/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkWriteBuffer.h"
#include "SkBitmap.h"
#include "SkBitmapHeap.h"
#include "SkData.h"
#include "SkPixelRef.h"
#include "SkPtrRecorder.h"
#include "SkStream.h"
#include "SkTypeface.h"
SkWriteBuffer::SkWriteBuffer(uint32_t flags)
: fFlags(flags)
, fFactorySet(nullptr)
, fNamedFactorySet(nullptr)
, fBitmapHeap(nullptr)
, fTFSet(nullptr) {
}
SkWriteBuffer::SkWriteBuffer(void* storage, size_t storageSize, uint32_t flags)
: fFlags(flags)
, fFactorySet(nullptr)
, fNamedFactorySet(nullptr)
, fWriter(storage, storageSize)
, fBitmapHeap(nullptr)
, fTFSet(nullptr) {
}
SkWriteBuffer::~SkWriteBuffer() {
SkSafeUnref(fFactorySet);
SkSafeUnref(fNamedFactorySet);
SkSafeUnref(fBitmapHeap);
SkSafeUnref(fTFSet);
}
void SkWriteBuffer::writeByteArray(const void* data, size_t size) {
fWriter.write32(SkToU32(size));
fWriter.writePad(data, size);
}
void SkWriteBuffer::writeBool(bool value) {
fWriter.writeBool(value);
}
void SkWriteBuffer::writeFixed(SkFixed value) {
fWriter.write32(value);
}
void SkWriteBuffer::writeScalar(SkScalar value) {
fWriter.writeScalar(value);
}
void SkWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(SkScalar));
}
void SkWriteBuffer::writeInt(int32_t value) {
fWriter.write32(value);
}
void SkWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) {
fWriter.write32(count);
fWriter.write(value, count * sizeof(int32_t));
}
void SkWriteBuffer::writeUInt(uint32_t value) {
fWriter.write32(value);
}
void SkWriteBuffer::write32(int32_t value) {
fWriter.write32(value);
}
void SkWriteBuffer::writeString(const char* value) {
fWriter.writeString(value);
}
void SkWriteBuffer::writeEncodedString(const void* value, size_t byteLength,
SkPaint::TextEncoding encoding) {
fWriter.writeInt(encoding);
fWriter.writeInt(SkToU32(byteLength));
fWriter.write(value, byteLength);
}
void SkWriteBuffer::writeColor(const SkColor& color) {
fWriter.write32(color);
}
void SkWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) {
fWriter.write32(count);
fWriter.write(color, count * sizeof(SkColor));
}
void SkWriteBuffer::writePoint(const SkPoint& point) {
fWriter.writeScalar(point.fX);
fWriter.writeScalar(point.fY);
}
void SkWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) {
fWriter.write32(count);
fWriter.write(point, count * sizeof(SkPoint));
}
void SkWriteBuffer::writeMatrix(const SkMatrix& matrix) {
fWriter.writeMatrix(matrix);
}
void SkWriteBuffer::writeIRect(const SkIRect& rect) {
fWriter.write(&rect, sizeof(SkIRect));
}
void SkWriteBuffer::writeRect(const SkRect& rect) {
fWriter.writeRect(rect);
}
void SkWriteBuffer::writeRegion(const SkRegion& region) {
fWriter.writeRegion(region);
}
void SkWriteBuffer::writePath(const SkPath& path) {
fWriter.writePath(path);
}
size_t SkWriteBuffer::writeStream(SkStream* stream, size_t length) {
fWriter.write32(SkToU32(length));
size_t bytesWritten = fWriter.readFromStream(stream, length);
if (bytesWritten < length) {
fWriter.reservePad(length - bytesWritten);
}
return bytesWritten;
}
bool SkWriteBuffer::writeToStream(SkWStream* stream) {
return fWriter.writeToStream(stream);
}
static void write_encoded_bitmap(SkWriteBuffer* buffer, SkData* data,
const SkIPoint& origin) {
buffer->writeUInt(SkToU32(data->size()));
buffer->getWriter32()->writePad(data->data(), data->size());
buffer->write32(origin.fX);
buffer->write32(origin.fY);
}
void SkWriteBuffer::writeBitmap(const SkBitmap& bitmap) {
// Record the width and height. This way if readBitmap fails a dummy bitmap can be drawn at the
// right size.
this->writeInt(bitmap.width());
this->writeInt(bitmap.height());
// Record information about the bitmap in one of three ways, in order of priority:
// 1. If there is an SkBitmapHeap, store it in the heap. The client can avoid serializing the
// bitmap entirely or serialize it later as desired. A boolean value of true will be written
// to the stream to signify that a heap was used.
// 2. If there is a function for encoding bitmaps, use it to write an encoded version of the
// bitmap. After writing a boolean value of false, signifying that a heap was not used, write
// the size of the encoded data. A non-zero size signifies that encoded data was written.
// 3. Call SkBitmap::flatten. After writing a boolean value of false, signifying that a heap was
// not used, write a zero to signify that the data was not encoded.
bool useBitmapHeap = fBitmapHeap != nullptr;
// Write a bool: true if the SkBitmapHeap is to be used, in which case the reader must use an
// SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serialized another way.
this->writeBool(useBitmapHeap);
if (useBitmapHeap) {
SkASSERT(nullptr == fPixelSerializer);
int32_t slot = fBitmapHeap->insert(bitmap);
fWriter.write32(slot);
// crbug.com/155875
// The generation ID is not required information. We write it to prevent collisions
// in SkFlatDictionary. It is possible to get a collision when a previously
// unflattened (i.e. stale) instance of a similar flattenable is in the dictionary
// and the instance currently being written is re-using the same slot from the
// bitmap heap.
fWriter.write32(bitmap.getGenerationID());
return;
}
SkPixelRef* pixelRef = bitmap.pixelRef();
if (pixelRef) {
// see if the pixelref already has an encoded version
SkAutoDataUnref existingData(pixelRef->refEncodedData());
if (existingData.get() != nullptr) {
// Assumes that if the client did not set a serializer, they are
// happy to get the encoded data.
if (!fPixelSerializer || fPixelSerializer->useEncodedData(existingData->data(),
existingData->size())) {
write_encoded_bitmap(this, existingData, bitmap.pixelRefOrigin());
return;
}
}
// see if the caller wants to manually encode
SkAutoPixmapUnlock result;
if (fPixelSerializer && bitmap.requestLock(&result)) {
SkASSERT(nullptr == fBitmapHeap);
SkAutoDataUnref data(fPixelSerializer->encode(result.pixmap()));
if (data.get() != nullptr) {
// if we have to "encode" the bitmap, then we assume there is no
// offset to share, since we are effectively creating a new pixelref
write_encoded_bitmap(this, data, SkIPoint::Make(0, 0));
return;
}
}
}
this->writeUInt(0); // signal raw pixels
SkBitmap::WriteRawPixels(this, bitmap);
}
void SkWriteBuffer::writeImage(const SkImage* image) {
this->writeInt(image->width());
this->writeInt(image->height());
SkAutoTUnref<SkData> encoded(image->encode(this->getPixelSerializer()));
if (encoded && encoded->size() > 0) {
write_encoded_bitmap(this, encoded, SkIPoint::Make(0, 0));
return;
}
this->writeUInt(0); // signal no pixels (in place of the size of the encoded data)
}
void SkWriteBuffer::writeTypeface(SkTypeface* obj) {
if (nullptr == obj || nullptr == fTFSet) {
fWriter.write32(0);
} else {
fWriter.write32(fTFSet->add(obj));
}
}
SkFactorySet* SkWriteBuffer::setFactoryRecorder(SkFactorySet* rec) {
SkRefCnt_SafeAssign(fFactorySet, rec);
if (fNamedFactorySet != nullptr) {
fNamedFactorySet->unref();
fNamedFactorySet = nullptr;
}
return rec;
}
SkNamedFactorySet* SkWriteBuffer::setNamedFactoryRecorder(SkNamedFactorySet* rec) {
SkRefCnt_SafeAssign(fNamedFactorySet, rec);
if (fFactorySet != nullptr) {
fFactorySet->unref();
fFactorySet = nullptr;
}
return rec;
}
SkRefCntSet* SkWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) {
SkRefCnt_SafeAssign(fTFSet, rec);
return rec;
}
void SkWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) {
SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap);
if (bitmapHeap != nullptr) {
SkASSERT(nullptr == fPixelSerializer);
fPixelSerializer.reset(nullptr);
}
}
void SkWriteBuffer::setPixelSerializer(SkPixelSerializer* serializer) {
fPixelSerializer.reset(serializer);
if (serializer) {
serializer->ref();
SkASSERT(nullptr == fBitmapHeap);
SkSafeUnref(fBitmapHeap);
fBitmapHeap = nullptr;
}
}
void SkWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) {
/*
* If we have a factoryset, then the first 32bits tell us...
* 0: failure to write the flattenable
* >0: (1-based) index into the SkFactorySet or SkNamedFactorySet
* If we don't have a factoryset, then the first "ptr" is either the
* factory, or null for failure.
*
* The distinction is important, since 0-index is 32bits (always), but a
* 0-functionptr might be 32 or 64 bits.
*/
if (nullptr == flattenable) {
if (this->isValidating()) {
this->writeString("");
} else if (fFactorySet != nullptr || fNamedFactorySet != nullptr) {
this->write32(0);
} else {
this->writeFunctionPtr(nullptr);
}
return;
}
SkFlattenable::Factory factory = flattenable->getFactory();
SkASSERT(factory != nullptr);
/*
* We can write 1 of 3 versions of the flattenable:
* 1. function-ptr : this is the fastest for the reader, but assumes that
* the writer and reader are in the same process.
* 2. index into fFactorySet : This is assumes the writer will later
* resolve the function-ptrs into strings for its reader. SkPicture
* does exactly this, by writing a table of names (matching the indices)
* up front in its serialized form.
* 3. index into fNamedFactorySet. fNamedFactorySet will also store the
* name. SkGPipe uses this technique so it can write the name to its
* stream before writing the flattenable.
*/
if (this->isValidating()) {
this->writeString(flattenable->getTypeName());
} else if (fFactorySet) {
this->write32(fFactorySet->add(factory));
} else if (fNamedFactorySet) {
int32_t index = fNamedFactorySet->find(factory);
this->write32(index);
if (0 == index) {
return;
}
} else {
this->writeFunctionPtr((void*)factory);
}
// make room for the size of the flattened object
(void)fWriter.reserve(sizeof(uint32_t));
// record the current size, so we can subtract after the object writes.
size_t offset = fWriter.bytesWritten();
// now flatten the object
flattenable->flatten(*this);
size_t objSize = fWriter.bytesWritten() - offset;
// record the obj's size
fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize));
}