/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_DEFINED
#define SkNx_DEFINED
//#define SKNX_NO_SIMD
#include "SkScalar.h"
#include "SkTypes.h"
#include <math.h>
// The default implementations just fall back on a pair of size N/2.
// These support the union of operations we might do to ints and floats, but
// platform specializations might support fewer (e.g. no float <<, no int /).
template <int N, typename T>
class SkNx {
public:
SkNx() {}
SkNx(T val) : fLo(val), fHi(val) {}
typedef SkNx<N/2, T> Half;
SkNx(const Half& lo, const Half& hi) : fLo(lo), fHi(hi) {}
SkNx(T a, T b) : fLo(a), fHi(b) {}
SkNx(T a, T b, T c, T d) : fLo(a,b), fHi(c,d) {}
SkNx(T a, T b, T c, T d, T e, T f, T g, T h) : fLo(a,b,c,d), fHi(e,f,g,h) {}
SkNx(T a, T b, T c, T d, T e, T f, T g, T h,
T i, T j, T k, T l, T m, T n, T o, T p) : fLo(a,b,c,d, e,f,g,h), fHi(i,j,k,l, m,n,o,p) {}
static SkNx Load(const void* ptr) {
auto vals = (const T*)ptr;
return SkNx(Half::Load(vals), Half::Load(vals+N/2));
}
void store(void* ptr) const {
auto vals = (T*)ptr;
fLo.store(vals);
fHi.store(vals+N/2);
}
#define OP(op) SkNx operator op(const SkNx& o) const { return {fLo op o.fLo, fHi op o.fHi}; }
OP(+) OP(-) OP(*) OP(/)
OP(&) OP(|) OP(^)
OP(==) OP(!=) OP(<) OP(>) OP(<=) OP(>=)
#undef OP
#define OP(op) SkNx op() const { return {fLo.op(), fHi.op()}; }
OP(abs) OP(floor)
OP(sqrt) OP(rsqrt0) OP(rsqrt1) OP(rsqrt2)
OP(invert) OP(approxInvert)
#undef OP
SkNx operator << (int bits) const { return SkNx(fLo << bits, fHi << bits); }
SkNx operator >> (int bits) const { return SkNx(fLo >> bits, fHi >> bits); }
SkNx saturatedAdd(const SkNx& o) const {
return {fLo.saturatedAdd(o.fLo), fHi.saturatedAdd(o.fHi)};
}
static SkNx Min(const SkNx& a, const SkNx& b) {
return {Half::Min(a.fLo, b.fLo), Half::Min(a.fHi, b.fHi)};
}
static SkNx Max(const SkNx& a, const SkNx& b) {
return {Half::Max(a.fLo, b.fLo), Half::Max(a.fHi, b.fHi)};
}
T operator[](int k) const {
SkASSERT(0 <= k && k < N);
return k < N/2 ? fLo[k] : fHi[k-N/2];
}
bool allTrue() const { return fLo.allTrue() && fHi.allTrue(); }
bool anyTrue() const { return fLo.anyTrue() || fHi.anyTrue(); }
SkNx thenElse(const SkNx& t, const SkNx& e) const {
return SkNx(fLo.thenElse(t.fLo, e.fLo), fHi.thenElse(t.fHi, e.fHi));
}
protected:
static_assert(0 == (N & (N-1)), "N must be a power of 2.");
Half fLo, fHi;
};
// Bottom out the default implementations with scalars when nothing's been specialized.
template <typename T>
class SkNx<1, T> {
public:
SkNx() {}
SkNx(T val) : fVal(val) {}
static SkNx Load(const void* ptr) {
auto vals = (const T*)ptr;
return SkNx(vals[0]);
}
void store(void* ptr) const {
auto vals = (T*) ptr;
vals[0] = fVal;
}
#define OP(op) SkNx operator op(const SkNx& o) const { return fVal op o.fVal; }
OP(+) OP(-) OP(*) OP(/)
OP(&) OP(|) OP(^)
OP(==) OP(!=) OP(<) OP(>) OP(<=) OP(>=)
#undef OP
SkNx operator << (int bits) const { return fVal << bits; }
SkNx operator >> (int bits) const { return fVal >> bits; }
SkNx saturatedAdd(const SkNx& o) const {
SkASSERT((T)(~0) > 0); // TODO: support signed T?
T sum = fVal + o.fVal;
return sum < fVal ? (T)(~0) : sum;
}
static SkNx Min(const SkNx& a, const SkNx& b) { return SkTMin(a.fVal, b.fVal); }
static SkNx Max(const SkNx& a, const SkNx& b) { return SkTMax(a.fVal, b.fVal); }
SkNx abs() const { return SkTAbs(fVal); }
SkNx floor() const { return Floor(fVal); }
SkNx sqrt () const { return Sqrt(fVal); }
SkNx rsqrt0() const { return this->sqrt().invert(); }
SkNx rsqrt1() const { return this->rsqrt0(); }
SkNx rsqrt2() const { return this->rsqrt1(); }
SkNx invert() const { return 1 / fVal; }
SkNx approxInvert() const { return this->invert(); }
T operator[](int k) const {
SkASSERT(0 == k);
return fVal;
}
bool allTrue() const { return fVal != 0; }
bool anyTrue() const { return fVal != 0; }
SkNx thenElse(const SkNx& t, const SkNx& e) const { return fVal != 0 ? t : e; }
protected:
static double Floor(double val) { return ::floor (val); }
static float Floor(float val) { return ::floorf(val); }
static double Sqrt(double val) { return ::sqrt (val); }
static float Sqrt(float val) { return ::sqrtf(val); }
T fVal;
};
// This generic shuffle can be called to create any valid SkNx<N,T>.
// Sk4f f(a,b,c,d);
// Sk2f t = SkNx_shuffle<2,1>(f); // ~~~> Sk2f(c,b)
// f = SkNx_shuffle<0,1,1,0>(t); // ~~~> Sk4f(c,b,b,c)
template <int... Ix, int N, typename T>
static inline SkNx<sizeof...(Ix), T> SkNx_shuffle(const SkNx<N,T>& src) { return { src[Ix]... }; }
// This is a generic cast between two SkNx with the same number of elements N. E.g.
// Sk4b bs = ...; // Load 4 bytes.
// Sk4f fs = SkNx_cast<float>(bs); // Cast each byte to a float.
// Sk4h hs = SkNx_cast<uint16_t>(fs); // Cast each float to uint16_t.
template <typename D, typename S>
static inline SkNx<2,D> SkNx_cast(const SkNx<2,S>& src) {
return { (D)src[0], (D)src[1] };
}
template <typename D, typename S>
static inline SkNx<4,D> SkNx_cast(const SkNx<4,S>& src) {
return { (D)src[0], (D)src[1], (D)src[2], (D)src[3] };
}
template <typename D, typename S>
static inline SkNx<8,D> SkNx_cast(const SkNx<8,S>& src) {
return { (D)src[0], (D)src[1], (D)src[2], (D)src[3],
(D)src[4], (D)src[5], (D)src[6], (D)src[7] };
}
template <typename D, typename S>
static inline SkNx<16,D> SkNx_cast(const SkNx<16,S>& src) {
return { (D)src[ 0], (D)src[ 1], (D)src[ 2], (D)src[ 3],
(D)src[ 4], (D)src[ 5], (D)src[ 6], (D)src[ 7],
(D)src[ 8], (D)src[ 9], (D)src[10], (D)src[11],
(D)src[12], (D)src[13], (D)src[14], (D)src[15] };
}
typedef SkNx<2, float> Sk2f;
typedef SkNx<4, float> Sk4f;
typedef SkNx<2, SkScalar> Sk2s;
typedef SkNx<4, SkScalar> Sk4s;
typedef SkNx<4, uint8_t> Sk4b;
typedef SkNx<16, uint8_t> Sk16b;
typedef SkNx<4, uint16_t> Sk4h;
typedef SkNx<16, uint16_t> Sk16h;
typedef SkNx<4, int> Sk4i;
typedef SkNx<4, int> Sk4i;
// Include platform specific specializations if available.
#if !defined(SKNX_NO_SIMD) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#include "../opts/SkNx_sse.h"
#elif !defined(SKNX_NO_SIMD) && defined(SK_ARM_HAS_NEON)
#include "../opts/SkNx_neon.h"
#else
static inline
void Sk4f_ToBytes(uint8_t p[16], const Sk4f& a, const Sk4f& b, const Sk4f& c, const Sk4f& d) {
SkNx_cast<uint8_t>(a).store(p+ 0);
SkNx_cast<uint8_t>(b).store(p+ 4);
SkNx_cast<uint8_t>(c).store(p+ 8);
SkNx_cast<uint8_t>(d).store(p+12);
}
#endif
#endif//SkNx_DEFINED