int kEntrySize = 2;
for (int i = 0; i < unroll_count; i++) {
Label next_entry(this);
Node* cached_map = LoadWeakCellValue(
LoadFixedArrayElement(feedback, Int32Constant(i * kEntrySize)));
GotoIf(WordNotEqual(receiver_map, cached_map), &next_entry);
// Found, now call handler.
Node* handler =
LoadFixedArrayElement(feedback, Int32Constant(i * kEntrySize + 1));
var_handler->Bind(handler);
Goto(if_handler);
Bind(&next_entry);
}
Node* length = SmiToWord32(LoadFixedArrayBaseLength(feedback));
// Loop from {unroll_count}*kEntrySize to {length}.
Variable var_index(this, MachineRepresentation::kWord32);
Label loop(this, &var_index);
var_index.Bind(Int32Constant(unroll_count * kEntrySize));
Goto(&loop);
Bind(&loop);
{
Node* index = var_index.value();
GotoIf(Int32GreaterThanOrEqual(index, length), if_miss);
Node* cached_map =
LoadWeakCellValue(LoadFixedArrayElement(feedback, index));
Label next_entry(this);
GotoIf(WordNotEqual(receiver_map, cached_map), &next_entry);
// Found, now call handler.
Node* handler = LoadFixedArrayElement(feedback, index, kPointerSize);
var_handler->Bind(handler);
Goto(if_handler);
Bind(&next_entry);
var_index.Bind(Int32Add(index, Int32Constant(kEntrySize)));
Goto(&loop);
}
}
compiler::Node* CodeStubAssembler::StubCachePrimaryOffset(compiler::Node* name,
Code::Flags flags,
compiler::Node* map) {
// See v8::internal::StubCache::PrimaryOffset().
STATIC_ASSERT(StubCache::kCacheIndexShift == Name::kHashShift);
// Compute the hash of the name (use entire hash field).
Node* hash_field = LoadNameHashField(name);
Assert(WordEqual(
Word32And(hash_field, Int32Constant(Name::kHashNotComputedMask)),
Int32Constant(0)));
// Using only the low bits in 64-bit mode is unlikely to increase the
// risk of collision even if the heap is spread over an area larger than
// 4Gb (and not at all if it isn't).
Node* hash = Int32Add(hash_field, map);
// We always set the in_loop bit to zero when generating the lookup code
// so do it here too so the hash codes match.
uint32_t iflags =
(static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
// Base the offset on a simple combination of name, flags, and map.
hash = Word32Xor(hash, Int32Constant(iflags));
uint32_t mask = (StubCache::kPrimaryTableSize - 1)
<< StubCache::kCacheIndexShift;
return Word32And(hash, Int32Constant(mask));
}
compiler::Node* CodeStubAssembler::StubCacheSecondaryOffset(
compiler::Node* name, Code::Flags flags, compiler::Node* seed) {
// See v8::internal::StubCache::SecondaryOffset().
// Use the seed from the primary cache in the secondary cache.
Node* hash = Int32Sub(seed, name);
// We always set the in_loop bit to zero when generating the lookup code
// so do it here too so the hash codes match.
uint32_t iflags =
(static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
hash = Int32Add(hash, Int32Constant(iflags));
int32_t mask = (StubCache::kSecondaryTableSize - 1)
<< StubCache::kCacheIndexShift;
return Word32And(hash, Int32Constant(mask));
}
enum CodeStubAssembler::StubCacheTable : int {
kPrimary = static_cast<int>(StubCache::kPrimary),
kSecondary = static_cast<int>(StubCache::kSecondary)
};
void CodeStubAssembler::TryProbeStubCacheTable(
StubCache* stub_cache, StubCacheTable table_id,
compiler::Node* entry_offset, compiler::Node* name, Code::Flags flags,
compiler::Node* map, Label* if_handler, Variable* var_handler,
Label* if_miss) {
StubCache::Table table = static_cast<StubCache::Table>(table_id);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
Goto(if_miss);
return;
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
Goto(if_miss);
return;
}
#endif
// The {table_offset} holds the entry offset times four (due to masking
// and shifting optimizations).
const int kMultiplier = sizeof(StubCache::Entry) >> Name::kHashShift;
entry_offset = Int32Mul(entry_offset, Int32Constant(kMultiplier));
// Check that the key in the entry matches the name.
Node* key_base =
ExternalConstant(ExternalReference(stub_cache->key_reference(table)));
Node* entry_key = Load(MachineType::Pointer(), key_base, entry_offset);
GotoIf(WordNotEqual(name, entry_key), if_miss);
// Get the map entry from the cache.
DCHECK_EQ(kPointerSize * 2, stub_cache->map_reference(table).address() -
stub_cache->key_reference(table).address());
Node* entry_map =
Load(MachineType::Pointer(), key_base,
Int32Add(entry_offset, Int32Constant(kPointerSize * 2)));
GotoIf(WordNotEqual(map, entry_map), if_miss);
// Check that the flags match what we're looking for.
DCHECK_EQ(kPointerSize, stub_cache->value_reference(table).address() -
stub_cache->key_reference(table).address());
Node* code = Load(MachineType::Pointer(), key_base,
Int32Add(entry_offset, Int32Constant(kPointerSize)));
Node* code_flags =
LoadObjectField(code, Code::kFlagsOffset, MachineType::Uint32());
GotoIf(Word32NotEqual(Int32Constant(flags),
Word32And(code_flags,
Int32Constant(~Code::kFlagsNotUsedInLookup))),
if_miss);
// We found the handler.
var_handler->Bind(code);
Goto(if_handler);
}
void CodeStubAssembler::TryProbeStubCache(
StubCache* stub_cache, Code::Flags flags, compiler::Node* receiver,
compiler::Node* name, Label* if_handler, Variable* var_handler,
Label* if_miss) {
Label try_secondary(this), miss(this);
Counters* counters = isolate()->counters();
IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the {receiver} isn't a smi.
GotoIf(WordIsSmi(receiver), &miss);
Node* receiver_map = LoadMap(receiver);
// Probe the primary table.
Node* primary_offset = StubCachePrimaryOffset(name, flags, receiver_map);
TryProbeStubCacheTable(stub_cache, kPrimary, primary_offset, name, flags,
receiver_map, if_handler, var_handler, &try_secondary);
Bind(&try_secondary);
{
// Probe the secondary table.
Node* secondary_offset =
StubCacheSecondaryOffset(name, flags, primary_offset);
TryProbeStubCacheTable(stub_cache, kSecondary, secondary_offset, name,
flags, receiver_map, if_handler, var_handler, &miss);
}
Bind(&miss);
{
IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
Goto(if_miss);
}
}
void CodeStubAssembler::LoadIC(const LoadICParameters* p) {
Variable var_handler(this, MachineRepresentation::kTagged);
// TODO(ishell): defer blocks when it works.
Label if_handler(this, &var_handler), try_polymorphic(this),
try_megamorphic(this /*, Label::kDeferred*/),
miss(this /*, Label::kDeferred*/);
Node* receiver_map = LoadReceiverMap(p->receiver);
// Check monomorphic case.
Node* feedback = TryMonomorphicCase(p, receiver_map, &if_handler,
&var_handler, &try_polymorphic);
Bind(&if_handler);
{
LoadWithVectorDescriptor descriptor(isolate());
TailCallStub(descriptor, var_handler.value(), p->context, p->receiver,
p->name, p->slot, p->vector);
}
Bind(&try_polymorphic);
{
// Check polymorphic case.
GotoUnless(
WordEqual(LoadMap(feedback), LoadRoot(Heap::kFixedArrayMapRootIndex)),
&try_megamorphic);
HandlePolymorphicCase(p, receiver_map, feedback, &if_handler, &var_handler,
&miss, 2);
}
Bind(&try_megamorphic);
{
// Check megamorphic case.
GotoUnless(
WordEqual(feedback, LoadRoot(Heap::kmegamorphic_symbolRootIndex)),
&miss);
Code::Flags code_flags =
Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::LOAD_IC));
TryProbeStubCache(isolate()->stub_cache(), code_flags, p->receiver, p->name,
&if_handler, &var_handler, &miss);
}
Bind(&miss);
{
TailCallRuntime(Runtime::kLoadIC_Miss, p->context, p->receiver, p->name,
p->slot, p->vector);
}
}
void CodeStubAssembler::LoadGlobalIC(const LoadICParameters* p) {
Label try_handler(this), miss(this);
Node* weak_cell =
LoadFixedArrayElement(p->vector, p->slot, 0, SMI_PARAMETERS);
AssertInstanceType(weak_cell, WEAK_CELL_TYPE);
// Load value or try handler case if the {weak_cell} is cleared.
Node* property_cell = LoadWeakCellValue(weak_cell, &try_handler);
AssertInstanceType(property_cell, PROPERTY_CELL_TYPE);
Node* value = LoadObjectField(property_cell, PropertyCell::kValueOffset);
GotoIf(WordEqual(value, TheHoleConstant()), &miss);
Return(value);
Bind(&try_handler);
{
Node* handler =
LoadFixedArrayElement(p->vector, p->slot, kPointerSize, SMI_PARAMETERS);
GotoIf(WordEqual(handler, LoadRoot(Heap::kuninitialized_symbolRootIndex)),
&miss);
// In this case {handler} must be a Code object.
AssertInstanceType(handler, CODE_TYPE);
LoadWithVectorDescriptor descriptor(isolate());
Node* native_context = LoadNativeContext(p->context);
Node* receiver = LoadFixedArrayElement(
native_context, Int32Constant(Context::EXTENSION_INDEX));
Node* fake_name = IntPtrConstant(0);
TailCallStub(descriptor, handler, p->context, receiver, fake_name, p->slot,
p->vector);
}
Bind(&miss);
{
TailCallRuntime(Runtime::kLoadGlobalIC_Miss, p->context, p->slot,
p->vector);
}
}
} // namespace internal
} // namespace v8