/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkLinearBitmapPipeline.h"
#include "SkPM4f.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "SkColor.h"
#include "SkSize.h"
// Tweak ABI of functions that pass Sk4f by value to pass them via registers.
#if defined(_MSC_VER) && SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define VECTORCALL __vectorcall
#elif defined(SK_CPU_ARM32) && defined(SK_ARM_HAS_NEON)
#define VECTORCALL __attribute__((pcs("aapcs-vfp")))
#else
#define VECTORCALL
#endif
class SkLinearBitmapPipeline::PointProcessorInterface {
public:
virtual ~PointProcessorInterface() { }
virtual void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) = 0;
virtual void VECTORCALL pointList4(Sk4f xs, Sk4f ys) = 0;
// The pointSpan method efficiently process horizontal spans of pixels.
// * start - the point where to start the span.
// * length - the number of pixels to traverse in source space.
// * count - the number of pixels to produce in destination space.
// Both start and length are mapped through the inversion matrix to produce values in source
// space. After the matrix operation, the tilers may break the spans up into smaller spans.
// The tilers can produce spans that seem nonsensical.
// * The clamp tiler can create spans with length of 0. This indicates to copy an edge pixel out
// to the edge of the destination scan.
// * The mirror tiler can produce spans with negative length. This indicates that the source
// should be traversed in the opposite direction to the destination pixels.
virtual void pointSpan(SkPoint start, SkScalar length, int count) = 0;
};
class SkLinearBitmapPipeline::BilerpProcessorInterface
: public SkLinearBitmapPipeline::PointProcessorInterface {
public:
// The x's and y's are setup in the following order:
// +--------+--------+
// | | |
// | px00 | px10 |
// | 0 | 1 |
// +--------+--------+
// | | |
// | px01 | px11 |
// | 2 | 3 |
// +--------+--------+
// These pixels coordinates are arranged in the following order in xs and ys:
// px00 px10 px01 px11
virtual void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) = 0;
};
class SkLinearBitmapPipeline::PixelPlacerInterface {
public:
virtual ~PixelPlacerInterface() { }
virtual void setDestination(SkPM4f* dst) = 0;
virtual void VECTORCALL placePixel(Sk4f pixel0) = 0;
virtual void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
};
namespace {
struct X {
explicit X(SkScalar val) : fVal{val} { }
explicit X(SkPoint pt) : fVal{pt.fX} { }
explicit X(SkSize s) : fVal{s.fWidth} { }
explicit X(SkISize s) : fVal(s.fWidth) { }
operator float () const {return fVal;}
private:
float fVal;
};
struct Y {
explicit Y(SkScalar val) : fVal{val} { }
explicit Y(SkPoint pt) : fVal{pt.fY} { }
explicit Y(SkSize s) : fVal{s.fHeight} { }
explicit Y(SkISize s) : fVal(s.fHeight) { }
operator float () const {return fVal;}
private:
float fVal;
};
template <typename Stage>
void span_fallback(SkPoint start, SkScalar length, int count, Stage* stage) {
// If count == 1 use PointListFew instead.
SkASSERT(count > 1);
float dx = length / (count - 1);
Sk4f Xs = Sk4f(X(start)) + Sk4f{0.0f, 1.0f, 2.0f, 3.0f} * Sk4f{dx};
Sk4f Ys{Y(start)};
Sk4f fourDx = {4.0f * dx};
while (count >= 4) {
stage->pointList4(Xs, Ys);
Xs = Xs + fourDx;
count -= 4;
}
if (count > 0) {
stage->pointListFew(count, Xs, Ys);
}
}
// PointProcessor uses a strategy to help complete the work of the different stages. The strategy
// must implement the following methods:
// * processPoints(xs, ys) - must mutate the xs and ys for the stage.
// * maybeProcessSpan(start, length, count) - This represents a horizontal series of pixels
// to work over.
// start - is the starting pixel. This is in destination space before the matrix stage, and in
// source space after the matrix stage.
// length - is this distance between the first pixel center and the last pixel center. Like start,
// this is in destination space before the matrix stage, and in source space after.
// count - the number of pixels in source space to produce.
// next - a pointer to the next stage.
// maybeProcessSpan - returns false if it can not process the span and needs to fallback to
// point lists for processing.
template<typename Strategy, typename Next>
class PointProcessor final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
template <typename... Args>
PointProcessor(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointListFew(n, xs, ys);
}
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointList4(xs, ys);
}
void pointSpan(SkPoint start, SkScalar length, int count) override {
if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) {
span_fallback(start, length, count, this);
}
}
private:
Next* const fNext;
Strategy fStrategy;
};
// See PointProcessor for responsibilities of Strategy.
template<typename Strategy, typename Next>
class BilerpProcessor final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
public:
template <typename... Args>
BilerpProcessor(Next* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...}{ }
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointListFew(n, xs, ys);
}
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->pointList4(xs, ys);
}
void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override {
fStrategy.processPoints(&xs, &ys);
fNext->bilerpList(xs, ys);
}
void pointSpan(SkPoint start, SkScalar length, int count) override {
if (!fStrategy.maybeProcessSpan(start, length, count, fNext)) {
span_fallback(start, length, count, this);
}
}
private:
Next* const fNext;
Strategy fStrategy;
};
class SkippedStage final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
SkFAIL("Skipped stage.");
}
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
SkFAIL("Skipped stage.");
}
void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override {
SkFAIL("Skipped stage.");
}
void pointSpan(SkPoint start, SkScalar length, int count) override {
SkFAIL("Skipped stage.");
}
};
class TranslateMatrixStrategy {
public:
TranslateMatrixStrategy(SkVector offset)
: fXOffset{X(offset)}
, fYOffset{Y(offset)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
*xs = *xs + fXOffset;
*ys = *ys + fYOffset;
}
template <typename Next>
bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) {
next->pointSpan(start + SkPoint{fXOffset[0], fYOffset[0]}, length, count);
return true;
}
private:
const Sk4f fXOffset, fYOffset;
};
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using TranslateMatrix = PointProcessor<TranslateMatrixStrategy, Next>;
class ScaleMatrixStrategy {
public:
ScaleMatrixStrategy(SkVector offset, SkVector scale)
: fXOffset{X(offset)}, fYOffset{Y(offset)}
, fXScale{X(scale)}, fYScale{Y(scale)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
*xs = *xs * fXScale + fXOffset;
*ys = *ys * fYScale + fYOffset;
}
template <typename Next>
bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) {
SkPoint newStart =
SkPoint{X(start) * fXScale[0] + fXOffset[0], Y(start) * fYScale[0] + fYOffset[0]};
SkScalar newLength = length * fXScale[0];
next->pointSpan(newStart, newLength, count);
return true;
}
private:
const Sk4f fXOffset, fYOffset;
const Sk4f fXScale, fYScale;
};
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using ScaleMatrix = PointProcessor<ScaleMatrixStrategy, Next>;
class AffineMatrixStrategy {
public:
AffineMatrixStrategy(SkVector offset, SkVector scale, SkVector skew)
: fXOffset{X(offset)}, fYOffset{Y(offset)}
, fXScale{X(scale)}, fYScale{Y(scale)}
, fXSkew{X(skew)}, fYSkew{Y(skew)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
Sk4f newXs = fXScale * *xs + fXSkew * *ys + fXOffset;
Sk4f newYs = fYSkew * *xs + fYScale * *ys + fYOffset;
*xs = newXs;
*ys = newYs;
}
template <typename Next>
bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) {
return false;
}
private:
const Sk4f fXOffset, fYOffset;
const Sk4f fXScale, fYScale;
const Sk4f fXSkew, fYSkew;
};
template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
using AffineMatrix = PointProcessor<AffineMatrixStrategy, Next>;
static SkLinearBitmapPipeline::PointProcessorInterface* choose_matrix(
SkLinearBitmapPipeline::PointProcessorInterface* next,
const SkMatrix& inverse,
SkLinearBitmapPipeline::MatrixStage* matrixProc) {
if (inverse.hasPerspective()) {
SkFAIL("Not implemented.");
} else if (inverse.getSkewX() != 0.0f || inverse.getSkewY() != 0.0f) {
matrixProc->Initialize<AffineMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()},
SkVector{inverse.getSkewX(), inverse.getSkewY()});
} else if (inverse.getScaleX() != 1.0f || inverse.getScaleY() != 1.0f) {
matrixProc->Initialize<ScaleMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
SkVector{inverse.getScaleX(), inverse.getScaleY()});
} else if (inverse.getTranslateX() != 0.0f || inverse.getTranslateY() != 0.0f) {
matrixProc->Initialize<TranslateMatrix<>>(
next,
SkVector{inverse.getTranslateX(), inverse.getTranslateY()});
} else {
matrixProc->Initialize<SkippedStage>();
return next;
}
return matrixProc->get();
}
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
class ExpandBilerp final : public SkLinearBitmapPipeline::PointProcessorInterface {
public:
ExpandBilerp(Next* next) : fNext{next} { }
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
SkASSERT(0 < n && n < 4);
// px00 px10 px01 px11
const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f},
kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f};
if (n >= 1) fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYOffsets);
if (n >= 2) fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYOffsets);
if (n >= 3) fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYOffsets);
}
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
// px00 px10 px01 px11
const Sk4f kXOffsets{-0.5f, 0.5f, -0.5f, 0.5f},
kYOffsets{-0.5f, -0.5f, 0.5f, 0.5f};
fNext->bilerpList(Sk4f{xs[0]} + kXOffsets, Sk4f{ys[0]} + kYOffsets);
fNext->bilerpList(Sk4f{xs[1]} + kXOffsets, Sk4f{ys[1]} + kYOffsets);
fNext->bilerpList(Sk4f{xs[2]} + kXOffsets, Sk4f{ys[2]} + kYOffsets);
fNext->bilerpList(Sk4f{xs[3]} + kXOffsets, Sk4f{ys[3]} + kYOffsets);
}
void pointSpan(SkPoint start, SkScalar length, int count) override {
span_fallback(start, length, count, this);
}
private:
Next* const fNext;
};
static SkLinearBitmapPipeline::PointProcessorInterface* choose_filter(
SkLinearBitmapPipeline::BilerpProcessorInterface* next,
SkFilterQuality filterQuailty,
SkLinearBitmapPipeline::FilterStage* filterProc) {
if (SkFilterQuality::kNone_SkFilterQuality == filterQuailty) {
filterProc->Initialize<SkippedStage>();
return next;
} else {
filterProc->Initialize<ExpandBilerp<>>(next);
return filterProc->get();
}
}
class ClampStrategy {
public:
ClampStrategy(X max)
: fXMin{0.0f}
, fXMax{max - 1.0f} { }
ClampStrategy(Y max)
: fYMin{0.0f}
, fYMax{max - 1.0f} { }
ClampStrategy(SkSize max)
: fXMin{0.0f}
, fYMin{0.0f}
, fXMax{X(max) - 1.0f}
, fYMax{Y(max) - 1.0f} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
*xs = Sk4f::Min(Sk4f::Max(*xs, fXMin), fXMax);
*ys = Sk4f::Min(Sk4f::Max(*ys, fYMin), fYMax);
}
template <typename Next>
bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) {
return false;
}
private:
const Sk4f fXMin{SK_FloatNegativeInfinity};
const Sk4f fYMin{SK_FloatNegativeInfinity};
const Sk4f fXMax{SK_FloatInfinity};
const Sk4f fYMax{SK_FloatInfinity};
};
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Clamp = BilerpProcessor<ClampStrategy, Next>;
class RepeatStrategy {
public:
RepeatStrategy(X max) : fXMax{max}, fXInvMax{1.0f/max} { }
RepeatStrategy(Y max) : fYMax{max}, fYInvMax{1.0f/max} { }
RepeatStrategy(SkSize max)
: fXMax{X(max)}
, fXInvMax{1.0f / X(max)}
, fYMax{Y(max)}
, fYInvMax{1.0f / Y(max)} { }
void processPoints(Sk4f* xs, Sk4f* ys) {
Sk4f divX = (*xs * fXInvMax).floor();
Sk4f divY = (*ys * fYInvMax).floor();
Sk4f baseX = (divX * fXMax);
Sk4f baseY = (divY * fYMax);
*xs = *xs - baseX;
*ys = *ys - baseY;
}
template <typename Next>
bool maybeProcessSpan(SkPoint start, SkScalar length, int count, Next* next) {
return false;
}
private:
const Sk4f fXMax{0.0f};
const Sk4f fXInvMax{0.0f};
const Sk4f fYMax{0.0f};
const Sk4f fYInvMax{0.0f};
};
template <typename Next = SkLinearBitmapPipeline::BilerpProcessorInterface>
using Repeat = BilerpProcessor<RepeatStrategy, Next>;
static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_tiler(
SkLinearBitmapPipeline::BilerpProcessorInterface* next,
SkSize dimensions,
SkShader::TileMode xMode,
SkShader::TileMode yMode,
SkLinearBitmapPipeline::TileStage* tileProcXOrBoth,
SkLinearBitmapPipeline::TileStage* tileProcY) {
if (xMode == yMode) {
switch (xMode) {
case SkShader::kClamp_TileMode:
tileProcXOrBoth->Initialize<Clamp<>>(next, dimensions);
break;
case SkShader::kRepeat_TileMode:
tileProcXOrBoth->Initialize<Repeat<>>(next, dimensions);
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
tileProcY->Initialize<SkippedStage>();
} else {
switch (yMode) {
case SkShader::kClamp_TileMode:
tileProcY->Initialize<Clamp<>>(next, Y(dimensions));
break;
case SkShader::kRepeat_TileMode:
tileProcY->Initialize<Repeat<>>(next, Y(dimensions));
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
switch (xMode) {
case SkShader::kClamp_TileMode:
tileProcXOrBoth->Initialize<Clamp<>>(tileProcY->get(), X(dimensions));
break;
case SkShader::kRepeat_TileMode:
tileProcXOrBoth->Initialize<Repeat<>>(tileProcY->get(), X(dimensions));
break;
case SkShader::kMirror_TileMode:
SkFAIL("Not implemented.");
break;
}
}
return tileProcXOrBoth->get();
}
class sRGBFast {
public:
static Sk4f VECTORCALL sRGBToLinear(Sk4f pixel) {
Sk4f l = pixel * pixel;
return Sk4f{l[0], l[1], l[2], pixel[3]};
}
};
template <SkColorProfileType colorProfile>
class Passthrough8888 {
public:
Passthrough8888(int width, const uint32_t* src)
: fSrc{src}, fWidth{width}{ }
void VECTORCALL getFewPixels(int n, Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) {
Sk4i XIs = SkNx_cast<int, float>(xs);
Sk4i YIs = SkNx_cast<int, float>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
switch (n) {
case 3:
*px2 = getPixel(fSrc, bufferLoc[2]);
case 2:
*px1 = getPixel(fSrc, bufferLoc[1]);
case 1:
*px0 = getPixel(fSrc, bufferLoc[0]);
default:
break;
}
}
void VECTORCALL get4Pixels(Sk4f xs, Sk4f ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) {
Sk4i XIs = SkNx_cast<int, float>(xs);
Sk4i YIs = SkNx_cast<int, float>(ys);
Sk4i bufferLoc = YIs * fWidth + XIs;
*px0 = getPixel(fSrc, bufferLoc[0]);
*px1 = getPixel(fSrc, bufferLoc[1]);
*px2 = getPixel(fSrc, bufferLoc[2]);
*px3 = getPixel(fSrc, bufferLoc[3]);
}
const uint32_t* row(int y) { return fSrc + y * fWidth[0]; }
private:
Sk4f getPixel(const uint32_t* src, int index) {
Sk4b bytePixel = Sk4b::Load((uint8_t *)(&src[index]));
Sk4f pixel = SkNx_cast<float, uint8_t>(bytePixel);
pixel = pixel * Sk4f{1.0f/255.0f};
if (colorProfile == kSRGB_SkColorProfileType) {
pixel = sRGBFast::sRGBToLinear(pixel);
}
return pixel;
}
const uint32_t* const fSrc;
const Sk4i fWidth;
};
// Explaination of the math:
// 1 - x x
// +--------+--------+
// | | |
// 1 - y | px00 | px10 |
// | | |
// +--------+--------+
// | | |
// y | px01 | px11 |
// | | |
// +--------+--------+
//
//
// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x
// and y:
// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy
// * px10 -> x(1 - y) = x - xy
// * px01 -> (1 - x)y = y - xy
// * px11 -> xy
// So x * y is calculated first and then used to calculate all the other factors.
static Sk4f VECTORCALL bilerp4(Sk4f xs, Sk4f ys, Sk4f px00, Sk4f px10,
Sk4f px01, Sk4f px11) {
// Calculate fractional xs and ys.
Sk4f fxs = xs - xs.floor();
Sk4f fys = ys - ys.floor();
Sk4f fxys{fxs * fys};
Sk4f sum = px11 * fxys;
sum = sum + px01 * (fys - fxys);
sum = sum + px10 * (fxs - fxys);
sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys);
return sum;
}
template <typename SourceStrategy>
class Sampler final : public SkLinearBitmapPipeline::BilerpProcessorInterface {
public:
template <typename... Args>
Sampler(SkLinearBitmapPipeline::PixelPlacerInterface* next, Args&&... args)
: fNext{next}
, fStrategy{std::forward<Args>(args)...} { }
void VECTORCALL pointListFew(int n, Sk4f xs, Sk4f ys) override {
SkASSERT(0 < n && n < 4);
Sk4f px0, px1, px2;
fStrategy.getFewPixels(n, xs, ys, &px0, &px1, &px2);
if (n >= 1) fNext->placePixel(px0);
if (n >= 2) fNext->placePixel(px1);
if (n >= 3) fNext->placePixel(px2);
}
void VECTORCALL pointList4(Sk4f xs, Sk4f ys) override {
Sk4f px0, px1, px2, px3;
fStrategy.get4Pixels(xs, ys, &px0, &px1, &px2, &px3);
fNext->place4Pixels(px0, px1, px2, px3);
}
void VECTORCALL bilerpList(Sk4f xs, Sk4f ys) override {
Sk4f px00, px10, px01, px11;
fStrategy.get4Pixels(xs, ys, &px00, &px10, &px01, &px11);
Sk4f pixel = bilerp4(xs, ys, px00, px10, px01, px11);
fNext->placePixel(pixel);
}
void pointSpan(SkPoint start, SkScalar length, int count) override {
span_fallback(start, length, count, this);
}
private:
SkLinearBitmapPipeline::PixelPlacerInterface* const fNext;
SourceStrategy fStrategy;
};
static SkLinearBitmapPipeline::BilerpProcessorInterface* choose_pixel_sampler(
SkLinearBitmapPipeline::PixelPlacerInterface* next,
const SkPixmap& srcPixmap,
SkLinearBitmapPipeline::SampleStage* sampleStage) {
const SkImageInfo& imageInfo = srcPixmap.info();
switch (imageInfo.colorType()) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
if (kN32_SkColorType == imageInfo.colorType()) {
if (imageInfo.profileType() == kSRGB_SkColorProfileType) {
sampleStage->Initialize<Sampler<Passthrough8888<kSRGB_SkColorProfileType>>>(
next, static_cast<int>(srcPixmap.rowBytes() / 4),
srcPixmap.addr32());
} else {
sampleStage->Initialize<Sampler<Passthrough8888<kLinear_SkColorProfileType>>>(
next, static_cast<int>(srcPixmap.rowBytes() / 4),
srcPixmap.addr32());
}
} else {
SkFAIL("Not implemented. No 8888 Swizzle");
}
break;
default:
SkFAIL("Not implemented. Unsupported src");
break;
}
return sampleStage->get();
}
template <SkAlphaType alphaType>
class PlaceFPPixel final : public SkLinearBitmapPipeline::PixelPlacerInterface {
public:
void VECTORCALL placePixel(Sk4f pixel) override {
PlacePixel(fDst, pixel, 0);
fDst += 1;
}
void VECTORCALL place4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) override {
SkPM4f* dst = fDst;
PlacePixel(dst, p0, 0);
PlacePixel(dst, p1, 1);
PlacePixel(dst, p2, 2);
PlacePixel(dst, p3, 3);
fDst += 4;
}
void setDestination(SkPM4f* dst) override {
fDst = dst;
}
private:
static void VECTORCALL PlacePixel(SkPM4f* dst, Sk4f pixel, int index) {
Sk4f newPixel = pixel;
if (alphaType == kUnpremul_SkAlphaType) {
newPixel = Premultiply(pixel);
}
newPixel.store(dst + index);
}
static Sk4f VECTORCALL Premultiply(Sk4f pixel) {
float alpha = pixel[3];
return pixel * Sk4f{alpha, alpha, alpha, 1.0f};
}
SkPM4f* fDst;
};
static SkLinearBitmapPipeline::PixelPlacerInterface* choose_pixel_placer(
SkAlphaType alphaType,
SkLinearBitmapPipeline::PixelStage* placerStage) {
if (alphaType == kUnpremul_SkAlphaType) {
placerStage->Initialize<PlaceFPPixel<kUnpremul_SkAlphaType>>();
} else {
// kOpaque_SkAlphaType is treated the same as kPremul_SkAlphaType
placerStage->Initialize<PlaceFPPixel<kPremul_SkAlphaType>>();
}
return placerStage->get();
}
} // namespace
SkLinearBitmapPipeline::~SkLinearBitmapPipeline() {}
SkLinearBitmapPipeline::SkLinearBitmapPipeline(
const SkMatrix& inverse,
SkFilterQuality filterQuality,
SkShader::TileMode xTile, SkShader::TileMode yTile,
const SkPixmap& srcPixmap) {
SkSize size = SkSize::Make(srcPixmap.width(), srcPixmap.height());
const SkImageInfo& srcImageInfo = srcPixmap.info();
// As the stages are built, the chooser function may skip a stage. For example, with the
// identity matrix, the matrix stage is skipped, and the tilerStage is the first stage.
auto placementStage = choose_pixel_placer(srcImageInfo.alphaType(), &fPixelStage);
auto samplerStage = choose_pixel_sampler(placementStage, srcPixmap, &fSampleStage);
auto tilerStage = choose_tiler(samplerStage, size, xTile, yTile, &fTileXOrBothStage,
&fTileYStage);
auto filterStage = choose_filter(tilerStage, filterQuality, &fFilterStage);
fFirstStage = choose_matrix(filterStage, inverse, &fMatrixStage);
}
void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) {
SkASSERT(count > 0);
fPixelStage->setDestination(dst);
// Adjust points by 0.5, 0.5 to sample from the center of the pixels.
if (count == 1) {
fFirstStage->pointListFew(1, Sk4f{x + 0.5f}, Sk4f{y + 0.5f});
} else {
// The count and length arguments start out in a precise relation in order to keep the
// math correct through the different stages. Count is the number of pixel to produce.
// Since the code samples at pixel centers, length is the distance from the center of the
// first pixel to the center of the last pixel. This implies that length is count-1.
fFirstStage->pointSpan(SkPoint{x + 0.5f, y + 0.5f}, count - 1, count);
}
}