/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkIntersections.h"
int SkIntersections::closestTo(double rangeStart, double rangeEnd, const SkDPoint& testPt,
double* closestDist) const {
int closest = -1;
*closestDist = SK_ScalarMax;
for (int index = 0; index < fUsed; ++index) {
if (!between(rangeStart, fT[0][index], rangeEnd)) {
continue;
}
const SkDPoint& iPt = fPt[index];
double dist = testPt.distanceSquared(iPt);
if (*closestDist > dist) {
*closestDist = dist;
closest = index;
}
}
return closest;
}
void SkIntersections::flip() {
for (int index = 0; index < fUsed; ++index) {
fT[1][index] = 1 - fT[1][index];
}
}
int SkIntersections::insert(double one, double two, const SkDPoint& pt) {
if (fIsCoincident[0] == 3 && between(fT[0][0], one, fT[0][1])) {
// For now, don't allow a mix of coincident and non-coincident intersections
return -1;
}
SkASSERT(fUsed <= 1 || fT[0][0] <= fT[0][1]);
int index;
for (index = 0; index < fUsed; ++index) {
double oldOne = fT[0][index];
double oldTwo = fT[1][index];
if (one == oldOne && two == oldTwo) {
return -1;
}
if (more_roughly_equal(oldOne, one) && more_roughly_equal(oldTwo, two)) {
if ((precisely_zero(one) && !precisely_zero(oldOne))
|| (precisely_equal(one, 1) && !precisely_equal(oldOne, 1))
|| (precisely_zero(two) && !precisely_zero(oldTwo))
|| (precisely_equal(two, 1) && !precisely_equal(oldTwo, 1))) {
SkASSERT(one >= 0 && one <= 1);
SkASSERT(two >= 0 && two <= 1);
fT[0][index] = one;
fT[1][index] = two;
fPt[index] = pt;
}
return -1;
}
#if ONE_OFF_DEBUG
if (pt.roughlyEqual(fPt[index])) {
SkDebugf("%s t=%1.9g pts roughly equal\n", __FUNCTION__, one);
}
#endif
if (fT[0][index] > one) {
break;
}
}
if (fUsed >= fMax) {
SkASSERT(0); // FIXME : this error, if it is to be handled at runtime in release, must
// be propagated all the way back down to the caller, and return failure.
fUsed = 0;
return 0;
}
int remaining = fUsed - index;
if (remaining > 0) {
memmove(&fPt[index + 1], &fPt[index], sizeof(fPt[0]) * remaining);
memmove(&fT[0][index + 1], &fT[0][index], sizeof(fT[0][0]) * remaining);
memmove(&fT[1][index + 1], &fT[1][index], sizeof(fT[1][0]) * remaining);
int clearMask = ~((1 << index) - 1);
fIsCoincident[0] += fIsCoincident[0] & clearMask;
fIsCoincident[1] += fIsCoincident[1] & clearMask;
}
fPt[index] = pt;
SkASSERT(one >= 0 && one <= 1);
SkASSERT(two >= 0 && two <= 1);
fT[0][index] = one;
fT[1][index] = two;
++fUsed;
SkASSERT(fUsed <= SK_ARRAY_COUNT(fPt));
return index;
}
void SkIntersections::insertNear(double one, double two, const SkDPoint& pt1, const SkDPoint& pt2) {
SkASSERT(one == 0 || one == 1);
SkASSERT(two == 0 || two == 1);
SkASSERT(pt1 != pt2);
fNearlySame[one ? 1 : 0] = true;
(void) insert(one, two, pt1);
fPt2[one ? 1 : 0] = pt2;
}
int SkIntersections::insertCoincident(double one, double two, const SkDPoint& pt) {
int index = insertSwap(one, two, pt);
if (index >= 0) {
setCoincident(index);
}
return index;
}
void SkIntersections::setCoincident(int index) {
SkASSERT(index >= 0);
int bit = 1 << index;
fIsCoincident[0] |= bit;
fIsCoincident[1] |= bit;
}
void SkIntersections::merge(const SkIntersections& a, int aIndex, const SkIntersections& b,
int bIndex) {
this->reset();
fT[0][0] = a.fT[0][aIndex];
fT[1][0] = b.fT[0][bIndex];
fPt[0] = a.fPt[aIndex];
fPt2[0] = b.fPt[bIndex];
fUsed = 1;
}
int SkIntersections::mostOutside(double rangeStart, double rangeEnd, const SkDPoint& origin) const {
int result = -1;
for (int index = 0; index < fUsed; ++index) {
if (!between(rangeStart, fT[0][index], rangeEnd)) {
continue;
}
if (result < 0) {
result = index;
continue;
}
SkDVector best = fPt[result] - origin;
SkDVector test = fPt[index] - origin;
if (test.crossCheck(best) < 0) {
result = index;
}
}
return result;
}
void SkIntersections::removeOne(int index) {
int remaining = --fUsed - index;
if (remaining <= 0) {
return;
}
memmove(&fPt[index], &fPt[index + 1], sizeof(fPt[0]) * remaining);
memmove(&fT[0][index], &fT[0][index + 1], sizeof(fT[0][0]) * remaining);
memmove(&fT[1][index], &fT[1][index + 1], sizeof(fT[1][0]) * remaining);
// SkASSERT(fIsCoincident[0] == 0);
int coBit = fIsCoincident[0] & (1 << index);
fIsCoincident[0] -= ((fIsCoincident[0] >> 1) & ~((1 << index) - 1)) + coBit;
SkASSERT(!(coBit ^ (fIsCoincident[1] & (1 << index))));
fIsCoincident[1] -= ((fIsCoincident[1] >> 1) & ~((1 << index) - 1)) + coBit;
}