/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkMaskGamma_DEFINED
#define SkMaskGamma_DEFINED
#include "SkTypes.h"
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkRefCnt.h"
/**
* SkColorSpaceLuminance is used to convert luminances to and from linear and
* perceptual color spaces.
*
* Luma is used to specify a linear luminance value [0.0, 1.0].
* Luminance is used to specify a luminance value in an arbitrary color space [0.0, 1.0].
*/
class SkColorSpaceLuminance : SkNoncopyable {
public:
virtual ~SkColorSpaceLuminance() { }
/** Converts a color component luminance in the color space to a linear luma. */
virtual SkScalar toLuma(SkScalar gamma, SkScalar luminance) const = 0;
/** Converts a linear luma to a color component luminance in the color space. */
virtual SkScalar fromLuma(SkScalar gamma, SkScalar luma) const = 0;
/** Converts a color to a luminance value. */
static U8CPU computeLuminance(SkScalar gamma, SkColor c) {
const SkColorSpaceLuminance& luminance = Fetch(gamma);
SkScalar r = luminance.toLuma(gamma, SkIntToScalar(SkColorGetR(c)) / 255);
SkScalar g = luminance.toLuma(gamma, SkIntToScalar(SkColorGetG(c)) / 255);
SkScalar b = luminance.toLuma(gamma, SkIntToScalar(SkColorGetB(c)) / 255);
SkScalar luma = r * SK_LUM_COEFF_R +
g * SK_LUM_COEFF_G +
b * SK_LUM_COEFF_B;
SkASSERT(luma <= SK_Scalar1);
return SkScalarRoundToInt(luminance.fromLuma(gamma, luma) * 255);
}
/** Retrieves the SkColorSpaceLuminance for the given gamma. */
static const SkColorSpaceLuminance& Fetch(SkScalar gamma);
};
///@{
/**
* Scales base <= 2^N-1 to 2^8-1
* @param N [1, 8] the number of bits used by base.
* @param base the number to be scaled to [0, 255].
*/
template<U8CPU N> static inline U8CPU sk_t_scale255(U8CPU base) {
base <<= (8 - N);
U8CPU lum = base;
for (unsigned int i = N; i < 8; i += N) {
lum |= base >> i;
}
return lum;
}
template<> /*static*/ inline U8CPU sk_t_scale255<1>(U8CPU base) {
return base * 0xFF;
}
template<> /*static*/ inline U8CPU sk_t_scale255<2>(U8CPU base) {
return base * 0x55;
}
template<> /*static*/ inline U8CPU sk_t_scale255<4>(U8CPU base) {
return base * 0x11;
}
template<> /*static*/ inline U8CPU sk_t_scale255<8>(U8CPU base) {
return base;
}
///@}
template <int R_LUM_BITS, int G_LUM_BITS, int B_LUM_BITS> class SkTMaskPreBlend;
void SkTMaskGamma_build_correcting_lut(uint8_t table[256], U8CPU srcI, SkScalar contrast,
const SkColorSpaceLuminance& srcConvert, SkScalar srcGamma,
const SkColorSpaceLuminance& dstConvert, SkScalar dstGamma);
/**
* A regular mask contains linear alpha values. A gamma correcting mask
* contains non-linear alpha values in an attempt to create gamma correct blits
* in the presence of a gamma incorrect (linear) blend in the blitter.
*
* SkMaskGamma creates and maintains tables which convert linear alpha values
* to gamma correcting alpha values.
* @param R The number of luminance bits to use [1, 8] from the red channel.
* @param G The number of luminance bits to use [1, 8] from the green channel.
* @param B The number of luminance bits to use [1, 8] from the blue channel.
*/
template <int R_LUM_BITS, int G_LUM_BITS, int B_LUM_BITS> class SkTMaskGamma : public SkRefCnt {
public:
/** Creates a linear SkTMaskGamma. */
SkTMaskGamma() : fIsLinear(true) { }
/**
* Creates tables to convert linear alpha values to gamma correcting alpha
* values.
*
* @param contrast A value in the range [0.0, 1.0] which indicates the
* amount of artificial contrast to add.
* @param paint The color space in which the paint color was chosen.
* @param device The color space of the target device.
*/
SkTMaskGamma(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma) : fIsLinear(false) {
const SkColorSpaceLuminance& paintConvert = SkColorSpaceLuminance::Fetch(paintGamma);
const SkColorSpaceLuminance& deviceConvert = SkColorSpaceLuminance::Fetch(deviceGamma);
for (U8CPU i = 0; i < (1 << MAX_LUM_BITS); ++i) {
U8CPU lum = sk_t_scale255<MAX_LUM_BITS>(i);
SkTMaskGamma_build_correcting_lut(fGammaTables[i], lum, contrast,
paintConvert, paintGamma,
deviceConvert, deviceGamma);
}
}
/** Given a color, returns the closest canonical color. */
static SkColor CanonicalColor(SkColor color) {
return SkColorSetRGB(
sk_t_scale255<R_LUM_BITS>(SkColorGetR(color) >> (8 - R_LUM_BITS)),
sk_t_scale255<G_LUM_BITS>(SkColorGetG(color) >> (8 - G_LUM_BITS)),
sk_t_scale255<B_LUM_BITS>(SkColorGetB(color) >> (8 - B_LUM_BITS)));
}
/** The type of the mask pre-blend which will be returned from preBlend(SkColor). */
typedef SkTMaskPreBlend<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS> PreBlend;
/**
* Provides access to the tables appropriate for converting linear alpha
* values into gamma correcting alpha values when drawing the given color
* through the mask. The destination color will be approximated.
*/
PreBlend preBlend(SkColor color) const;
/**
* Get dimensions for the full table set, so it can be allocated as a block.
*/
void getGammaTableDimensions(int* tableWidth, int* numTables) const {
*tableWidth = 256;
*numTables = (1 << MAX_LUM_BITS);
}
/**
* Provides direct access to the full table set, so it can be uploaded
* into a texture.
*/
const uint8_t* getGammaTables() const {
return (const uint8_t*) fGammaTables;
}
private:
static const int MAX_LUM_BITS =
B_LUM_BITS > (R_LUM_BITS > G_LUM_BITS ? R_LUM_BITS : G_LUM_BITS)
? B_LUM_BITS : (R_LUM_BITS > G_LUM_BITS ? R_LUM_BITS : G_LUM_BITS);
uint8_t fGammaTables[1 << MAX_LUM_BITS][256];
bool fIsLinear;
typedef SkRefCnt INHERITED;
};
/**
* SkTMaskPreBlend is a tear-off of SkTMaskGamma. It provides the tables to
* convert a linear alpha value for a given channel to a gamma correcting alpha
* value for that channel. This class is immutable.
*
* If fR, fG, or fB is nullptr, all of them will be. This indicates that no mask
* pre blend should be applied. SkTMaskPreBlend::isApplicable() is provided as
* a convenience function to test for the absence of this case.
*/
template <int R_LUM_BITS, int G_LUM_BITS, int B_LUM_BITS> class SkTMaskPreBlend {
private:
SkTMaskPreBlend(const SkTMaskGamma<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS>* parent,
const uint8_t* r, const uint8_t* g, const uint8_t* b)
: fParent(SkSafeRef(parent)), fR(r), fG(g), fB(b) { }
SkAutoTUnref<const SkTMaskGamma<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS> > fParent;
friend class SkTMaskGamma<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS>;
public:
/** Creates a non applicable SkTMaskPreBlend. */
SkTMaskPreBlend() : fParent(), fR(nullptr), fG(nullptr), fB(nullptr) { }
/**
* This copy contructor exists for correctness, but should never be called
* when return value optimization is enabled.
*/
SkTMaskPreBlend(const SkTMaskPreBlend<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS>& that)
: fParent(SkSafeRef(that.fParent.get())), fR(that.fR), fG(that.fG), fB(that.fB) { }
~SkTMaskPreBlend() { }
/** True if this PreBlend should be applied. When false, fR, fG, and fB are nullptr. */
bool isApplicable() const { return SkToBool(this->fG); }
const uint8_t* fR;
const uint8_t* fG;
const uint8_t* fB;
};
template <int R_LUM_BITS, int G_LUM_BITS, int B_LUM_BITS>
SkTMaskPreBlend<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS>
SkTMaskGamma<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS>::preBlend(SkColor color) const {
return fIsLinear ? SkTMaskPreBlend<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS>()
: SkTMaskPreBlend<R_LUM_BITS, G_LUM_BITS, B_LUM_BITS>(this,
fGammaTables[SkColorGetR(color) >> (8 - MAX_LUM_BITS)],
fGammaTables[SkColorGetG(color) >> (8 - MAX_LUM_BITS)],
fGammaTables[SkColorGetB(color) >> (8 - MAX_LUM_BITS)]);
}
///@{
/**
* If APPLY_LUT is false, returns component unchanged.
* If APPLY_LUT is true, returns lut[component].
* @param APPLY_LUT whether or not the look-up table should be applied to component.
* @component the initial component.
* @lut a look-up table which transforms the component.
*/
template<bool APPLY_LUT> static inline U8CPU sk_apply_lut_if(U8CPU component, const uint8_t*) {
return component;
}
template<> /*static*/ inline U8CPU sk_apply_lut_if<true>(U8CPU component, const uint8_t* lut) {
return lut[component];
}
///@}
#endif