/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState.h"
#include "SkColor.h"
#include "SkEmptyShader.h"
#include "SkErrorInternals.h"
#include "SkLightingShader.h"
#include "SkMathPriv.h"
#include "SkPoint3.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
////////////////////////////////////////////////////////////////////////////
/*
SkLightingShader TODOs:
support other than clamp mode
allow 'diffuse' & 'normal' to be of different dimensions?
support different light types
support multiple lights
enforce normal map is 4 channel
use SkImages instead if SkBitmaps
To Test:
non-opaque diffuse textures
A8 diffuse textures
down & upsampled draws
*/
/** \class SkLightingShaderImpl
This subclass of shader applies lighting.
*/
class SK_API SkLightingShaderImpl : public SkShader {
public:
/** Create a new lighting shader that uses the provided normal map and
lights to light the diffuse bitmap.
@param diffuse the diffuse bitmap
@param normal the normal map
@param lights the lights applied to the normal map
@param invNormRotation rotation applied to the normal map's normals
@param diffLocalM the local matrix for the diffuse coordinates
@param normLocalM the local matrix for the normal coordinates
*/
SkLightingShaderImpl(const SkBitmap& diffuse, const SkBitmap& normal,
const SkLightingShader::Lights* lights,
const SkVector& invNormRotation,
const SkMatrix* diffLocalM, const SkMatrix* normLocalM)
: INHERITED(diffLocalM)
, fDiffuseMap(diffuse)
, fNormalMap(normal)
, fLights(SkRef(lights))
, fInvNormRotation(invNormRotation) {
if (normLocalM) {
fNormLocalMatrix = *normLocalM;
} else {
fNormLocalMatrix.reset();
}
// Pre-cache so future calls to fNormLocalMatrix.getType() are threadsafe.
(void)fNormLocalMatrix.getType();
}
bool isOpaque() const override;
#if SK_SUPPORT_GPU
const GrFragmentProcessor* asFragmentProcessor(GrContext*,
const SkMatrix& viewM,
const SkMatrix* localMatrix,
SkFilterQuality) const override;
#endif
size_t contextSize(const ContextRec&) const override;
class LightingShaderContext : public SkShader::Context {
public:
// The context takes ownership of the states. It will call their destructors
// but will NOT free the memory.
LightingShaderContext(const SkLightingShaderImpl&, const ContextRec&,
SkBitmapProcState* diffuseState, SkBitmapProcState* normalState);
~LightingShaderContext() override;
void shadeSpan(int x, int y, SkPMColor[], int count) override;
uint32_t getFlags() const override { return fFlags; }
private:
SkBitmapProcState* fDiffuseState;
SkBitmapProcState* fNormalState;
uint32_t fFlags;
typedef SkShader::Context INHERITED;
};
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkLightingShaderImpl)
protected:
void flatten(SkWriteBuffer&) const override;
Context* onCreateContext(const ContextRec&, void*) const override;
bool computeNormTotalInverse(const ContextRec& rec, SkMatrix* normTotalInverse) const;
private:
SkBitmap fDiffuseMap;
SkBitmap fNormalMap;
SkAutoTUnref<const SkLightingShader::Lights> fLights;
SkMatrix fNormLocalMatrix;
SkVector fInvNormRotation;
friend class SkLightingShader;
typedef SkShader INHERITED;
};
////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
#include "GrCoordTransform.h"
#include "GrFragmentProcessor.h"
#include "GrInvariantOutput.h"
#include "GrTextureAccess.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "SkGr.h"
#include "SkGrPriv.h"
class LightingFP : public GrFragmentProcessor {
public:
LightingFP(GrTexture* diffuse, GrTexture* normal, const SkMatrix& diffMatrix,
const SkMatrix& normMatrix, const GrTextureParams& diffParams,
const GrTextureParams& normParams, const SkLightingShader::Lights* lights,
const SkVector& invNormRotation)
: fDiffDeviceTransform(kLocal_GrCoordSet, diffMatrix, diffuse, diffParams.filterMode())
, fNormDeviceTransform(kLocal_GrCoordSet, normMatrix, normal, normParams.filterMode())
, fDiffuseTextureAccess(diffuse, diffParams)
, fNormalTextureAccess(normal, normParams)
, fInvNormRotation(invNormRotation) {
this->addCoordTransform(&fDiffDeviceTransform);
this->addCoordTransform(&fNormDeviceTransform);
this->addTextureAccess(&fDiffuseTextureAccess);
this->addTextureAccess(&fNormalTextureAccess);
// fuse all ambient lights into a single one
fAmbientColor.set(0.0f, 0.0f, 0.0f);
for (int i = 0; i < lights->numLights(); ++i) {
if (SkLight::kAmbient_LightType == lights->light(i).type()) {
fAmbientColor += lights->light(i).color();
} else {
// TODO: handle more than one of these
fLightColor = lights->light(i).color();
fLightDir = lights->light(i).dir();
}
}
this->initClassID<LightingFP>();
}
class LightingGLFP : public GrGLSLFragmentProcessor {
public:
LightingGLFP() {
fLightDir.fX = 10000.0f;
fLightColor.fX = 0.0f;
fAmbientColor.fX = 0.0f;
fInvNormRotation.set(0.0f, 0.0f);
}
void emitCode(EmitArgs& args) override {
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
// add uniforms
const char* lightDirUniName = nullptr;
fLightDirUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightDir", &lightDirUniName);
const char* lightColorUniName = nullptr;
fLightColorUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"LightColor", &lightColorUniName);
const char* ambientColorUniName = nullptr;
fAmbientColorUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec3f_GrSLType, kDefault_GrSLPrecision,
"AmbientColor", &ambientColorUniName);
const char* xformUniName = nullptr;
fXformUni = uniformHandler->addUniform(kFragment_GrShaderFlag,
kVec2f_GrSLType, kDefault_GrSLPrecision,
"Xform", &xformUniName);
fragBuilder->codeAppend("vec4 diffuseColor = ");
fragBuilder->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers[0],
args.fCoords[0].c_str(),
args.fCoords[0].getType());
fragBuilder->codeAppend(";");
fragBuilder->codeAppend("vec4 normalColor = ");
fragBuilder->appendTextureLookup(args.fSamplers[1],
args.fCoords[1].c_str(),
args.fCoords[1].getType());
fragBuilder->codeAppend(";");
fragBuilder->codeAppend("vec3 normal = normalColor.rgb - vec3(0.5);");
fragBuilder->codeAppendf(
"mat3 m = mat3(%s.x, -%s.y, 0.0, %s.y, %s.x, 0.0, 0.0, 0.0, 1.0);",
xformUniName, xformUniName, xformUniName, xformUniName);
// TODO: inverse map the light direction vectors in the vertex shader rather than
// transforming all the normals here!
fragBuilder->codeAppend("normal = normalize(m*normal);");
fragBuilder->codeAppendf("float NdotL = clamp(dot(normal, %s), 0.0, 1.0);",
lightDirUniName);
// diffuse light
fragBuilder->codeAppendf("vec3 result = %s*diffuseColor.rgb*NdotL;", lightColorUniName);
// ambient light
fragBuilder->codeAppendf("result += %s;", ambientColorUniName);
fragBuilder->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", args.fOutputColor);
}
static void GenKey(const GrProcessor& proc, const GrGLSLCaps&,
GrProcessorKeyBuilder* b) {
// const LightingFP& lightingFP = proc.cast<LightingFP>();
// only one shader generated currently
b->add32(0x0);
}
protected:
void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& proc) override {
const LightingFP& lightingFP = proc.cast<LightingFP>();
const SkVector3& lightDir = lightingFP.lightDir();
if (lightDir != fLightDir) {
pdman.set3fv(fLightDirUni, 1, &lightDir.fX);
fLightDir = lightDir;
}
const SkColor3f& lightColor = lightingFP.lightColor();
if (lightColor != fLightColor) {
pdman.set3fv(fLightColorUni, 1, &lightColor.fX);
fLightColor = lightColor;
}
const SkColor3f& ambientColor = lightingFP.ambientColor();
if (ambientColor != fAmbientColor) {
pdman.set3fv(fAmbientColorUni, 1, &ambientColor.fX);
fAmbientColor = ambientColor;
}
const SkVector& invNormRotation = lightingFP.invNormRotation();
if (invNormRotation != fInvNormRotation) {
pdman.set2fv(fXformUni, 1, &invNormRotation.fX);
fInvNormRotation = invNormRotation;
}
}
private:
SkVector3 fLightDir;
GrGLSLProgramDataManager::UniformHandle fLightDirUni;
SkColor3f fLightColor;
GrGLSLProgramDataManager::UniformHandle fLightColorUni;
SkColor3f fAmbientColor;
GrGLSLProgramDataManager::UniformHandle fAmbientColorUni;
SkVector fInvNormRotation;
GrGLSLProgramDataManager::UniformHandle fXformUni;
};
void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override {
LightingGLFP::GenKey(*this, caps, b);
}
const char* name() const override { return "LightingFP"; }
void onComputeInvariantOutput(GrInvariantOutput* inout) const override {
inout->mulByUnknownFourComponents();
}
const SkVector3& lightDir() const { return fLightDir; }
const SkColor3f& lightColor() const { return fLightColor; }
const SkColor3f& ambientColor() const { return fAmbientColor; }
const SkVector& invNormRotation() const { return fInvNormRotation; }
private:
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new LightingGLFP; }
bool onIsEqual(const GrFragmentProcessor& proc) const override {
const LightingFP& lightingFP = proc.cast<LightingFP>();
return fDiffDeviceTransform == lightingFP.fDiffDeviceTransform &&
fNormDeviceTransform == lightingFP.fNormDeviceTransform &&
fDiffuseTextureAccess == lightingFP.fDiffuseTextureAccess &&
fNormalTextureAccess == lightingFP.fNormalTextureAccess &&
fLightDir == lightingFP.fLightDir &&
fLightColor == lightingFP.fLightColor &&
fAmbientColor == lightingFP.fAmbientColor &&
fInvNormRotation == lightingFP.fInvNormRotation;
}
GrCoordTransform fDiffDeviceTransform;
GrCoordTransform fNormDeviceTransform;
GrTextureAccess fDiffuseTextureAccess;
GrTextureAccess fNormalTextureAccess;
SkVector3 fLightDir;
SkColor3f fLightColor;
SkColor3f fAmbientColor;
SkVector fInvNormRotation;
};
////////////////////////////////////////////////////////////////////////////
static bool make_mat(const SkBitmap& bm,
const SkMatrix& localMatrix1,
const SkMatrix* localMatrix2,
SkMatrix* result) {
result->setIDiv(bm.width(), bm.height());
SkMatrix lmInverse;
if (!localMatrix1.invert(&lmInverse)) {
return false;
}
if (localMatrix2) {
SkMatrix inv;
if (!localMatrix2->invert(&inv)) {
return false;
}
lmInverse.postConcat(inv);
}
result->preConcat(lmInverse);
return true;
}
const GrFragmentProcessor* SkLightingShaderImpl::asFragmentProcessor(
GrContext* context,
const SkMatrix& viewM,
const SkMatrix* localMatrix,
SkFilterQuality filterQuality) const {
// we assume diffuse and normal maps have same width and height
// TODO: support different sizes
SkASSERT(fDiffuseMap.width() == fNormalMap.width() &&
fDiffuseMap.height() == fNormalMap.height());
SkMatrix diffM, normM;
if (!make_mat(fDiffuseMap, this->getLocalMatrix(), localMatrix, &diffM)) {
return nullptr;
}
if (!make_mat(fNormalMap, fNormLocalMatrix, localMatrix, &normM)) {
return nullptr;
}
bool doBicubic;
GrTextureParams::FilterMode diffFilterMode = GrSkFilterQualityToGrFilterMode(
SkTMin(filterQuality, kMedium_SkFilterQuality),
viewM,
this->getLocalMatrix(),
&doBicubic);
SkASSERT(!doBicubic);
GrTextureParams::FilterMode normFilterMode = GrSkFilterQualityToGrFilterMode(
SkTMin(filterQuality, kMedium_SkFilterQuality),
viewM,
fNormLocalMatrix,
&doBicubic);
SkASSERT(!doBicubic);
// TODO: support other tile modes
GrTextureParams diffParams(kClamp_TileMode, diffFilterMode);
SkAutoTUnref<GrTexture> diffuseTexture(GrRefCachedBitmapTexture(context,
fDiffuseMap, diffParams));
if (!diffuseTexture) {
SkErrorInternals::SetError(kInternalError_SkError, "Couldn't convert bitmap to texture.");
return nullptr;
}
GrTextureParams normParams(kClamp_TileMode, normFilterMode);
SkAutoTUnref<GrTexture> normalTexture(GrRefCachedBitmapTexture(context,
fNormalMap, normParams));
if (!normalTexture) {
SkErrorInternals::SetError(kInternalError_SkError, "Couldn't convert bitmap to texture.");
return nullptr;
}
SkAutoTUnref<const GrFragmentProcessor> inner (
new LightingFP(diffuseTexture, normalTexture, diffM, normM, diffParams, normParams, fLights,
fInvNormRotation));
return GrFragmentProcessor::MulOutputByInputAlpha(inner);
}
#endif
////////////////////////////////////////////////////////////////////////////
bool SkLightingShaderImpl::isOpaque() const {
return fDiffuseMap.isOpaque();
}
size_t SkLightingShaderImpl::contextSize(const ContextRec&) const {
return 2 * sizeof(SkBitmapProcState) + sizeof(LightingShaderContext);
}
SkLightingShaderImpl::LightingShaderContext::LightingShaderContext(const SkLightingShaderImpl& shader,
const ContextRec& rec,
SkBitmapProcState* diffuseState,
SkBitmapProcState* normalState)
: INHERITED(shader, rec)
, fDiffuseState(diffuseState)
, fNormalState(normalState)
{
const SkPixmap& pixmap = fDiffuseState->fPixmap;
bool isOpaque = pixmap.isOpaque();
// update fFlags
uint32_t flags = 0;
if (isOpaque && (255 == this->getPaintAlpha())) {
flags |= kOpaqueAlpha_Flag;
}
fFlags = flags;
}
SkLightingShaderImpl::LightingShaderContext::~LightingShaderContext() {
// The bitmap proc states have been created outside of the context on memory that will be freed
// elsewhere. Call the destructors but leave the freeing of the memory to the caller.
fDiffuseState->~SkBitmapProcState();
fNormalState->~SkBitmapProcState();
}
static inline SkPMColor convert(SkColor3f color, U8CPU a) {
if (color.fX <= 0.0f) {
color.fX = 0.0f;
} else if (color.fX >= 255.0f) {
color.fX = 255.0f;
}
if (color.fY <= 0.0f) {
color.fY = 0.0f;
} else if (color.fY >= 255.0f) {
color.fY = 255.0f;
}
if (color.fZ <= 0.0f) {
color.fZ = 0.0f;
} else if (color.fZ >= 255.0f) {
color.fZ = 255.0f;
}
return SkPreMultiplyARGB(a, (int) color.fX, (int) color.fY, (int) color.fZ);
}
// larger is better (fewer times we have to loop), but we shouldn't
// take up too much stack-space (each one here costs 16 bytes)
#define TMP_COUNT 16
void SkLightingShaderImpl::LightingShaderContext::shadeSpan(int x, int y,
SkPMColor result[], int count) {
const SkLightingShaderImpl& lightShader = static_cast<const SkLightingShaderImpl&>(fShader);
uint32_t tmpColor[TMP_COUNT], tmpNormal[TMP_COUNT];
SkPMColor tmpColor2[2*TMP_COUNT], tmpNormal2[2*TMP_COUNT];
SkBitmapProcState::MatrixProc diffMProc = fDiffuseState->getMatrixProc();
SkBitmapProcState::SampleProc32 diffSProc = fDiffuseState->getSampleProc32();
SkBitmapProcState::MatrixProc normalMProc = fNormalState->getMatrixProc();
SkBitmapProcState::SampleProc32 normalSProc = fNormalState->getSampleProc32();
int diffMax = fDiffuseState->maxCountForBufferSize(sizeof(tmpColor[0]) * TMP_COUNT);
int normMax = fNormalState->maxCountForBufferSize(sizeof(tmpNormal[0]) * TMP_COUNT);
int max = SkTMin(diffMax, normMax);
SkASSERT(fDiffuseState->fPixmap.addr());
SkASSERT(fNormalState->fPixmap.addr());
SkPoint3 norm, xformedNorm;
do {
int n = count;
if (n > max) {
n = max;
}
diffMProc(*fDiffuseState, tmpColor, n, x, y);
diffSProc(*fDiffuseState, tmpColor, n, tmpColor2);
normalMProc(*fNormalState, tmpNormal, n, x, y);
normalSProc(*fNormalState, tmpNormal, n, tmpNormal2);
for (int i = 0; i < n; ++i) {
SkASSERT(0xFF == SkColorGetA(tmpNormal2[i])); // opaque -> unpremul
norm.set(SkIntToScalar(SkGetPackedR32(tmpNormal2[i]))-127.0f,
SkIntToScalar(SkGetPackedG32(tmpNormal2[i]))-127.0f,
SkIntToScalar(SkGetPackedB32(tmpNormal2[i]))-127.0f);
norm.normalize();
xformedNorm.fX = lightShader.fInvNormRotation.fX * norm.fX +
lightShader.fInvNormRotation.fY * norm.fY;
xformedNorm.fY = lightShader.fInvNormRotation.fX * norm.fX -
lightShader.fInvNormRotation.fY * norm.fY;
xformedNorm.fZ = norm.fZ;
SkColor diffColor = SkUnPreMultiply::PMColorToColor(tmpColor2[i]);
SkColor3f accum = SkColor3f::Make(0.0f, 0.0f, 0.0f);
// This is all done in linear unpremul color space (each component 0..255.0f though)
for (int l = 0; l < lightShader.fLights->numLights(); ++l) {
const SkLight& light = lightShader.fLights->light(l);
if (SkLight::kAmbient_LightType == light.type()) {
accum += light.color().makeScale(255.0f);
} else {
SkScalar NdotL = xformedNorm.dot(light.dir());
if (NdotL < 0.0f) {
NdotL = 0.0f;
}
accum.fX += light.color().fX * SkColorGetR(diffColor) * NdotL;
accum.fY += light.color().fY * SkColorGetG(diffColor) * NdotL;
accum.fZ += light.color().fZ * SkColorGetB(diffColor) * NdotL;
}
}
result[i] = convert(accum, SkColorGetA(diffColor));
}
result += n;
x += n;
count -= n;
} while (count > 0);
}
////////////////////////////////////////////////////////////////////////////
#ifndef SK_IGNORE_TO_STRING
void SkLightingShaderImpl::toString(SkString* str) const {
str->appendf("LightingShader: ()");
}
#endif
SkFlattenable* SkLightingShaderImpl::CreateProc(SkReadBuffer& buf) {
SkMatrix diffLocalM;
bool hasDiffLocalM = buf.readBool();
if (hasDiffLocalM) {
buf.readMatrix(&diffLocalM);
} else {
diffLocalM.reset();
}
SkMatrix normLocalM;
bool hasNormLocalM = buf.readBool();
if (hasNormLocalM) {
buf.readMatrix(&normLocalM);
} else {
normLocalM.reset();
}
SkBitmap diffuse;
if (!buf.readBitmap(&diffuse)) {
return nullptr;
}
diffuse.setImmutable();
SkBitmap normal;
if (!buf.readBitmap(&normal)) {
return nullptr;
}
normal.setImmutable();
int numLights = buf.readInt();
SkLightingShader::Lights::Builder builder;
for (int l = 0; l < numLights; ++l) {
bool isAmbient = buf.readBool();
SkColor3f color;
if (!buf.readScalarArray(&color.fX, 3)) {
return nullptr;
}
if (isAmbient) {
builder.add(SkLight(color));
} else {
SkVector3 dir;
if (!buf.readScalarArray(&dir.fX, 3)) {
return nullptr;
}
builder.add(SkLight(color, dir));
}
}
SkAutoTUnref<const SkLightingShader::Lights> lights(builder.finish());
return new SkLightingShaderImpl(diffuse, normal, lights, SkVector::Make(1.0f, 0.0f),
&diffLocalM, &normLocalM);
}
void SkLightingShaderImpl::flatten(SkWriteBuffer& buf) const {
this->INHERITED::flatten(buf);
bool hasNormLocalM = !fNormLocalMatrix.isIdentity();
buf.writeBool(hasNormLocalM);
if (hasNormLocalM) {
buf.writeMatrix(fNormLocalMatrix);
}
buf.writeBitmap(fDiffuseMap);
buf.writeBitmap(fNormalMap);
buf.writeInt(fLights->numLights());
for (int l = 0; l < fLights->numLights(); ++l) {
const SkLight& light = fLights->light(l);
bool isAmbient = SkLight::kAmbient_LightType == light.type();
buf.writeBool(isAmbient);
buf.writeScalarArray(&light.color().fX, 3);
if (!isAmbient) {
buf.writeScalarArray(&light.dir().fX, 3);
}
}
}
bool SkLightingShaderImpl::computeNormTotalInverse(const ContextRec& rec,
SkMatrix* normTotalInverse) const {
SkMatrix total;
total.setConcat(*rec.fMatrix, fNormLocalMatrix);
const SkMatrix* m = &total;
if (rec.fLocalMatrix) {
total.setConcat(*m, *rec.fLocalMatrix);
m = &total;
}
return m->invert(normTotalInverse);
}
SkShader::Context* SkLightingShaderImpl::onCreateContext(const ContextRec& rec,
void* storage) const {
SkMatrix diffTotalInv;
// computeTotalInverse was called in SkShader::createContext so we know it will succeed
SkAssertResult(this->computeTotalInverse(rec, &diffTotalInv));
SkMatrix normTotalInv;
if (!this->computeNormTotalInverse(rec, &normTotalInv)) {
return nullptr;
}
void* diffuseStateStorage = (char*)storage + sizeof(LightingShaderContext);
SkBitmapProcState* diffuseState = new (diffuseStateStorage) SkBitmapProcState(fDiffuseMap,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode);
SkASSERT(diffuseState);
if (!diffuseState->chooseProcs(diffTotalInv, *rec.fPaint)) {
diffuseState->~SkBitmapProcState();
return nullptr;
}
void* normalStateStorage = (char*)storage + sizeof(LightingShaderContext) + sizeof(SkBitmapProcState);
SkBitmapProcState* normalState = new (normalStateStorage) SkBitmapProcState(fNormalMap,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode);
SkASSERT(normalState);
if (!normalState->chooseProcs(normTotalInv, *rec.fPaint)) {
diffuseState->~SkBitmapProcState();
normalState->~SkBitmapProcState();
return nullptr;
}
return new (storage) LightingShaderContext(*this, rec, diffuseState, normalState);
}
///////////////////////////////////////////////////////////////////////////////
static bool bitmap_is_too_big(const SkBitmap& bm) {
// SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it
// communicates between its matrix-proc and its sampler-proc. Until we can
// widen that, we have to reject bitmaps that are larger.
//
static const int kMaxSize = 65535;
return bm.width() > kMaxSize || bm.height() > kMaxSize;
}
SkShader* SkLightingShader::Create(const SkBitmap& diffuse, const SkBitmap& normal,
const Lights* lights,
const SkVector& invNormRotation,
const SkMatrix* diffLocalM, const SkMatrix* normLocalM) {
if (diffuse.isNull() || bitmap_is_too_big(diffuse) ||
normal.isNull() || bitmap_is_too_big(normal) ||
diffuse.width() != normal.width() ||
diffuse.height() != normal.height()) {
return nullptr;
}
SkASSERT(SkScalarNearlyEqual(invNormRotation.lengthSqd(), SK_Scalar1));
return new SkLightingShaderImpl(diffuse, normal, lights, invNormRotation, diffLocalM,
normLocalM);
}
///////////////////////////////////////////////////////////////////////////////
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkLightingShader)
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLightingShaderImpl)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END
///////////////////////////////////////////////////////////////////////////////