// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ast/ast.h"
#include <cmath> // For isfinite.
#include "src/ast/prettyprinter.h"
#include "src/ast/scopes.h"
#include "src/base/hashmap.h"
#include "src/builtins.h"
#include "src/code-stubs.h"
#include "src/contexts.h"
#include "src/conversions.h"
#include "src/parsing/parser.h"
#include "src/property-details.h"
#include "src/property.h"
#include "src/string-stream.h"
#include "src/type-info.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// All the Accept member functions for each syntax tree node type.
#define DECL_ACCEPT(type) \
void type::Accept(AstVisitor* v) { v->Visit##type(this); }
AST_NODE_LIST(DECL_ACCEPT)
#undef DECL_ACCEPT
// ----------------------------------------------------------------------------
// Implementation of other node functionality.
#ifdef DEBUG
void AstNode::Print(Isolate* isolate) {
AstPrinter::PrintOut(isolate, this);
}
void AstNode::PrettyPrint(Isolate* isolate) {
PrettyPrinter::PrintOut(isolate, this);
}
#endif // DEBUG
bool Expression::IsSmiLiteral() const {
return IsLiteral() && AsLiteral()->value()->IsSmi();
}
bool Expression::IsStringLiteral() const {
return IsLiteral() && AsLiteral()->value()->IsString();
}
bool Expression::IsNullLiteral() const {
if (!IsLiteral()) return false;
Handle<Object> value = AsLiteral()->value();
return !value->IsSmi() &&
value->IsNull(HeapObject::cast(*value)->GetIsolate());
}
bool Expression::IsUndefinedLiteral() const {
if (IsLiteral()) {
Handle<Object> value = AsLiteral()->value();
if (!value->IsSmi() &&
value->IsUndefined(HeapObject::cast(*value)->GetIsolate())) {
return true;
}
}
const VariableProxy* var_proxy = AsVariableProxy();
if (var_proxy == NULL) return false;
Variable* var = var_proxy->var();
// The global identifier "undefined" is immutable. Everything
// else could be reassigned.
return var != NULL && var->IsUnallocatedOrGlobalSlot() &&
var_proxy->raw_name()->IsOneByteEqualTo("undefined");
}
bool Expression::IsValidReferenceExpressionOrThis() const {
return IsValidReferenceExpression() ||
(IsVariableProxy() && AsVariableProxy()->is_this());
}
VariableProxy::VariableProxy(Zone* zone, Variable* var, int start_position,
int end_position)
: Expression(zone, start_position),
bit_field_(IsThisField::encode(var->is_this()) |
IsAssignedField::encode(false) |
IsResolvedField::encode(false)),
raw_name_(var->raw_name()),
end_position_(end_position) {
BindTo(var);
}
VariableProxy::VariableProxy(Zone* zone, const AstRawString* name,
Variable::Kind variable_kind, int start_position,
int end_position)
: Expression(zone, start_position),
bit_field_(IsThisField::encode(variable_kind == Variable::THIS) |
IsAssignedField::encode(false) |
IsResolvedField::encode(false)),
raw_name_(name),
end_position_(end_position) {}
void VariableProxy::BindTo(Variable* var) {
DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
set_var(var);
set_is_resolved();
var->set_is_used();
}
void VariableProxy::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
if (UsesVariableFeedbackSlot()) {
// VariableProxies that point to the same Variable within a function can
// make their loads from the same IC slot.
if (var()->IsUnallocated() || var()->mode() == DYNAMIC_GLOBAL) {
ZoneHashMap::Entry* entry = cache->Get(var());
if (entry != NULL) {
variable_feedback_slot_ = FeedbackVectorSlot(
static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
return;
}
variable_feedback_slot_ = spec->AddLoadGlobalICSlot(var()->name());
cache->Put(var(), variable_feedback_slot_);
} else {
variable_feedback_slot_ = spec->AddLoadICSlot();
}
}
}
static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
FeedbackVectorSlot* out_slot) {
Property* property = expr->AsProperty();
LhsKind assign_type = Property::GetAssignType(property);
if ((assign_type == VARIABLE &&
expr->AsVariableProxy()->var()->IsUnallocated()) ||
assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
// TODO(ishell): consider using ICSlotCache for variables here.
FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
? FeedbackVectorSlotKind::KEYED_STORE_IC
: FeedbackVectorSlotKind::STORE_IC;
*out_slot = spec->AddSlot(kind);
}
}
void ForInStatement::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(each(), spec, &each_slot_);
for_in_feedback_slot_ = spec->AddGeneralSlot();
}
Assignment::Assignment(Zone* zone, Token::Value op, Expression* target,
Expression* value, int pos)
: Expression(zone, pos),
bit_field_(
IsUninitializedField::encode(false) | KeyTypeField::encode(ELEMENT) |
StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
target_(target),
value_(value),
binary_operation_(NULL) {}
void Assignment::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(target(), spec, &slot_);
}
void CountOperation::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
AssignVectorSlots(expression(), spec, &slot_);
}
Token::Value Assignment::binary_op() const {
switch (op()) {
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
case Token::ASSIGN_SHL: return Token::SHL;
case Token::ASSIGN_SAR: return Token::SAR;
case Token::ASSIGN_SHR: return Token::SHR;
case Token::ASSIGN_ADD: return Token::ADD;
case Token::ASSIGN_SUB: return Token::SUB;
case Token::ASSIGN_MUL: return Token::MUL;
case Token::ASSIGN_DIV: return Token::DIV;
case Token::ASSIGN_MOD: return Token::MOD;
default: UNREACHABLE();
}
return Token::ILLEGAL;
}
bool FunctionLiteral::AllowsLazyCompilation() {
return scope()->AllowsLazyCompilation();
}
bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
return scope()->AllowsLazyCompilationWithoutContext();
}
int FunctionLiteral::start_position() const {
return scope()->start_position();
}
int FunctionLiteral::end_position() const {
return scope()->end_position();
}
LanguageMode FunctionLiteral::language_mode() const {
return scope()->language_mode();
}
bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
}
ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
Kind kind, bool is_static,
bool is_computed_name)
: key_(key),
value_(value),
kind_(kind),
emit_store_(true),
is_static_(is_static),
is_computed_name_(is_computed_name) {}
ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
Expression* key, Expression* value,
bool is_static,
bool is_computed_name)
: key_(key),
value_(value),
emit_store_(true),
is_static_(is_static),
is_computed_name_(is_computed_name) {
if (!is_computed_name &&
key->AsLiteral()->raw_value()->EqualsString(
ast_value_factory->proto_string())) {
kind_ = PROTOTYPE;
} else if (value_->AsMaterializedLiteral() != NULL) {
kind_ = MATERIALIZED_LITERAL;
} else if (value_->IsLiteral()) {
kind_ = CONSTANT;
} else {
kind_ = COMPUTED;
}
}
bool ObjectLiteralProperty::NeedsSetFunctionName() const {
return is_computed_name_ &&
(value_->IsAnonymousFunctionDefinition() ||
(value_->IsFunctionLiteral() &&
IsConciseMethod(value_->AsFunctionLiteral()->kind())));
}
void ClassLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ICs must mirror FullCodeGenerator::VisitClassLiteral.
prototype_slot_ = spec->AddLoadICSlot();
if (NeedsProxySlot()) {
proxy_slot_ = spec->AddStoreICSlot();
}
for (int i = 0; i < properties()->length(); i++) {
ObjectLiteral::Property* property = properties()->at(i);
Expression* value = property->value();
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
}
}
bool ObjectLiteral::Property::IsCompileTimeValue() {
return kind_ == CONSTANT ||
(kind_ == MATERIALIZED_LITERAL &&
CompileTimeValue::IsCompileTimeValue(value_));
}
void ObjectLiteral::Property::set_emit_store(bool emit_store) {
emit_store_ = emit_store;
}
bool ObjectLiteral::Property::emit_store() {
return emit_store_;
}
void ObjectLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ics must mirror FullCodeGenerator::VisitObjectLiteral.
int property_index = 0;
for (; property_index < properties()->length(); property_index++) {
ObjectLiteral::Property* property = properties()->at(property_index);
if (property->is_computed_name()) break;
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key()->AsLiteral();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
// Fall through.
case ObjectLiteral::Property::COMPUTED:
// It is safe to use [[Put]] here because the boilerplate already
// contains computed properties with an uninitialized value.
if (key->value()->IsInternalizedString()) {
if (property->emit_store()) {
property->SetSlot(spec->AddStoreICSlot());
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot(), 1);
}
}
break;
}
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
case ObjectLiteral::Property::PROTOTYPE:
break;
case ObjectLiteral::Property::GETTER:
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
case ObjectLiteral::Property::SETTER:
if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
break;
}
}
for (; property_index < properties()->length(); property_index++) {
ObjectLiteral::Property* property = properties()->at(property_index);
Expression* value = property->value();
if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
if (FunctionLiteral::NeedsHomeObject(value)) {
property->SetSlot(spec->AddStoreICSlot());
}
}
}
}
void ObjectLiteral::CalculateEmitStore(Zone* zone) {
const auto GETTER = ObjectLiteral::Property::GETTER;
const auto SETTER = ObjectLiteral::Property::SETTER;
ZoneAllocationPolicy allocator(zone);
ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
allocator);
for (int i = properties()->length() - 1; i >= 0; i--) {
ObjectLiteral::Property* property = properties()->at(i);
if (property->is_computed_name()) continue;
if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
Literal* literal = property->key()->AsLiteral();
DCHECK(!literal->IsNullLiteral());
// If there is an existing entry do not emit a store unless the previous
// entry was also an accessor.
uint32_t hash = literal->Hash();
ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
if (entry->value != NULL) {
auto previous_kind =
static_cast<ObjectLiteral::Property*>(entry->value)->kind();
if (!((property->kind() == GETTER && previous_kind == SETTER) ||
(property->kind() == SETTER && previous_kind == GETTER))) {
property->set_emit_store(false);
}
}
entry->value = property;
}
}
bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
return property != NULL &&
property->kind() != ObjectLiteral::Property::PROTOTYPE;
}
void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
if (!constant_properties_.is_null()) return;
// Allocate a fixed array to hold all the constant properties.
Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
boilerplate_properties_ * 2, TENURED);
int position = 0;
// Accumulate the value in local variables and store it at the end.
bool is_simple = true;
int depth_acc = 1;
uint32_t max_element_index = 0;
uint32_t elements = 0;
for (int i = 0; i < properties()->length(); i++) {
ObjectLiteral::Property* property = properties()->at(i);
if (!IsBoilerplateProperty(property)) {
is_simple = false;
continue;
}
if (position == boilerplate_properties_ * 2) {
DCHECK(property->is_computed_name());
is_simple = false;
break;
}
DCHECK(!property->is_computed_name());
MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->BuildConstants(isolate);
if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
}
// Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
// value for COMPUTED properties, the real value is filled in at
// runtime. The enumeration order is maintained.
Handle<Object> key = property->key()->AsLiteral()->value();
Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
// Ensure objects that may, at any point in time, contain fields with double
// representation are always treated as nested objects. This is true for
// computed fields (value is undefined), and smi and double literals
// (value->IsNumber()).
// TODO(verwaest): Remove once we can store them inline.
if (FLAG_track_double_fields &&
(value->IsNumber() || value->IsUninitialized(isolate))) {
may_store_doubles_ = true;
}
is_simple = is_simple && !value->IsUninitialized(isolate);
// Keep track of the number of elements in the object literal and
// the largest element index. If the largest element index is
// much larger than the number of elements, creating an object
// literal with fast elements will be a waste of space.
uint32_t element_index = 0;
if (key->IsString() && String::cast(*key)->AsArrayIndex(&element_index)) {
max_element_index = Max(element_index, max_element_index);
elements++;
key = isolate->factory()->NewNumberFromUint(element_index);
} else if (key->ToArrayIndex(&element_index)) {
max_element_index = Max(element_index, max_element_index);
elements++;
} else if (key->IsNumber()) {
key = isolate->factory()->NumberToString(key);
}
// Add name, value pair to the fixed array.
constant_properties->set(position++, *key);
constant_properties->set(position++, *value);
}
constant_properties_ = constant_properties;
fast_elements_ =
(max_element_index <= 32) || ((2 * elements) >= max_element_index);
has_elements_ = elements > 0;
set_is_simple(is_simple);
set_depth(depth_acc);
}
void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
DCHECK_LT(first_spread_index_, 0);
if (!constant_elements_.is_null()) return;
int constants_length = values()->length();
// Allocate a fixed array to hold all the object literals.
Handle<JSArray> array = isolate->factory()->NewJSArray(
FAST_HOLEY_SMI_ELEMENTS, constants_length, constants_length,
INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
// Fill in the literals.
bool is_simple = true;
int depth_acc = 1;
bool is_holey = false;
int array_index = 0;
for (; array_index < constants_length; array_index++) {
Expression* element = values()->at(array_index);
DCHECK(!element->IsSpread());
MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
if (m_literal != NULL) {
m_literal->BuildConstants(isolate);
if (m_literal->depth() + 1 > depth_acc) {
depth_acc = m_literal->depth() + 1;
}
}
// New handle scope here, needs to be after BuildContants().
HandleScope scope(isolate);
Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
if (boilerplate_value->IsTheHole(isolate)) {
is_holey = true;
continue;
}
if (boilerplate_value->IsUninitialized(isolate)) {
boilerplate_value = handle(Smi::FromInt(0), isolate);
is_simple = false;
}
JSObject::AddDataElement(array, array_index, boilerplate_value, NONE)
.Assert();
}
JSObject::ValidateElements(array);
Handle<FixedArrayBase> element_values(array->elements());
// Simple and shallow arrays can be lazily copied, we transform the
// elements array to a copy-on-write array.
if (is_simple && depth_acc == 1 && array_index > 0 &&
array->HasFastSmiOrObjectElements()) {
element_values->set_map(isolate->heap()->fixed_cow_array_map());
}
// Remember both the literal's constant values as well as the ElementsKind
// in a 2-element FixedArray.
Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
ElementsKind kind = array->GetElementsKind();
kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
literals->set(0, Smi::FromInt(kind));
literals->set(1, *element_values);
constant_elements_ = literals;
set_is_simple(is_simple);
set_depth(depth_acc);
}
void ArrayLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
// This logic that computes the number of slots needed for vector store
// ics must mirror FullCodeGenerator::VisitArrayLiteral.
int array_index = 0;
for (; array_index < values()->length(); array_index++) {
Expression* subexpr = values()->at(array_index);
DCHECK(!subexpr->IsSpread());
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
// We'll reuse the same literal slot for all of the non-constant
// subexpressions that use a keyed store IC.
literal_slot_ = spec->AddKeyedStoreICSlot();
return;
}
}
Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
Isolate* isolate) {
if (expression->IsLiteral()) {
return expression->AsLiteral()->value();
}
if (CompileTimeValue::IsCompileTimeValue(expression)) {
return CompileTimeValue::GetValue(isolate, expression);
}
return isolate->factory()->uninitialized_value();
}
void MaterializedLiteral::BuildConstants(Isolate* isolate) {
if (IsArrayLiteral()) {
return AsArrayLiteral()->BuildConstantElements(isolate);
}
if (IsObjectLiteral()) {
return AsObjectLiteral()->BuildConstantProperties(isolate);
}
DCHECK(IsRegExpLiteral());
DCHECK(depth() >= 1); // Depth should be initialized.
}
void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the
// expression has a ToBoolean stub and we want to collect the type
// information. However the GraphBuilder expects it to be on the instruction
// corresponding to the TestContext, therefore we have to store it here and
// not on the operand.
set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
}
void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
// TODO(olivf) If this Operation is used in a test context, then the right
// hand side has a ToBoolean stub and we want to collect the type information.
// However the GraphBuilder expects it to be on the instruction corresponding
// to the TestContext, therefore we have to store it here and not on the
// right hand operand.
set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
}
static bool IsTypeof(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
}
// Check for the pattern: typeof <expression> equals <string literal>.
static bool MatchLiteralCompareTypeof(Expression* left,
Token::Value op,
Expression* right,
Expression** expr,
Handle<String>* check) {
if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
*expr = left->AsUnaryOperation()->expression();
*check = Handle<String>::cast(right->AsLiteral()->value());
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
Handle<String>* check) {
return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
}
static bool IsVoidOfLiteral(Expression* expr) {
UnaryOperation* maybe_unary = expr->AsUnaryOperation();
return maybe_unary != NULL &&
maybe_unary->op() == Token::VOID &&
maybe_unary->expression()->IsLiteral();
}
// Check for the pattern: void <literal> equals <expression> or
// undefined equals <expression>
static bool MatchLiteralCompareUndefined(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
if (left->IsUndefinedLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareUndefined(Expression** expr) {
return MatchLiteralCompareUndefined(left_, op_, right_, expr) ||
MatchLiteralCompareUndefined(right_, op_, left_, expr);
}
// Check for the pattern: null equals <expression>
static bool MatchLiteralCompareNull(Expression* left,
Token::Value op,
Expression* right,
Expression** expr) {
if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
*expr = right;
return true;
}
return false;
}
bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
return MatchLiteralCompareNull(left_, op_, right_, expr) ||
MatchLiteralCompareNull(right_, op_, left_, expr);
}
// ----------------------------------------------------------------------------
// Inlining support
bool Declaration::IsInlineable() const {
return proxy()->var()->IsStackAllocated();
}
bool FunctionDeclaration::IsInlineable() const {
return false;
}
// ----------------------------------------------------------------------------
// Recording of type feedback
// TODO(rossberg): all RecordTypeFeedback functions should disappear
// once we use the common type field in the AST consistently.
void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
}
bool Call::IsUsingCallFeedbackICSlot(Isolate* isolate) const {
CallType call_type = GetCallType(isolate);
if (call_type == POSSIBLY_EVAL_CALL) {
return false;
}
return true;
}
bool Call::IsUsingCallFeedbackSlot(Isolate* isolate) const {
// SuperConstructorCall uses a CallConstructStub, which wants
// a Slot, in addition to any IC slots requested elsewhere.
return GetCallType(isolate) == SUPER_CALL;
}
void Call::AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
FeedbackVectorSlotCache* cache) {
if (IsUsingCallFeedbackICSlot(isolate)) {
ic_slot_ = spec->AddCallICSlot();
}
if (IsUsingCallFeedbackSlot(isolate)) {
stub_slot_ = spec->AddGeneralSlot();
}
}
Call::CallType Call::GetCallType(Isolate* isolate) const {
VariableProxy* proxy = expression()->AsVariableProxy();
if (proxy != NULL) {
if (proxy->var()->is_possibly_eval(isolate)) {
return POSSIBLY_EVAL_CALL;
} else if (proxy->var()->IsUnallocatedOrGlobalSlot()) {
return GLOBAL_CALL;
} else if (proxy->var()->IsLookupSlot()) {
return LOOKUP_SLOT_CALL;
}
}
if (expression()->IsSuperCallReference()) return SUPER_CALL;
Property* property = expression()->AsProperty();
if (property != nullptr) {
bool is_super = property->IsSuperAccess();
if (property->key()->IsPropertyName()) {
return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
} else {
return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
}
}
return OTHER_CALL;
}
// ----------------------------------------------------------------------------
// Implementation of AstVisitor
void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
for (int i = 0; i < declarations->length(); i++) {
Visit(declarations->at(i));
}
}
void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Statement* stmt = statements->at(i);
Visit(stmt);
if (stmt->IsJump()) break;
}
}
void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
for (int i = 0; i < expressions->length(); i++) {
// The variable statement visiting code may pass NULL expressions
// to this code. Maybe this should be handled by introducing an
// undefined expression or literal? Revisit this code if this
// changes
Expression* expression = expressions->at(i);
if (expression != NULL) Visit(expression);
}
}
// ----------------------------------------------------------------------------
// Implementation of AstTraversalVisitor
#define RECURSE(call) \
do { \
DCHECK(!HasStackOverflow()); \
call; \
if (HasStackOverflow()) return; \
} while (false)
#define RECURSE_EXPRESSION(call) \
do { \
DCHECK(!HasStackOverflow()); \
++depth_; \
call; \
--depth_; \
if (HasStackOverflow()) return; \
} while (false)
AstTraversalVisitor::AstTraversalVisitor(Isolate* isolate) : depth_(0) {
InitializeAstVisitor(isolate);
}
AstTraversalVisitor::AstTraversalVisitor(uintptr_t stack_limit) : depth_(0) {
InitializeAstVisitor(stack_limit);
}
void AstTraversalVisitor::VisitDeclarations(ZoneList<Declaration*>* decls) {
for (int i = 0; i < decls->length(); ++i) {
Declaration* decl = decls->at(i);
RECURSE(Visit(decl));
}
}
void AstTraversalVisitor::VisitStatements(ZoneList<Statement*>* stmts) {
for (int i = 0; i < stmts->length(); ++i) {
Statement* stmt = stmts->at(i);
RECURSE(Visit(stmt));
if (stmt->IsJump()) break;
}
}
void AstTraversalVisitor::VisitVariableDeclaration(VariableDeclaration* decl) {}
void AstTraversalVisitor::VisitFunctionDeclaration(FunctionDeclaration* decl) {
RECURSE(Visit(decl->fun()));
}
void AstTraversalVisitor::VisitImportDeclaration(ImportDeclaration* decl) {}
void AstTraversalVisitor::VisitExportDeclaration(ExportDeclaration* decl) {}
void AstTraversalVisitor::VisitBlock(Block* stmt) {
RECURSE(VisitStatements(stmt->statements()));
}
void AstTraversalVisitor::VisitExpressionStatement(ExpressionStatement* stmt) {
RECURSE(Visit(stmt->expression()));
}
void AstTraversalVisitor::VisitEmptyStatement(EmptyStatement* stmt) {}
void AstTraversalVisitor::VisitSloppyBlockFunctionStatement(
SloppyBlockFunctionStatement* stmt) {
RECURSE(Visit(stmt->statement()));
}
void AstTraversalVisitor::VisitIfStatement(IfStatement* stmt) {
RECURSE(Visit(stmt->condition()));
RECURSE(Visit(stmt->then_statement()));
RECURSE(Visit(stmt->else_statement()));
}
void AstTraversalVisitor::VisitContinueStatement(ContinueStatement* stmt) {}
void AstTraversalVisitor::VisitBreakStatement(BreakStatement* stmt) {}
void AstTraversalVisitor::VisitReturnStatement(ReturnStatement* stmt) {
RECURSE(Visit(stmt->expression()));
}
void AstTraversalVisitor::VisitWithStatement(WithStatement* stmt) {
RECURSE(stmt->expression());
RECURSE(stmt->statement());
}
void AstTraversalVisitor::VisitSwitchStatement(SwitchStatement* stmt) {
RECURSE(Visit(stmt->tag()));
ZoneList<CaseClause*>* clauses = stmt->cases();
for (int i = 0; i < clauses->length(); ++i) {
CaseClause* clause = clauses->at(i);
if (!clause->is_default()) {
Expression* label = clause->label();
RECURSE(Visit(label));
}
ZoneList<Statement*>* stmts = clause->statements();
RECURSE(VisitStatements(stmts));
}
}
void AstTraversalVisitor::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); }
void AstTraversalVisitor::VisitDoWhileStatement(DoWhileStatement* stmt) {
RECURSE(Visit(stmt->body()));
RECURSE(Visit(stmt->cond()));
}
void AstTraversalVisitor::VisitWhileStatement(WhileStatement* stmt) {
RECURSE(Visit(stmt->cond()));
RECURSE(Visit(stmt->body()));
}
void AstTraversalVisitor::VisitForStatement(ForStatement* stmt) {
if (stmt->init() != NULL) {
RECURSE(Visit(stmt->init()));
}
if (stmt->cond() != NULL) {
RECURSE(Visit(stmt->cond()));
}
if (stmt->next() != NULL) {
RECURSE(Visit(stmt->next()));
}
RECURSE(Visit(stmt->body()));
}
void AstTraversalVisitor::VisitForInStatement(ForInStatement* stmt) {
RECURSE(Visit(stmt->enumerable()));
RECURSE(Visit(stmt->body()));
}
void AstTraversalVisitor::VisitForOfStatement(ForOfStatement* stmt) {
RECURSE(Visit(stmt->assign_iterator()));
RECURSE(Visit(stmt->next_result()));
RECURSE(Visit(stmt->result_done()));
RECURSE(Visit(stmt->assign_each()));
RECURSE(Visit(stmt->body()));
}
void AstTraversalVisitor::VisitTryCatchStatement(TryCatchStatement* stmt) {
RECURSE(Visit(stmt->try_block()));
RECURSE(Visit(stmt->catch_block()));
}
void AstTraversalVisitor::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
RECURSE(Visit(stmt->try_block()));
RECURSE(Visit(stmt->finally_block()));
}
void AstTraversalVisitor::VisitDebuggerStatement(DebuggerStatement* stmt) {}
void AstTraversalVisitor::VisitFunctionLiteral(FunctionLiteral* expr) {
Scope* scope = expr->scope();
RECURSE_EXPRESSION(VisitDeclarations(scope->declarations()));
RECURSE_EXPRESSION(VisitStatements(expr->body()));
}
void AstTraversalVisitor::VisitNativeFunctionLiteral(
NativeFunctionLiteral* expr) {}
void AstTraversalVisitor::VisitDoExpression(DoExpression* expr) {
RECURSE(VisitBlock(expr->block()));
RECURSE(VisitVariableProxy(expr->result()));
}
void AstTraversalVisitor::VisitConditional(Conditional* expr) {
RECURSE_EXPRESSION(Visit(expr->condition()));
RECURSE_EXPRESSION(Visit(expr->then_expression()));
RECURSE_EXPRESSION(Visit(expr->else_expression()));
}
void AstTraversalVisitor::VisitVariableProxy(VariableProxy* expr) {}
void AstTraversalVisitor::VisitLiteral(Literal* expr) {}
void AstTraversalVisitor::VisitRegExpLiteral(RegExpLiteral* expr) {}
void AstTraversalVisitor::VisitObjectLiteral(ObjectLiteral* expr) {
ZoneList<ObjectLiteralProperty*>* props = expr->properties();
for (int i = 0; i < props->length(); ++i) {
ObjectLiteralProperty* prop = props->at(i);
if (!prop->key()->IsLiteral()) {
RECURSE_EXPRESSION(Visit(prop->key()));
}
RECURSE_EXPRESSION(Visit(prop->value()));
}
}
void AstTraversalVisitor::VisitArrayLiteral(ArrayLiteral* expr) {
ZoneList<Expression*>* values = expr->values();
for (int i = 0; i < values->length(); ++i) {
Expression* value = values->at(i);
RECURSE_EXPRESSION(Visit(value));
}
}
void AstTraversalVisitor::VisitAssignment(Assignment* expr) {
RECURSE_EXPRESSION(Visit(expr->target()));
RECURSE_EXPRESSION(Visit(expr->value()));
}
void AstTraversalVisitor::VisitYield(Yield* expr) {
RECURSE_EXPRESSION(Visit(expr->generator_object()));
RECURSE_EXPRESSION(Visit(expr->expression()));
}
void AstTraversalVisitor::VisitThrow(Throw* expr) {
RECURSE_EXPRESSION(Visit(expr->exception()));
}
void AstTraversalVisitor::VisitProperty(Property* expr) {
RECURSE_EXPRESSION(Visit(expr->obj()));
RECURSE_EXPRESSION(Visit(expr->key()));
}
void AstTraversalVisitor::VisitCall(Call* expr) {
RECURSE_EXPRESSION(Visit(expr->expression()));
ZoneList<Expression*>* args = expr->arguments();
for (int i = 0; i < args->length(); ++i) {
Expression* arg = args->at(i);
RECURSE_EXPRESSION(Visit(arg));
}
}
void AstTraversalVisitor::VisitCallNew(CallNew* expr) {
RECURSE_EXPRESSION(Visit(expr->expression()));
ZoneList<Expression*>* args = expr->arguments();
for (int i = 0; i < args->length(); ++i) {
Expression* arg = args->at(i);
RECURSE_EXPRESSION(Visit(arg));
}
}
void AstTraversalVisitor::VisitCallRuntime(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
for (int i = 0; i < args->length(); ++i) {
Expression* arg = args->at(i);
RECURSE_EXPRESSION(Visit(arg));
}
}
void AstTraversalVisitor::VisitUnaryOperation(UnaryOperation* expr) {
RECURSE_EXPRESSION(Visit(expr->expression()));
}
void AstTraversalVisitor::VisitCountOperation(CountOperation* expr) {
RECURSE_EXPRESSION(Visit(expr->expression()));
}
void AstTraversalVisitor::VisitBinaryOperation(BinaryOperation* expr) {
RECURSE_EXPRESSION(Visit(expr->left()));
RECURSE_EXPRESSION(Visit(expr->right()));
}
void AstTraversalVisitor::VisitCompareOperation(CompareOperation* expr) {
RECURSE_EXPRESSION(Visit(expr->left()));
RECURSE_EXPRESSION(Visit(expr->right()));
}
void AstTraversalVisitor::VisitThisFunction(ThisFunction* expr) {}
void AstTraversalVisitor::VisitClassLiteral(ClassLiteral* expr) {
if (expr->extends() != nullptr) {
RECURSE_EXPRESSION(Visit(expr->extends()));
}
RECURSE_EXPRESSION(Visit(expr->constructor()));
ZoneList<ObjectLiteralProperty*>* props = expr->properties();
for (int i = 0; i < props->length(); ++i) {
ObjectLiteralProperty* prop = props->at(i);
if (!prop->key()->IsLiteral()) {
RECURSE_EXPRESSION(Visit(prop->key()));
}
RECURSE_EXPRESSION(Visit(prop->value()));
}
}
void AstTraversalVisitor::VisitSpread(Spread* expr) {
RECURSE_EXPRESSION(Visit(expr->expression()));
}
void AstTraversalVisitor::VisitEmptyParentheses(EmptyParentheses* expr) {}
void AstTraversalVisitor::VisitSuperPropertyReference(
SuperPropertyReference* expr) {
RECURSE_EXPRESSION(VisitVariableProxy(expr->this_var()));
RECURSE_EXPRESSION(Visit(expr->home_object()));
}
void AstTraversalVisitor::VisitSuperCallReference(SuperCallReference* expr) {
RECURSE_EXPRESSION(VisitVariableProxy(expr->this_var()));
RECURSE_EXPRESSION(VisitVariableProxy(expr->new_target_var()));
RECURSE_EXPRESSION(VisitVariableProxy(expr->this_function_var()));
}
void AstTraversalVisitor::VisitRewritableExpression(
RewritableExpression* expr) {
RECURSE(Visit(expr->expression()));
}
#undef RECURSE_EXPRESSION
#undef RECURSE
CaseClause::CaseClause(Zone* zone, Expression* label,
ZoneList<Statement*>* statements, int pos)
: Expression(zone, pos),
label_(label),
statements_(statements),
compare_type_(Type::None()) {}
uint32_t Literal::Hash() {
return raw_value()->IsString()
? raw_value()->AsString()->hash()
: ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
}
// static
bool Literal::Match(void* literal1, void* literal2) {
const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
(x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
}
} // namespace internal
} // namespace v8