// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/arm64/frames-arm64.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the InternalArray function from the native context.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result);
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the InternalArray function from the native context.
__ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result);
}
void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id) {
// ----------- S t a t e -------------
// -- x0 : number of arguments excluding receiver
// -- x1 : target
// -- x3 : new target
// -- sp[0] : last argument
// -- ...
// -- sp[4 * (argc - 1)] : first argument
// -- sp[4 * argc] : receiver
// -----------------------------------
__ AssertFunction(x1);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
// Insert extra arguments.
const int num_extra_args = 2;
__ Push(x1, x3);
// JumpToExternalReference expects x0 to contain the number of arguments
// including the receiver and the extra arguments.
__ Add(x0, x0, num_extra_args + 1);
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_InternalArrayCode");
Label generic_array_code;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, x1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset));
__ Tst(x10, kSmiTagMask);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction);
__ CompareObjectType(x10, x11, x12, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- lr : return address
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ArrayCode");
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the Array function.
GenerateLoadArrayFunction(masm, x1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset));
__ Tst(x10, kSmiTagMask);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction);
__ CompareObjectType(x10, x11, x12, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
// Run the native code for the Array function called as a normal function.
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
__ Mov(x3, x1);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : function
// -- cp : context
// -- lr : return address
// -- sp[(argc - n) * 8] : arg[n] (zero-based)
// -- sp[(argc + 1) * 8] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_MathMaxMin");
Heap::RootListIndex const root_index =
(kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
: Heap::kMinusInfinityValueRootIndex;
// Load the accumulator with the default return value (either -Infinity or
// +Infinity), with the tagged value in x5 and the double value in d5.
__ LoadRoot(x5, root_index);
__ Ldr(d5, FieldMemOperand(x5, HeapNumber::kValueOffset));
// Remember how many slots to drop (including the receiver).
__ Add(x4, x0, 1);
Label done_loop, loop;
__ Bind(&loop);
{
// Check if all parameters done.
__ Subs(x0, x0, 1);
__ B(lt, &done_loop);
// Load the next parameter tagged value into x2.
__ Peek(x2, Operand(x0, LSL, kPointerSizeLog2));
// Load the double value of the parameter into d2, maybe converting the
// parameter to a number first using the ToNumber builtin if necessary.
Label convert_smi, convert_number, done_convert;
__ JumpIfSmi(x2, &convert_smi);
__ JumpIfHeapNumber(x2, &convert_number);
{
// Parameter is not a Number, use the ToNumber builtin to convert it.
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(lr, fp);
__ Move(fp, jssp);
__ Push(cp, x1);
__ SmiTag(x0);
__ SmiTag(x4);
__ Push(x0, x5, x4);
__ Mov(x0, x2);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Mov(x2, x0);
__ Pop(x4, x5, x0);
{
// Restore the double accumulator value (d5).
Label done_restore;
__ SmiUntagToDouble(d5, x5, kSpeculativeUntag);
__ JumpIfSmi(x5, &done_restore);
__ Ldr(d5, FieldMemOperand(x5, HeapNumber::kValueOffset));
__ Bind(&done_restore);
}
__ SmiUntag(x4);
__ SmiUntag(x0);
__ Pop(x1, cp, fp, lr);
}
__ AssertNumber(x2);
__ JumpIfSmi(x2, &convert_smi);
__ Bind(&convert_number);
__ Ldr(d2, FieldMemOperand(x2, HeapNumber::kValueOffset));
__ B(&done_convert);
__ Bind(&convert_smi);
__ SmiUntagToDouble(d2, x2);
__ Bind(&done_convert);
// We can use a single fmin/fmax for the operation itself, but we then need
// to work out which HeapNumber (or smi) the result came from.
__ Fmov(x11, d5);
if (kind == MathMaxMinKind::kMin) {
__ Fmin(d5, d5, d2);
} else {
DCHECK(kind == MathMaxMinKind::kMax);
__ Fmax(d5, d5, d2);
}
__ Fmov(x10, d5);
__ Cmp(x10, x11);
__ Csel(x5, x5, x2, eq);
__ B(&loop);
}
__ Bind(&done_loop);
__ Drop(x4);
__ Mov(x0, x5);
__ Ret();
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- lr : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_NumberConstructor");
// 1. Load the first argument into x0 and get rid of the rest (including the
// receiver).
Label no_arguments;
{
__ Cbz(x0, &no_arguments);
__ Sub(x0, x0, 1);
__ Drop(x0);
__ Ldr(x0, MemOperand(jssp, 2 * kPointerSize, PostIndex));
}
// 2a. Convert first argument to number.
__ Jump(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
// 2b. No arguments, return +0 (already in x0).
__ Bind(&no_arguments);
__ Drop(1);
__ Ret();
}
// static
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- lr : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_NumberConstructor_ConstructStub");
// 1. Make sure we operate in the context of the called function.
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
// 2. Load the first argument into x2 and get rid of the rest (including the
// receiver).
{
Label no_arguments, done;
__ Cbz(x0, &no_arguments);
__ Sub(x0, x0, 1);
__ Drop(x0);
__ Ldr(x2, MemOperand(jssp, 2 * kPointerSize, PostIndex));
__ B(&done);
__ Bind(&no_arguments);
__ Drop(1);
__ Mov(x2, Smi::FromInt(0));
__ Bind(&done);
}
// 3. Make sure x2 is a number.
{
Label done_convert;
__ JumpIfSmi(x2, &done_convert);
__ JumpIfObjectType(x2, x4, x4, HEAP_NUMBER_TYPE, &done_convert, eq);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1, x3);
__ Move(x0, x2);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Move(x2, x0);
__ Pop(x3, x1);
}
__ Bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label new_object;
__ Cmp(x1, x3);
__ B(ne, &new_object);
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(x0, x1, x2, x4, x5, &new_object);
__ Ret();
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x2); // first argument
FastNewObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ Pop(x2);
}
__ Str(x2, FieldMemOperand(x0, JSValue::kValueOffset));
__ Ret();
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- lr : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_StringConstructor");
// 1. Load the first argument into x0 and get rid of the rest (including the
// receiver).
Label no_arguments;
{
__ Cbz(x0, &no_arguments);
__ Sub(x0, x0, 1);
__ Drop(x0);
__ Ldr(x0, MemOperand(jssp, 2 * kPointerSize, PostIndex));
}
// 2a. At least one argument, return x0 if it's a string, otherwise
// dispatch to appropriate conversion.
Label to_string, symbol_descriptive_string;
{
__ JumpIfSmi(x0, &to_string);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CompareObjectType(x0, x1, x1, FIRST_NONSTRING_TYPE);
__ B(hi, &to_string);
__ B(eq, &symbol_descriptive_string);
__ Ret();
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ Bind(&no_arguments);
{
__ LoadRoot(x0, Heap::kempty_stringRootIndex);
__ Drop(1);
__ Ret();
}
// 3a. Convert x0 to a string.
__ Bind(&to_string);
{
ToStringStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// 3b. Convert symbol in x0 to a string.
__ Bind(&symbol_descriptive_string);
{
__ Push(x0);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x3 : new target
// -- lr : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_StringConstructor_ConstructStub");
// 1. Make sure we operate in the context of the called function.
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
// 2. Load the first argument into x2 and get rid of the rest (including the
// receiver).
{
Label no_arguments, done;
__ Cbz(x0, &no_arguments);
__ Sub(x0, x0, 1);
__ Drop(x0);
__ Ldr(x2, MemOperand(jssp, 2 * kPointerSize, PostIndex));
__ B(&done);
__ Bind(&no_arguments);
__ Drop(1);
__ LoadRoot(x2, Heap::kempty_stringRootIndex);
__ Bind(&done);
}
// 3. Make sure x2 is a string.
{
Label convert, done_convert;
__ JumpIfSmi(x2, &convert);
__ JumpIfObjectType(x2, x4, x4, FIRST_NONSTRING_TYPE, &done_convert, lo);
__ Bind(&convert);
{
FrameScope scope(masm, StackFrame::INTERNAL);
ToStringStub stub(masm->isolate());
__ Push(x1, x3);
__ Move(x0, x2);
__ CallStub(&stub);
__ Move(x2, x0);
__ Pop(x3, x1);
}
__ Bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label new_object;
__ Cmp(x1, x3);
__ B(ne, &new_object);
// 5. Allocate a JSValue wrapper for the string.
__ AllocateJSValue(x0, x1, x2, x4, x5, &new_object);
__ Ret();
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x2); // first argument
FastNewObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ Pop(x2);
}
__ Str(x2, FieldMemOperand(x0, JSValue::kValueOffset));
__ Ret();
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x2, FieldMemOperand(x2, SharedFunctionInfo::kCodeOffset));
__ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag);
__ Br(x2);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x1 : target function (preserved for callee)
// -- x3 : new target (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the target function and the new target.
// Push another copy as a parameter to the runtime call.
__ SmiTag(x0);
__ Push(x0, x1, x3, x1);
__ CallRuntime(function_id, 1);
__ Move(x2, x0);
// Restore target function and new target.
__ Pop(x3, x1, x0);
__ SmiUntag(x0);
}
__ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag);
__ Br(x2);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However, not
// checking may delay installing ready functions, and always checking would be
// quite expensive. A good compromise is to first check against stack limit as
// a cue for an interrupt signal.
Label ok;
__ CompareRoot(masm->StackPointer(), Heap::kStackLimitRootIndex);
__ B(hs, &ok);
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
__ Bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_implicit_receiver,
bool check_derived_construct) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : constructor function
// -- x2 : allocation site or undefined
// -- x3 : new target
// -- lr : return address
// -- cp : context pointer
// -- sp[...]: constructor arguments
// -----------------------------------
ASM_LOCATION("Builtins::Generate_JSConstructStubHelper");
Isolate* isolate = masm->isolate();
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the four incoming parameters on the stack.
Register argc = x0;
Register constructor = x1;
Register allocation_site = x2;
Register new_target = x3;
// Preserve the incoming parameters on the stack.
__ AssertUndefinedOrAllocationSite(allocation_site, x10);
__ Push(cp);
__ SmiTag(argc);
__ Push(allocation_site, argc);
if (create_implicit_receiver) {
// Allocate the new receiver object.
__ Push(constructor, new_target);
FastNewObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ Mov(x4, x0);
__ Pop(new_target, constructor);
// ----------- S t a t e -------------
// -- x1: constructor function
// -- x3: new target
// -- x4: newly allocated object
// -----------------------------------
// Reload the number of arguments from the stack.
// Set it up in x0 for the function call below.
// jssp[0]: number of arguments (smi-tagged)
__ Peek(argc, 0); // Load number of arguments.
}
__ SmiUntag(argc);
if (create_implicit_receiver) {
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ Push(x4, x4);
} else {
__ PushRoot(Heap::kTheHoleValueRootIndex);
}
// Set up pointer to last argument.
__ Add(x2, fp, StandardFrameConstants::kCallerSPOffset);
// Copy arguments and receiver to the expression stack.
// Copy 2 values every loop to use ldp/stp.
// x0: number of arguments
// x1: constructor function
// x2: address of last argument (caller sp)
// x3: new target
// jssp[0]: receiver
// jssp[1]: receiver
// jssp[2]: number of arguments (smi-tagged)
// Compute the start address of the copy in x3.
__ Add(x4, x2, Operand(argc, LSL, kPointerSizeLog2));
Label loop, entry, done_copying_arguments;
__ B(&entry);
__ Bind(&loop);
__ Ldp(x10, x11, MemOperand(x4, -2 * kPointerSize, PreIndex));
__ Push(x11, x10);
__ Bind(&entry);
__ Cmp(x4, x2);
__ B(gt, &loop);
// Because we copied values 2 by 2 we may have copied one extra value.
// Drop it if that is the case.
__ B(eq, &done_copying_arguments);
__ Drop(1);
__ Bind(&done_copying_arguments);
// Call the function.
// x0: number of arguments
// x1: constructor function
// x3: new target
ParameterCount actual(argc);
__ InvokeFunction(constructor, new_target, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore the context from the frame.
// x0: result
// jssp[0]: receiver
// jssp[1]: number of arguments (smi-tagged)
__ Ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// x0: result
// jssp[0]: receiver (newly allocated object)
// jssp[1]: number of arguments (smi-tagged)
__ JumpIfSmi(x0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ JumpIfObjectType(x0, x1, x3, FIRST_JS_RECEIVER_TYPE, &exit, ge);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ Bind(&use_receiver);
__ Peek(x0, 0);
// Remove the receiver from the stack, remove caller arguments, and
// return.
__ Bind(&exit);
// x0: result
// jssp[0]: receiver (newly allocated object)
// jssp[1]: number of arguments (smi-tagged)
__ Peek(x1, 1 * kXRegSize);
} else {
__ Peek(x1, 0);
}
// Leave construct frame.
}
// ES6 9.2.2. Step 13+
// Check that the result is not a Smi, indicating that the constructor result
// from a derived class is neither undefined nor an Object.
if (check_derived_construct) {
Label dont_throw;
__ JumpIfNotSmi(x0, &dont_throw);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
}
__ Bind(&dont_throw);
}
__ DropBySMI(x1);
__ Drop(1);
if (create_implicit_receiver) {
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, x1, x2);
}
__ Ret();
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStubForDerived(
MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, true);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the value to pass to the generator
// -- x1 : the JSGeneratorObject to resume
// -- x2 : the resume mode (tagged)
// -- lr : return address
// -----------------------------------
__ AssertGeneratorObject(x1);
// Store input value into generator object.
__ Str(x0, FieldMemOperand(x1, JSGeneratorObject::kInputOrDebugPosOffset));
__ RecordWriteField(x1, JSGeneratorObject::kInputOrDebugPosOffset, x0, x3,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Store resume mode into generator object.
__ Str(x2, FieldMemOperand(x1, JSGeneratorObject::kResumeModeOffset));
// Load suspended function and context.
__ Ldr(cp, FieldMemOperand(x1, JSGeneratorObject::kContextOffset));
__ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference last_step_action =
ExternalReference::debug_last_step_action_address(masm->isolate());
STATIC_ASSERT(StepFrame > StepIn);
__ Mov(x10, Operand(last_step_action));
__ Ldrsb(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(StepIn), ge, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ Mov(x10, Operand(debug_suspended_generator));
__ Ldr(x10, MemOperand(x10));
__ CompareAndBranch(x10, Operand(x1), eq,
&prepare_step_in_suspended_generator);
__ Bind(&stepping_prepared);
// Push receiver.
__ Ldr(x5, FieldMemOperand(x1, JSGeneratorObject::kReceiverOffset));
__ Push(x5);
// ----------- S t a t e -------------
// -- x1 : the JSGeneratorObject to resume
// -- x2 : the resume mode (tagged)
// -- x4 : generator function
// -- cp : generator context
// -- lr : return address
// -- jssp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ Ldr(x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w10,
FieldMemOperand(x10, SharedFunctionInfo::kFormalParameterCountOffset));
__ LoadRoot(x11, Heap::kTheHoleValueRootIndex);
__ PushMultipleTimes(x11, w10);
// Dispatch on the kind of generator object.
Label old_generator;
__ Ldr(x3, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset));
__ CompareObjectType(x3, x3, x3, BYTECODE_ARRAY_TYPE);
__ B(ne, &old_generator);
// New-style (ignition/turbofan) generator object
{
__ Ldr(x0, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w0,
FieldMemOperand(x0, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ Move(x3, x1);
__ Move(x1, x4);
__ Ldr(x5, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
__ Jump(x5);
}
// Old-style (full-codegen) generator object
__ bind(&old_generator);
{
// Enter a new JavaScript frame, and initialize its slots as they were when
// the generator was suspended.
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(lr, fp);
__ Move(fp, jssp);
__ Push(cp, x4);
// Restore the operand stack.
__ Ldr(x0, FieldMemOperand(x1, JSGeneratorObject::kOperandStackOffset));
__ Ldr(w3, UntagSmiFieldMemOperand(x0, FixedArray::kLengthOffset));
__ Add(x0, x0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Add(x3, x0, Operand(x3, LSL, kPointerSizeLog2));
{
Label done_loop, loop;
__ Bind(&loop);
__ Cmp(x0, x3);
__ B(eq, &done_loop);
__ Ldr(x10, MemOperand(x0, kPointerSize, PostIndex));
__ Push(x10);
__ B(&loop);
__ Bind(&done_loop);
}
// Reset operand stack so we don't leak.
__ LoadRoot(x10, Heap::kEmptyFixedArrayRootIndex);
__ Str(x10, FieldMemOperand(x1, JSGeneratorObject::kOperandStackOffset));
// Resume the generator function at the continuation.
__ Ldr(x10, FieldMemOperand(x4, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x10, FieldMemOperand(x10, SharedFunctionInfo::kCodeOffset));
__ Add(x10, x10, Code::kHeaderSize - kHeapObjectTag);
__ Ldrsw(x11,
UntagSmiFieldMemOperand(x1, JSGeneratorObject::kContinuationOffset));
__ Add(x10, x10, x11);
__ Mov(x12, Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
__ Str(x12, FieldMemOperand(x1, JSGeneratorObject::kContinuationOffset));
__ Move(x0, x1); // Continuation expects generator object in x0.
__ Br(x10);
}
__ Bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1, x2, x4);
__ CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
__ Pop(x2, x1);
__ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
__ Bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1, x2);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(x2, x1);
__ Ldr(x4, FieldMemOperand(x1, JSGeneratorObject::kFunctionOffset));
}
__ B(&stepping_prepared);
}
enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt };
// Clobbers x10, x15; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc,
IsTagged argc_is_tagged) {
// Check the stack for overflow.
// We are not trying to catch interruptions (e.g. debug break and
// preemption) here, so the "real stack limit" is checked.
Label enough_stack_space;
__ LoadRoot(x10, Heap::kRealStackLimitRootIndex);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
// TODO(jbramley): Check that the stack usage here is safe.
__ Sub(x10, jssp, x10);
// Check if the arguments will overflow the stack.
if (argc_is_tagged == kArgcIsSmiTagged) {
__ Cmp(x10, Operand::UntagSmiAndScale(argc, kPointerSizeLog2));
} else {
DCHECK(argc_is_tagged == kArgcIsUntaggedInt);
__ Cmp(x10, Operand(argc, LSL, kPointerSizeLog2));
}
__ B(gt, &enough_stack_space);
__ CallRuntime(Runtime::kThrowStackOverflow);
// We should never return from the APPLY_OVERFLOW builtin.
if (__ emit_debug_code()) {
__ Unreachable();
}
__ Bind(&enough_stack_space);
}
// Input:
// x0: new.target.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
// Output:
// x0: result.
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody().
Register new_target = x0;
Register function = x1;
Register receiver = x2;
Register argc = x3;
Register argv = x4;
Register scratch = x10;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
{
// Enter an internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
__ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
masm->isolate())));
__ Ldr(cp, MemOperand(scratch));
__ InitializeRootRegister();
// Push the function and the receiver onto the stack.
__ Push(function, receiver);
// Check if we have enough stack space to push all arguments.
// Expects argument count in eax. Clobbers ecx, edx, edi.
Generate_CheckStackOverflow(masm, argc, kArgcIsUntaggedInt);
// Copy arguments to the stack in a loop, in reverse order.
// x3: argc.
// x4: argv.
Label loop, entry;
// Compute the copy end address.
__ Add(scratch, argv, Operand(argc, LSL, kPointerSizeLog2));
__ B(&entry);
__ Bind(&loop);
__ Ldr(x11, MemOperand(argv, kPointerSize, PostIndex));
__ Ldr(x12, MemOperand(x11)); // Dereference the handle.
__ Push(x12); // Push the argument.
__ Bind(&entry);
__ Cmp(scratch, argv);
__ B(ne, &loop);
__ Mov(scratch, argc);
__ Mov(argc, new_target);
__ Mov(new_target, scratch);
// x0: argc.
// x3: new.target.
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
// The original values have been saved in JSEntryStub::GenerateBody().
__ LoadRoot(x19, Heap::kUndefinedValueRootIndex);
__ Mov(x20, x19);
__ Mov(x21, x19);
__ Mov(x22, x19);
__ Mov(x23, x19);
__ Mov(x24, x19);
__ Mov(x25, x19);
// Don't initialize the reserved registers.
// x26 : root register (root).
// x27 : context pointer (cp).
// x28 : JS stack pointer (jssp).
// x29 : frame pointer (fp).
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the JS internal frame and remove the parameters (except function),
// and return.
}
// Result is in x0. Return.
__ Ret();
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) {
Register args_count = scratch;
// Get the arguments + receiver count.
__ ldr(args_count,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ Ldr(args_count.W(),
FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
// Drop receiver + arguments.
__ Drop(args_count, 1);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// - x1: the JS function object being called.
// - x3: the new target
// - cp: our context.
// - fp: our caller's frame pointer.
// - jssp: stack pointer.
// - lr: return address.
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ Push(lr, fp, cp, x1);
__ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
__ Ldr(x0, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
Register debug_info = kInterpreterBytecodeArrayRegister;
Label load_debug_bytecode_array, bytecode_array_loaded;
DCHECK(!debug_info.is(x0));
__ Ldr(debug_info, FieldMemOperand(x0, SharedFunctionInfo::kDebugInfoOffset));
__ Cmp(debug_info, Operand(DebugInfo::uninitialized()));
__ B(ne, &load_debug_bytecode_array);
__ Ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(x0, SharedFunctionInfo::kFunctionDataOffset));
__ Bind(&bytecode_array_loaded);
// Check function data field is actually a BytecodeArray object.
Label bytecode_array_not_present;
__ CompareRoot(kInterpreterBytecodeArrayRegister,
Heap::kUndefinedValueRootIndex);
__ B(eq, &bytecode_array_not_present);
if (FLAG_debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister,
kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x0, x0,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Load the initial bytecode offset.
__ Mov(kInterpreterBytecodeOffsetRegister,
Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
// Push new.target, bytecode array and Smi tagged bytecode array offset.
__ SmiTag(x0, kInterpreterBytecodeOffsetRegister);
__ Push(x3, kInterpreterBytecodeArrayRegister, x0);
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
DCHECK(jssp.Is(__ StackPointer()));
__ Sub(x10, jssp, Operand(x11));
__ CompareRoot(x10, Heap::kRealStackLimitRootIndex);
__ B(hs, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
// Note: there should always be at least one stack slot for the return
// register in the register file.
Label loop_header;
__ LoadRoot(x10, Heap::kUndefinedValueRootIndex);
// TODO(rmcilroy): Ensure we always have an even number of registers to
// allow stack to be 16 bit aligned (and remove need for jssp).
__ Lsr(x11, x11, kPointerSizeLog2);
__ PushMultipleTimes(x10, x11);
__ Bind(&loop_header);
}
// Load accumulator and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ Mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Dispatch to the first bytecode handler for the function.
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x1, LSL, kPointerSizeLog2));
__ Ldr(ip0, MemOperand(kInterpreterDispatchTableRegister, x1));
__ Call(ip0);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in x0.
LeaveInterpreterFrame(masm, x2);
__ Ret();
// Load debug copy of the bytecode array.
__ Bind(&load_debug_bytecode_array);
__ Ldr(kInterpreterBytecodeArrayRegister,
FieldMemOperand(debug_info, DebugInfo::kAbstractCodeIndex));
__ B(&bytecode_array_loaded);
// If the bytecode array is no longer present, then the underlying function
// has been switched to a different kind of code and we heal the closure by
// switching the code entry field over to the new code object as well.
__ Bind(&bytecode_array_not_present);
__ LeaveFrame(StackFrame::JAVA_SCRIPT);
__ Ldr(x7, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x7, FieldMemOperand(x7, SharedFunctionInfo::kCodeOffset));
__ Add(x7, x7, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Str(x7, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(x1, x7, x5);
__ Jump(x7);
}
void Builtins::Generate_InterpreterMarkBaselineOnReturn(MacroAssembler* masm) {
// Save the function and context for call to CompileBaseline.
__ ldr(x1, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
__ ldr(kContextRegister,
MemOperand(fp, StandardFrameConstants::kContextOffset));
// Leave the frame before recompiling for baseline so that we don't count as
// an activation on the stack.
LeaveInterpreterFrame(masm, x2);
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
// Push return value.
__ push(x0);
// Push function as argument and compile for baseline.
__ push(x1);
__ CallRuntime(Runtime::kCompileBaseline);
// Restore return value.
__ pop(x0);
}
__ Ret();
}
// static
void Builtins::Generate_InterpreterPushArgsAndCallImpl(
MacroAssembler* masm, TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x2 : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- x1 : the target to call (can be any Object).
// -----------------------------------
// Find the address of the last argument.
__ add(x3, x0, Operand(1)); // Add one for receiver.
__ lsl(x3, x3, kPointerSizeLog2);
__ sub(x4, x2, x3);
// Push the arguments.
Label loop_header, loop_check;
__ Mov(x5, jssp);
__ Claim(x3, 1);
__ B(&loop_check);
__ Bind(&loop_header);
// TODO(rmcilroy): Push two at a time once we ensure we keep stack aligned.
__ Ldr(x3, MemOperand(x2, -kPointerSize, PostIndex));
__ Str(x3, MemOperand(x5, -kPointerSize, PreIndex));
__ Bind(&loop_check);
__ Cmp(x2, x4);
__ B(gt, &loop_header);
// Call the target.
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argument count (not including receiver)
// -- x3 : new target
// -- x1 : constructor to call
// -- x2 : address of the first argument
// -----------------------------------
// Find the address of the last argument.
__ add(x5, x0, Operand(1)); // Add one for receiver (to be constructed).
__ lsl(x5, x5, kPointerSizeLog2);
// Set stack pointer and where to stop.
__ Mov(x6, jssp);
__ Claim(x5, 1);
__ sub(x4, x6, x5);
// Push a slot for the receiver.
__ Str(xzr, MemOperand(x6, -kPointerSize, PreIndex));
Label loop_header, loop_check;
// Push the arguments.
__ B(&loop_check);
__ Bind(&loop_header);
// TODO(rmcilroy): Push two at a time once we ensure we keep stack aligned.
__ Ldr(x5, MemOperand(x2, -kPointerSize, PostIndex));
__ Str(x5, MemOperand(x6, -kPointerSize, PreIndex));
__ Bind(&loop_check);
__ Cmp(x6, x4);
__ B(gt, &loop_header);
// Call the constructor with x0, x1, and x3 unmodified.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::FromInt(0));
__ LoadObject(x1, masm->isolate()->builtins()->InterpreterEntryTrampoline());
__ Add(lr, x1, Operand(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
// Initialize the dispatch table register.
__ Mov(kInterpreterDispatchTableRegister,
Operand(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ Ldr(kInterpreterBytecodeArrayRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister,
kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
__ CompareObjectType(kInterpreterBytecodeArrayRegister, x1, x1,
BYTECODE_ARRAY_TYPE);
__ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ Ldr(kInterpreterBytecodeOffsetRegister,
MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister));
__ Mov(x1, Operand(x1, LSL, kPointerSizeLog2));
__ Ldr(ip0, MemOperand(kInterpreterDispatchTableRegister, x1));
__ Jump(ip0);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argument count (preserved for callee)
// -- x3 : new target (preserved for callee)
// -- x1 : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime;
Label maybe_call_runtime;
Label try_shared;
Label loop_top, loop_bottom;
Register closure = x1;
Register map = x13;
Register index = x2;
__ Ldr(map, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(map,
FieldMemOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
__ Ldrsw(index, UntagSmiFieldMemOperand(map, FixedArray::kLengthOffset));
__ Cmp(index, Operand(2));
__ B(lt, &gotta_call_runtime);
// Find literals.
// x3 : native context
// x2 : length / index
// x13 : optimized code map
// stack[0] : new target
// stack[4] : closure
Register native_context = x4;
__ Ldr(native_context, NativeContextMemOperand());
__ Bind(&loop_top);
Register temp = x5;
Register array_pointer = x6;
// Does the native context match?
__ Add(array_pointer, map, Operand(index, LSL, kPointerSizeLog2));
__ Ldr(temp, FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousContext));
__ Ldr(temp, FieldMemOperand(temp, WeakCell::kValueOffset));
__ Cmp(temp, native_context);
__ B(ne, &loop_bottom);
// OSR id set to none?
__ Ldr(temp, FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousOsrAstId));
const int bailout_id = BailoutId::None().ToInt();
__ Cmp(temp, Operand(Smi::FromInt(bailout_id)));
__ B(ne, &loop_bottom);
// Literals available?
Label got_literals, maybe_cleared_weakcell;
Register temp2 = x7;
__ Ldr(temp, FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousLiterals));
// temp contains either a WeakCell pointing to the literals array or the
// literals array directly.
STATIC_ASSERT(WeakCell::kValueOffset == FixedArray::kLengthOffset);
__ Ldr(temp2, FieldMemOperand(temp, WeakCell::kValueOffset));
__ JumpIfSmi(temp2, &maybe_cleared_weakcell);
// temp2 is a pointer, therefore temp is a WeakCell pointing to a literals
// array.
__ Ldr(temp, FieldMemOperand(temp, WeakCell::kValueOffset));
__ jmp(&got_literals);
// r4 is a smi. If it's 0, then we are looking at a cleared WeakCell
// around the literals array, and we should visit the runtime. If it's > 0,
// then temp already contains the literals array.
__ bind(&maybe_cleared_weakcell);
__ Cmp(temp2, Operand(Smi::FromInt(0)));
__ B(eq, &gotta_call_runtime);
// Save the literals in the closure.
__ bind(&got_literals);
__ Str(temp, FieldMemOperand(closure, JSFunction::kLiteralsOffset));
__ RecordWriteField(closure, JSFunction::kLiteralsOffset, temp, x7,
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
// Code available?
Register entry = x7;
__ Ldr(entry,
FieldMemOperand(array_pointer,
SharedFunctionInfo::kOffsetToPreviousCachedCode));
__ Ldr(entry, FieldMemOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &maybe_call_runtime);
// Found literals and code. Get them into the closure and return.
__ Add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
Label install_optimized_code_and_tailcall;
__ Bind(&install_optimized_code_and_tailcall);
__ Str(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, entry, x5);
// Link the closure into the optimized function list.
// x7 : code entry
// x4 : native context
// x1 : closure
__ Ldr(x8,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ Str(x8, FieldMemOperand(closure, JSFunction::kNextFunctionLinkOffset));
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, x8, x13,
kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ Str(closure,
ContextMemOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ Mov(x5, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, x5, x13,
kLRHasNotBeenSaved, kDontSaveFPRegs);
__ Jump(entry);
__ Bind(&loop_bottom);
__ Sub(index, index, Operand(SharedFunctionInfo::kEntryLength));
__ Cmp(index, Operand(1));
__ B(gt, &loop_top);
// We found neither literals nor code.
__ B(&gotta_call_runtime);
__ Bind(&maybe_call_runtime);
// Last possibility. Check the context free optimized code map entry.
__ Ldr(entry, FieldMemOperand(map, FixedArray::kHeaderSize +
SharedFunctionInfo::kSharedCodeIndex));
__ Ldr(entry, FieldMemOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &try_shared);
// Store code entry in the closure.
__ Add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ B(&install_optimized_code_and_tailcall);
__ Bind(&try_shared);
// Is the full code valid?
__ Ldr(entry,
FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset));
__ Ldr(x5, FieldMemOperand(entry, Code::kFlagsOffset));
__ and_(x5, x5, Operand(Code::KindField::kMask));
__ Mov(x5, Operand(x5, LSR, Code::KindField::kShift));
__ Cmp(x5, Operand(Code::BUILTIN));
__ B(eq, &gotta_call_runtime);
// Yes, install the full code.
__ Add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Str(entry, FieldMemOperand(closure, JSFunction::kCodeEntryOffset));
__ RecordWriteCodeEntryField(closure, entry, x5);
__ Jump(entry);
__ Bind(&gotta_call_runtime);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm,
Runtime::kCompileOptimized_NotConcurrent);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code fast, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// The following caller-saved registers must be saved and restored when
// calling through to the runtime:
// x0 - The address from which to resume execution.
// x1 - isolate
// x3 - new target
// lr - The return address for the JSFunction itself. It has not yet been
// preserved on the stack because the frame setup code was replaced
// with a call to this stub, to handle code ageing.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(x0, x1, x3, fp, lr);
__ Mov(x1, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ Pop(lr, fp, x3, x1, x0);
}
// The calling function has been made young again, so return to execute the
// real frame set-up code.
__ Br(x0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// The following caller-saved registers must be saved and restored when
// calling through to the runtime:
// x0 - The address from which to resume execution.
// x1 - isolate
// x3 - new target
// lr - The return address for the JSFunction itself. It has not yet been
// preserved on the stack because the frame setup code was replaced
// with a call to this stub, to handle code ageing.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(x0, x1, x3, fp, lr);
__ Mov(x1, ExternalReference::isolate_address(masm->isolate()));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(
masm->isolate()), 2);
__ Pop(lr, fp, x3, x1, x0);
// Perform prologue operations usually performed by the young code stub.
__ EmitFrameSetupForCodeAgePatching(masm);
}
// Jump to point after the code-age stub.
__ Add(x0, x0, kNoCodeAgeSequenceLength);
__ Br(x0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
// TODO(jbramley): Is it correct (and appropriate) to use safepoint
// registers here? According to the comment above, we should only need to
// preserve the registers with parameters.
__ PushXRegList(kSafepointSavedRegisters);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
__ PopXRegList(kSafepointSavedRegisters);
}
// Ignore state (pushed by Deoptimizer::EntryGenerator::Generate).
__ Drop(1);
// Jump to the miss handler. Deoptimizer::EntryGenerator::Generate loads this
// into lr before it jumps here.
__ Br(lr);
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the deoptimization type to the runtime system.
__ Mov(x0, Smi::FromInt(static_cast<int>(type)));
__ Push(x0);
__ CallRuntime(Runtime::kNotifyDeoptimized);
}
// Get the full codegen state from the stack and untag it.
Register state = x6;
__ Peek(state, 0);
__ SmiUntag(state);
// Switch on the state.
Label with_tos_register, unknown_state;
__ CompareAndBranch(state,
static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS),
ne, &with_tos_register);
__ Drop(1); // Remove state.
__ Ret();
__ Bind(&with_tos_register);
// Reload TOS register.
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), x0.code());
__ Peek(x0, kPointerSize);
__ CompareAndBranch(state,
static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER),
ne, &unknown_state);
__ Drop(2); // Remove state and TOS.
__ Ret();
__ Bind(&unknown_state);
__ Abort(kInvalidFullCodegenState);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Register scratch0, Register scratch1,
Register scratch2,
Label* receiver_check_failed) {
Register signature = scratch0;
Register map = scratch1;
Register constructor = scratch2;
// If there is no signature, return the holder.
__ Ldr(signature, FieldMemOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
__ CompareRoot(signature, Heap::kUndefinedValueRootIndex);
Label receiver_check_passed;
__ B(eq, &receiver_check_passed);
// Walk the prototype chain.
__ Ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
Label prototype_loop_start;
__ Bind(&prototype_loop_start);
// Get the constructor, if any
__ GetMapConstructor(constructor, map, x16, x16);
__ cmp(x16, Operand(JS_FUNCTION_TYPE));
Label next_prototype;
__ B(ne, &next_prototype);
Register type = constructor;
__ Ldr(type,
FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ Bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ Cmp(signature, type);
__ B(eq, &receiver_check_passed);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(type, &next_prototype);
__ CompareObjectType(type, x16, x17, FUNCTION_TEMPLATE_INFO_TYPE);
__ B(ne, &next_prototype);
// Otherwise load the parent function template and iterate.
__ Ldr(type,
FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset));
__ B(&function_template_loop);
// Load the next prototype.
__ Bind(&next_prototype);
__ Ldr(x16, FieldMemOperand(map, Map::kBitField3Offset));
__ Tst(x16, Operand(Map::HasHiddenPrototype::kMask));
__ B(eq, receiver_check_failed);
__ Ldr(receiver, FieldMemOperand(map, Map::kPrototypeOffset));
__ Ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Iterate.
__ B(&prototype_loop_start);
__ Bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : number of arguments excluding receiver
// -- x1 : callee
// -- lr : return address
// -- sp[0] : last argument
// -- ...
// -- sp[8 * (argc - 1)] : first argument
// -- sp[8 * argc] : receiver
// -----------------------------------
// Load the FunctionTemplateInfo.
__ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check.
Label receiver_check_failed;
__ Ldr(x2, MemOperand(jssp, x0, LSL, kPointerSizeLog2));
CompatibleReceiverCheck(masm, x2, x3, x4, x5, x6, &receiver_check_failed);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ Ldr(x4, FieldMemOperand(x3, FunctionTemplateInfo::kCallCodeOffset));
__ Ldr(x4, FieldMemOperand(x4, CallHandlerInfo::kFastHandlerOffset));
__ Add(x4, x4, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(x4);
// Compatible receiver check failed: throw an Illegal Invocation exception.
__ Bind(&receiver_check_failed);
// Drop the arguments (including the receiver)
__ add(x0, x0, Operand(1));
__ Drop(x0);
__ TailCallRuntime(Runtime::kThrowIllegalInvocation);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ Push(x0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
// If the code object is null, just return to the unoptimized code.
Label skip;
__ CompareAndBranch(x0, Smi::FromInt(0), ne, &skip);
__ Ret();
__ Bind(&skip);
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ Ldr(x1, MemOperand(x0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ Ldrsw(w1, UntagSmiFieldMemOperand(x1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex)));
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ Add(x0, x0, x1);
__ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
// static
void Builtins::Generate_DatePrototype_GetField(MacroAssembler* masm,
int field_index) {
// ----------- S t a t e -------------
// -- x0 : number of arguments
// -- x1 : function
// -- cp : context
// -- lr : return address
// -- jssp[0] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_DatePrototype_GetField");
// 1. Pop receiver into x0 and check that it's actually a JSDate object.
Label receiver_not_date;
{
__ Pop(x0);
__ JumpIfSmi(x0, &receiver_not_date);
__ JumpIfNotObjectType(x0, x2, x3, JS_DATE_TYPE, &receiver_not_date);
}
// 2. Load the specified date field, falling back to the runtime as necessary.
if (field_index == JSDate::kDateValue) {
__ Ldr(x0, FieldMemOperand(x0, JSDate::kValueOffset));
} else {
if (field_index < JSDate::kFirstUncachedField) {
Label stamp_mismatch;
__ Mov(x1, ExternalReference::date_cache_stamp(masm->isolate()));
__ Ldr(x1, MemOperand(x1));
__ Ldr(x2, FieldMemOperand(x0, JSDate::kCacheStampOffset));
__ Cmp(x1, x2);
__ B(ne, &stamp_mismatch);
__ Ldr(x0, FieldMemOperand(
x0, JSDate::kValueOffset + field_index * kPointerSize));
__ Ret();
__ Bind(&stamp_mismatch);
}
FrameScope scope(masm, StackFrame::INTERNAL);
__ Mov(x1, Smi::FromInt(field_index));
__ CallCFunction(
ExternalReference::get_date_field_function(masm->isolate()), 2);
}
__ Ret();
// 3. Raise a TypeError if the receiver is not a date.
__ Bind(&receiver_not_date);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Push(x0, lr, fp);
__ Move(fp, jssp);
__ Push(cp, x1);
__ Push(Smi::FromInt(0));
__ CallRuntime(Runtime::kThrowNotDateError);
}
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- jssp[0] : argArray (if argc == 2)
// -- jssp[8] : thisArg (if argc >= 1)
// -- jssp[16] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_FunctionPrototypeApply");
Register argc = x0;
Register arg_array = x0;
Register receiver = x1;
Register this_arg = x2;
Register undefined_value = x3;
Register null_value = x4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
// 1. Load receiver into x1, argArray into x0 (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
// Claim (2 - argc) dummy arguments from the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Claim(2);
__ Drop(argc);
// ----------- S t a t e -------------
// -- x0 : argc
// -- jssp[0] : argArray (dummy value if argc <= 1)
// -- jssp[8] : thisArg (dummy value if argc == 0)
// -- jssp[16] : receiver
// -----------------------------------
__ Cmp(argc, 1);
__ Pop(arg_array, this_arg); // Overwrites argc.
__ CmovX(this_arg, undefined_value, lo); // undefined if argc == 0.
__ CmovX(arg_array, undefined_value, ls); // undefined if argc <= 1.
__ Peek(receiver, 0);
__ Poke(this_arg, 0);
}
// ----------- S t a t e -------------
// -- x0 : argArray
// -- x1 : receiver
// -- x3 : undefined root value
// -- jssp[0] : thisArg
// -----------------------------------
// 2. Make sure the receiver is actually callable.
Label receiver_not_callable;
__ JumpIfSmi(receiver, &receiver_not_callable);
__ Ldr(x10, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Ldrb(w10, FieldMemOperand(x10, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x10, 1 << Map::kIsCallable,
&receiver_not_callable);
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ Cmp(arg_array, null_value);
__ Ccmp(arg_array, undefined_value, ZFlag, ne);
__ B(eq, &no_arguments);
// 4a. Apply the receiver to the given argArray (passing undefined for
// new.target in x3).
DCHECK(undefined_value.Is(x3));
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ Bind(&no_arguments);
{
__ Mov(x0, 0);
DCHECK(receiver.Is(x1));
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// 4c. The receiver is not callable, throw an appropriate TypeError.
__ Bind(&receiver_not_callable);
{
__ Poke(receiver, 0);
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
Register argc = x0;
Register function = x1;
Register scratch1 = x10;
Register scratch2 = x11;
ASM_LOCATION("Builtins::Generate_FunctionPrototypeCall");
// 1. Make sure we have at least one argument.
{
Label done;
__ Cbnz(argc, &done);
__ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex);
__ Push(scratch1);
__ Mov(argc, 1);
__ Bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
__ Peek(function, Operand(argc, LSL, kXRegSizeLog2));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
{
Label loop;
// Calculate the copy start address (destination). Copy end address is jssp.
__ Add(scratch2, jssp, Operand(argc, LSL, kPointerSizeLog2));
__ Sub(scratch1, scratch2, kPointerSize);
__ Bind(&loop);
__ Ldr(x12, MemOperand(scratch1, -kPointerSize, PostIndex));
__ Str(x12, MemOperand(scratch2, -kPointerSize, PostIndex));
__ Cmp(scratch1, jssp);
__ B(ge, &loop);
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Sub(argc, argc, 1);
__ Drop(1);
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- jssp[0] : argumentsList (if argc == 3)
// -- jssp[8] : thisArgument (if argc >= 2)
// -- jssp[16] : target (if argc >= 1)
// -- jssp[24] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectApply");
Register argc = x0;
Register arguments_list = x0;
Register target = x1;
Register this_argument = x2;
Register undefined_value = x3;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load target into x1 (if present), argumentsList into x0 (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
// Claim (3 - argc) dummy arguments from the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Claim(3);
__ Drop(argc);
// ----------- S t a t e -------------
// -- x0 : argc
// -- jssp[0] : argumentsList (dummy value if argc <= 2)
// -- jssp[8] : thisArgument (dummy value if argc <= 1)
// -- jssp[16] : target (dummy value if argc == 0)
// -- jssp[24] : receiver
// -----------------------------------
__ Adds(x10, argc, 0); // Preserve argc, and set the Z flag if it is zero.
__ Pop(arguments_list, this_argument, target); // Overwrites argc.
__ CmovX(target, undefined_value, eq); // undefined if argc == 0.
__ Cmp(x10, 2);
__ CmovX(this_argument, undefined_value, lo); // undefined if argc <= 1.
__ CmovX(arguments_list, undefined_value, ls); // undefined if argc <= 2.
__ Poke(this_argument, 0); // Overwrite receiver.
}
// ----------- S t a t e -------------
// -- x0 : argumentsList
// -- x1 : target
// -- jssp[0] : thisArgument
// -----------------------------------
// 2. Make sure the target is actually callable.
Label target_not_callable;
__ JumpIfSmi(target, &target_not_callable);
__ Ldr(x10, FieldMemOperand(target, HeapObject::kMapOffset));
__ Ldr(x10, FieldMemOperand(x10, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x10, 1 << Map::kIsCallable, &target_not_callable);
// 3a. Apply the target to the given argumentsList (passing undefined for
// new.target in x3).
DCHECK(undefined_value.Is(x3));
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 3b. The target is not callable, throw an appropriate TypeError.
__ Bind(&target_not_callable);
{
__ Poke(target, 0);
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- jssp[0] : new.target (optional)
// -- jssp[8] : argumentsList
// -- jssp[16] : target
// -- jssp[24] : receiver
// -----------------------------------
ASM_LOCATION("Builtins::Generate_ReflectConstruct");
Register argc = x0;
Register arguments_list = x0;
Register target = x1;
Register new_target = x3;
Register undefined_value = x4;
__ LoadRoot(undefined_value, Heap::kUndefinedValueRootIndex);
// 1. Load target into x1 (if present), argumentsList into x0 (if present),
// new.target into x3 (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
// Claim (3 - argc) dummy arguments from the stack, to put the stack in a
// consistent state for a simple pop operation.
__ Claim(3);
__ Drop(argc);
// ----------- S t a t e -------------
// -- x0 : argc
// -- jssp[0] : new.target (dummy value if argc <= 2)
// -- jssp[8] : argumentsList (dummy value if argc <= 1)
// -- jssp[16] : target (dummy value if argc == 0)
// -- jssp[24] : receiver
// -----------------------------------
__ Adds(x10, argc, 0); // Preserve argc, and set the Z flag if it is zero.
__ Pop(new_target, arguments_list, target); // Overwrites argc.
__ CmovX(target, undefined_value, eq); // undefined if argc == 0.
__ Cmp(x10, 2);
__ CmovX(arguments_list, undefined_value, lo); // undefined if argc <= 1.
__ CmovX(new_target, target, ls); // target if argc <= 2.
__ Poke(undefined_value, 0); // Overwrite receiver.
}
// ----------- S t a t e -------------
// -- x0 : argumentsList
// -- x1 : target
// -- x3 : new.target
// -- jssp[0] : receiver (undefined)
// -----------------------------------
// 2. Make sure the target is actually a constructor.
Label target_not_constructor;
__ JumpIfSmi(target, &target_not_constructor);
__ Ldr(x10, FieldMemOperand(target, HeapObject::kMapOffset));
__ Ldrb(x10, FieldMemOperand(x10, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x10, 1 << Map::kIsConstructor,
&target_not_constructor);
// 3. Make sure the new.target is actually a constructor.
Label new_target_not_constructor;
__ JumpIfSmi(new_target, &new_target_not_constructor);
__ Ldr(x10, FieldMemOperand(new_target, HeapObject::kMapOffset));
__ Ldrb(x10, FieldMemOperand(x10, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x10, 1 << Map::kIsConstructor,
&new_target_not_constructor);
// 4a. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The target is not a constructor, throw an appropriate TypeError.
__ Bind(&target_not_constructor);
{
__ Poke(target, 0);
__ TailCallRuntime(Runtime::kThrowCalledNonCallable);
}
// 4c. The new.target is not a constructor, throw an appropriate TypeError.
__ Bind(&new_target_not_constructor);
{
__ Poke(new_target, 0);
__ TailCallRuntime(Runtime::kThrowCalledNonCallable);
}
}
static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- x0 : actual number of arguments
// -- x1 : function (passed through to callee)
// -- x2 : expected number of arguments
// -- x3 : new target (passed through to callee)
// -----------------------------------
// Check the stack for overflow.
// We are not trying to catch interruptions (e.g. debug break and
// preemption) here, so the "real stack limit" is checked.
Label enough_stack_space;
__ LoadRoot(x10, Heap::kRealStackLimitRootIndex);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
__ Sub(x10, jssp, x10);
// Check if the arguments will overflow the stack.
__ Cmp(x10, Operand(x2, LSL, kPointerSizeLog2));
__ B(le, stack_overflow);
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ SmiTag(x10, x0);
__ Mov(x11, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ Push(lr, fp);
__ Push(x11, x1, x10);
__ Add(fp, jssp,
StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then drop the parameters and the receiver.
__ Ldr(x10, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ Mov(jssp, fp);
__ Pop(fp, lr);
__ DropBySMI(x10, kXRegSize);
__ Drop(1);
}
// static
void Builtins::Generate_Apply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argumentsList
// -- x1 : target
// -- x3 : new.target (checked to be constructor or undefined)
// -- jssp[0] : thisArgument
// -----------------------------------
Register arguments_list = x0;
Register target = x1;
Register new_target = x3;
Register args = x0;
Register len = x2;
// Create the list of arguments from the array-like argumentsList.
{
Label create_arguments, create_array, create_runtime, done_create;
__ JumpIfSmi(arguments_list, &create_runtime);
// Load native context.
Register native_context = x4;
__ Ldr(native_context, NativeContextMemOperand());
// Load the map of argumentsList.
Register arguments_list_map = x2;
__ Ldr(arguments_list_map,
FieldMemOperand(arguments_list, HeapObject::kMapOffset));
// Check if argumentsList is an (unmodified) arguments object.
__ Ldr(x10, ContextMemOperand(native_context,
Context::SLOPPY_ARGUMENTS_MAP_INDEX));
__ Ldr(x11, ContextMemOperand(native_context,
Context::STRICT_ARGUMENTS_MAP_INDEX));
__ Cmp(arguments_list_map, x10);
__ Ccmp(arguments_list_map, x11, ZFlag, ne);
__ B(eq, &create_arguments);
// Check if argumentsList is a fast JSArray.
__ CompareInstanceType(arguments_list_map, native_context, JS_ARRAY_TYPE);
__ B(eq, &create_array);
// Ask the runtime to create the list (actually a FixedArray).
__ Bind(&create_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(target, new_target, arguments_list);
__ CallRuntime(Runtime::kCreateListFromArrayLike);
__ Pop(new_target, target);
__ Ldrsw(len, UntagSmiFieldMemOperand(arguments_list,
FixedArray::kLengthOffset));
}
__ B(&done_create);
// Try to create the list from an arguments object.
__ Bind(&create_arguments);
__ Ldrsw(len, UntagSmiFieldMemOperand(arguments_list,
JSArgumentsObject::kLengthOffset));
__ Ldr(x10, FieldMemOperand(arguments_list, JSObject::kElementsOffset));
__ Ldrsw(x11, UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset));
__ CompareAndBranch(len, x11, ne, &create_runtime);
__ Mov(args, x10);
__ B(&done_create);
// Try to create the list from a JSArray object.
__ Bind(&create_array);
__ Ldr(x10, FieldMemOperand(arguments_list_map, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(x10);
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_ELEMENTS == 2);
// Branch for anything that's not FAST_{SMI_}ELEMENTS.
__ TestAndBranchIfAnySet(x10, ~FAST_ELEMENTS, &create_runtime);
__ Ldrsw(len,
UntagSmiFieldMemOperand(arguments_list, JSArray::kLengthOffset));
__ Ldr(args, FieldMemOperand(arguments_list, JSArray::kElementsOffset));
__ Bind(&done_create);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(x10, Heap::kRealStackLimitRootIndex);
// Make x10 the space we have left. The stack might already be overflowed
// here which will cause x10 to become negative.
__ Sub(x10, masm->StackPointer(), x10);
// Check if the arguments will overflow the stack.
__ Cmp(x10, Operand(len, LSL, kPointerSizeLog2));
__ B(gt, &done); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ Bind(&done);
}
// ----------- S t a t e -------------
// -- x0 : args (a FixedArray built from argumentsList)
// -- x1 : target
// -- x2 : len (number of elements to push from args)
// -- x3 : new.target (checked to be constructor or undefined)
// -- jssp[0] : thisArgument
// -----------------------------------
// Push arguments onto the stack (thisArgument is already on the stack).
{
Label done, loop;
Register src = x4;
__ Add(src, args, FixedArray::kHeaderSize - kHeapObjectTag);
__ Mov(x0, len); // The 'len' argument for Call() or Construct().
__ Cbz(len, &done);
__ Claim(len);
__ Bind(&loop);
__ Sub(len, len, 1);
__ Ldr(x10, MemOperand(src, kPointerSize, PostIndex));
__ Poke(x10, Operand(len, LSL, kPointerSizeLog2));
__ Cbnz(len, &loop);
__ Bind(&done);
}
// ----------- S t a t e -------------
// -- x0 : argument count (len)
// -- x1 : target
// -- x3 : new.target (checked to be constructor or undefined)
// -- jssp[0] : args[len-1]
// -- jssp[8] : args[len-2]
// ... : ...
// -- jssp[8*(len-2)] : args[1]
// -- jssp[8*(len-1)] : args[0]
// -----------------------------------
// Dispatch to Call or Construct depending on whether new.target is undefined.
{
__ CompareRoot(new_target, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET, eq);
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
}
namespace {
// Drops top JavaScript frame and an arguments adaptor frame below it (if
// present) preserving all the arguments prepared for current call.
// Does nothing if debugger is currently active.
// ES6 14.6.3. PrepareForTailCall
//
// Stack structure for the function g() tail calling f():
//
// ------- Caller frame: -------
// | ...
// | g()'s arg M
// | ...
// | g()'s arg 1
// | g()'s receiver arg
// | g()'s caller pc
// ------- g()'s frame: -------
// | g()'s caller fp <- fp
// | g()'s context
// | function pointer: g
// | -------------------------
// | ...
// | ...
// | f()'s arg N
// | ...
// | f()'s arg 1
// | f()'s receiver arg <- sp (f()'s caller pc is not on the stack yet!)
// ----------------------
//
void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
Register scratch1, Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Comment cmnt(masm, "[ PrepareForTailCall");
// Prepare for tail call only if ES2015 tail call elimination is enabled.
Label done;
ExternalReference is_tail_call_elimination_enabled =
ExternalReference::is_tail_call_elimination_enabled_address(
masm->isolate());
__ Mov(scratch1, Operand(is_tail_call_elimination_enabled));
__ Ldrb(scratch1, MemOperand(scratch1));
__ Cmp(scratch1, Operand(0));
__ B(eq, &done);
// Drop possible interpreter handler/stub frame.
{
Label no_interpreter_frame;
__ Ldr(scratch3,
MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Cmp(scratch3, Operand(Smi::FromInt(StackFrame::STUB)));
__ B(ne, &no_interpreter_frame);
__ Ldr(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ bind(&no_interpreter_frame);
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ Ldr(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ Ldr(scratch3,
MemOperand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset));
__ Cmp(scratch3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ B(ne, &no_arguments_adaptor);
// Drop current frame and load arguments count from arguments adaptor frame.
__ mov(fp, scratch2);
__ Ldr(caller_args_count_reg,
MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
__ B(&formal_parameter_count_loaded);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count
__ Ldr(scratch1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ Ldr(scratch1,
FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
__ Ldrsw(caller_args_count_reg,
FieldMemOperand(scratch1,
SharedFunctionInfo::kFormalParameterCountOffset));
__ bind(&formal_parameter_count_loaded);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3);
__ bind(&done);
}
} // namespace
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
ASM_LOCATION("Builtins::Generate_CallFunction");
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(x1);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that function is not a "classConstructor".
Label class_constructor;
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kCompilerHintsOffset));
__ TestAndBranchIfAnySet(
w3, (1 << SharedFunctionInfo::kIsDefaultConstructor) |
(1 << SharedFunctionInfo::kIsSubclassConstructor) |
(1 << SharedFunctionInfo::kIsBaseConstructor),
&class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ TestAndBranchIfAnySet(w3,
(1 << SharedFunctionInfo::kNative) |
(1 << SharedFunctionInfo::kStrictModeFunction),
&done_convert);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
} else {
Label convert_to_object, convert_receiver;
__ Peek(x3, Operand(x0, LSL, kXRegSizeLog2));
__ JumpIfSmi(x3, &convert_to_object);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE);
__ B(hs, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(x3, Heap::kUndefinedValueRootIndex,
&convert_global_proxy);
__ JumpIfNotRoot(x3, Heap::kNullValueRootIndex, &convert_to_object);
__ Bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(x3);
}
__ B(&convert_receiver);
}
__ Bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(x0);
__ Push(x0, x1);
__ Mov(x0, x3);
ToObjectStub stub(masm->isolate());
__ CallStub(&stub);
__ Mov(x3, x0);
__ Pop(x1, x0);
__ SmiUntag(x0);
}
__ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Bind(&convert_receiver);
}
__ Poke(x3, Operand(x0, LSL, kXRegSizeLog2));
}
__ Bind(&done_convert);
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSFunction)
// -- x2 : the shared function info.
// -- cp : the function context.
// -----------------------------------
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, x0, x3, x4, x5);
}
__ Ldrsw(
x2, FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset));
ParameterCount actual(x0);
ParameterCount expected(x2);
__ InvokeFunctionCode(x1, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ Push(x1);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x3 : new.target (only in case of [[Construct]])
// -----------------------------------
// Load [[BoundArguments]] into x2 and length of that into x4.
Label no_bound_arguments;
__ Ldr(x2, FieldMemOperand(x1, JSBoundFunction::kBoundArgumentsOffset));
__ Ldrsw(x4, UntagSmiFieldMemOperand(x2, FixedArray::kLengthOffset));
__ Cmp(x4, 0);
__ B(eq, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : target (checked to be a JSBoundFunction)
// -- x2 : the [[BoundArguments]] (implemented as FixedArray)
// -- x3 : new.target (only in case of [[Construct]])
// -- x4 : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ Claim(x4);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(jssp, Heap::kRealStackLimitRootIndex);
__ B(gt, &done); // Signed comparison.
// Restore the stack pointer.
__ Drop(x4);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ Bind(&done);
}
// Relocate arguments down the stack.
{
Label loop, done_loop;
__ Mov(x5, 0);
__ Bind(&loop);
__ Cmp(x5, x0);
__ B(gt, &done_loop);
__ Peek(x10, Operand(x4, LSL, kPointerSizeLog2));
__ Poke(x10, Operand(x5, LSL, kPointerSizeLog2));
__ Add(x4, x4, 1);
__ Add(x5, x5, 1);
__ B(&loop);
__ Bind(&done_loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ Ldrsw(x4, UntagSmiFieldMemOperand(x2, FixedArray::kLengthOffset));
__ Add(x2, x2, FixedArray::kHeaderSize - kHeapObjectTag);
__ Bind(&loop);
__ Sub(x4, x4, 1);
__ Ldr(x10, MemOperand(x2, x4, LSL, kPointerSizeLog2));
__ Poke(x10, Operand(x0, LSL, kPointerSizeLog2));
__ Add(x0, x0, 1);
__ Cmp(x4, 0);
__ B(gt, &loop);
}
}
__ Bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(x1);
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, x0, x3, x4, x5);
}
// Patch the receiver to [[BoundThis]].
__ Ldr(x10, FieldMemOperand(x1, JSBoundFunction::kBoundThisOffset));
__ Poke(x10, Operand(x0, LSL, kPointerSizeLog2));
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ Ldr(x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Mov(x10,
ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate()));
__ Ldr(x11, MemOperand(x10));
__ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
__ Br(x12);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(x1, &non_callable);
__ Bind(&non_smi);
__ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
RelocInfo::CODE_TARGET, eq);
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Call]] internal method.
__ Ldrb(x4, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x4, 1 << Map::kIsCallable, &non_callable);
__ Cmp(x5, JS_PROXY_TYPE);
__ B(ne, &non_function);
// 0. Prepare for tail call if necessary.
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, x0, x3, x4, x5);
}
// 1. Runtime fallback for Proxy [[Call]].
__ Push(x1);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ Add(x0, x0, Operand(2));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ Bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ Poke(x1, Operand(x0, LSL, kXRegSizeLog2));
// Let the "call_as_function_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(x1);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (checked to be a JSFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertFunction(x1);
// Calling convention for function specific ConstructStubs require
// x2 to contain either an AllocationSite or undefined.
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset));
__ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag);
__ Br(x4);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the function to call (checked to be a JSBoundFunction)
// -- x3 : the new target (checked to be a constructor)
// -----------------------------------
__ AssertBoundFunction(x1);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ Cmp(x1, x3);
__ B(ne, &done);
__ Ldr(x3,
FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ Ldr(x1, FieldMemOperand(x1, JSBoundFunction::kBoundTargetFunctionOffset));
__ Mov(x10, ExternalReference(Builtins::kConstruct, masm->isolate()));
__ Ldr(x11, MemOperand(x10));
__ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
__ Br(x12);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (checked to be a JSProxy)
// -- x3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Call into the Runtime for Proxy [[Construct]].
__ Push(x1);
__ Push(x3);
// Include the pushed new_target, constructor and the receiver.
__ Add(x0, x0, 3);
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : the number of arguments (not including the receiver)
// -- x1 : the constructor to call (can be any Object)
// -- x3 : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(x1, &non_constructor);
// Dispatch based on instance type.
__ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET, eq);
// Check if target has a [[Construct]] internal method.
__ Ldrb(x2, FieldMemOperand(x4, Map::kBitFieldOffset));
__ TestAndBranchIfAllClear(x2, 1 << Map::kIsConstructor, &non_constructor);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ Cmp(x5, JS_BOUND_FUNCTION_TYPE);
__ Jump(masm->isolate()->builtins()->ConstructBoundFunction(),
RelocInfo::CODE_TARGET, eq);
// Only dispatch to proxies after checking whether they are constructors.
__ Cmp(x5, JS_PROXY_TYPE);
__ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET,
eq);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ Poke(x1, Operand(x0, LSL, kXRegSizeLog2));
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, x1);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_AllocateInNewSpace");
// ----------- S t a t e -------------
// -- x1 : requested object size (untagged)
// -- lr : return address
// -----------------------------------
__ SmiTag(x1);
__ Push(x1);
__ Move(cp, Smi::FromInt(0));
__ TailCallRuntime(Runtime::kAllocateInNewSpace);
}
// static
void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_AllocateInOldSpace");
// ----------- S t a t e -------------
// -- x1 : requested object size (untagged)
// -- lr : return address
// -----------------------------------
__ SmiTag(x1);
__ Move(x2, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
__ Push(x1, x2);
__ Move(cp, Smi::FromInt(0));
__ TailCallRuntime(Runtime::kAllocateInTargetSpace);
}
// static
void Builtins::Generate_StringToNumber(MacroAssembler* masm) {
// The StringToNumber stub takes one argument in x0.
__ AssertString(x0);
// Check if string has a cached array index.
Label runtime;
__ Ldr(x2, FieldMemOperand(x0, String::kHashFieldOffset));
__ Tst(x2, Operand(String::kContainsCachedArrayIndexMask));
__ B(ne, &runtime);
__ IndexFromHash(x2, x0);
__ Ret();
__ Bind(&runtime);
{
FrameScope frame(masm, StackFrame::INTERNAL);
// Push argument.
__ Push(x0);
// We cannot use a tail call here because this builtin can also be called
// from wasm.
__ CallRuntime(Runtime::kStringToNumber);
}
__ Ret();
}
// static
void Builtins::Generate_ToNumber(MacroAssembler* masm) {
// The ToNumber stub takes one argument in x0.
Label not_smi;
__ JumpIfNotSmi(x0, ¬_smi);
__ Ret();
__ Bind(¬_smi);
Label not_heap_number;
__ CompareObjectType(x0, x1, x1, HEAP_NUMBER_TYPE);
// x0: receiver
// x1: receiver instance type
__ B(ne, ¬_heap_number);
__ Ret();
__ Bind(¬_heap_number);
__ Jump(masm->isolate()->builtins()->NonNumberToNumber(),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_NonNumberToNumber(MacroAssembler* masm) {
// The NonNumberToNumber stub takes one argument in x0.
__ AssertNotNumber(x0);
Label not_string;
__ CompareObjectType(x0, x1, x1, FIRST_NONSTRING_TYPE);
// x0: receiver
// x1: receiver instance type
__ B(hs, ¬_string);
__ Jump(masm->isolate()->builtins()->StringToNumber(),
RelocInfo::CODE_TARGET);
__ Bind(¬_string);
Label not_oddball;
__ Cmp(x1, ODDBALL_TYPE);
__ B(ne, ¬_oddball);
__ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset));
__ Ret();
__ Bind(¬_oddball);
{
FrameScope frame(masm, StackFrame::INTERNAL);
// Push argument.
__ Push(x0);
// We cannot use a tail call here because this builtin can also be called
// from wasm.
__ CallRuntime(Runtime::kToNumber);
}
__ Ret();
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline");
// ----------- S t a t e -------------
// -- x0 : actual number of arguments
// -- x1 : function (passed through to callee)
// -- x2 : expected number of arguments
// -- x3 : new target (passed through to callee)
// -----------------------------------
Register argc_actual = x0; // Excluding the receiver.
Register argc_expected = x2; // Excluding the receiver.
Register function = x1;
Register code_entry = x10;
Label invoke, dont_adapt_arguments, stack_overflow;
Label enough, too_few;
__ Cmp(argc_actual, argc_expected);
__ B(lt, &too_few);
__ Cmp(argc_expected, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ B(eq, &dont_adapt_arguments);
{ // Enough parameters: actual >= expected
EnterArgumentsAdaptorFrame(masm);
ArgumentAdaptorStackCheck(masm, &stack_overflow);
Register copy_start = x10;
Register copy_end = x11;
Register copy_to = x12;
Register scratch1 = x13, scratch2 = x14;
__ Lsl(scratch2, argc_expected, kPointerSizeLog2);
// Adjust for fp, lr, and the receiver.
__ Add(copy_start, fp, 3 * kPointerSize);
__ Add(copy_start, copy_start, Operand(argc_actual, LSL, kPointerSizeLog2));
__ Sub(copy_end, copy_start, scratch2);
__ Sub(copy_end, copy_end, kPointerSize);
__ Mov(copy_to, jssp);
// Claim space for the arguments, the receiver, and one extra slot.
// The extra slot ensures we do not write under jssp. It will be popped
// later.
__ Add(scratch1, scratch2, 2 * kPointerSize);
__ Claim(scratch1, 1);
// Copy the arguments (including the receiver) to the new stack frame.
Label copy_2_by_2;
__ Bind(©_2_by_2);
__ Ldp(scratch1, scratch2,
MemOperand(copy_start, - 2 * kPointerSize, PreIndex));
__ Stp(scratch1, scratch2,
MemOperand(copy_to, - 2 * kPointerSize, PreIndex));
__ Cmp(copy_start, copy_end);
__ B(hi, ©_2_by_2);
// Correct the space allocated for the extra slot.
__ Drop(1);
__ B(&invoke);
}
{ // Too few parameters: Actual < expected
__ Bind(&too_few);
Register copy_from = x10;
Register copy_end = x11;
Register copy_to = x12;
Register scratch1 = x13, scratch2 = x14;
EnterArgumentsAdaptorFrame(masm);
ArgumentAdaptorStackCheck(masm, &stack_overflow);
__ Lsl(scratch2, argc_expected, kPointerSizeLog2);
__ Lsl(argc_actual, argc_actual, kPointerSizeLog2);
// Adjust for fp, lr, and the receiver.
__ Add(copy_from, fp, 3 * kPointerSize);
__ Add(copy_from, copy_from, argc_actual);
__ Mov(copy_to, jssp);
__ Sub(copy_end, copy_to, 1 * kPointerSize); // Adjust for the receiver.
__ Sub(copy_end, copy_end, argc_actual);
// Claim space for the arguments, the receiver, and one extra slot.
// The extra slot ensures we do not write under jssp. It will be popped
// later.
__ Add(scratch1, scratch2, 2 * kPointerSize);
__ Claim(scratch1, 1);
// Copy the arguments (including the receiver) to the new stack frame.
Label copy_2_by_2;
__ Bind(©_2_by_2);
__ Ldp(scratch1, scratch2,
MemOperand(copy_from, - 2 * kPointerSize, PreIndex));
__ Stp(scratch1, scratch2,
MemOperand(copy_to, - 2 * kPointerSize, PreIndex));
__ Cmp(copy_to, copy_end);
__ B(hi, ©_2_by_2);
__ Mov(copy_to, copy_end);
// Fill the remaining expected arguments with undefined.
__ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex);
__ Add(copy_end, jssp, kPointerSize);
Label fill;
__ Bind(&fill);
__ Stp(scratch1, scratch1,
MemOperand(copy_to, - 2 * kPointerSize, PreIndex));
__ Cmp(copy_to, copy_end);
__ B(hi, &fill);
// Correct the space allocated for the extra slot.
__ Drop(1);
}
// Arguments have been adapted. Now call the entry point.
__ Bind(&invoke);
__ Mov(argc_actual, argc_expected);
// x0 : expected number of arguments
// x1 : function (passed through to callee)
// x3 : new target (passed through to callee)
__ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
__ Call(code_entry);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// Call the entry point without adapting the arguments.
__ Bind(&dont_adapt_arguments);
__ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
__ Jump(code_entry);
__ Bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ Unreachable();
}
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM