/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/video/tracking_c.h"
/* ///////////////////// pyrlk_test ///////////////////////// */
class CV_OptFlowPyrLKTest : public cvtest::BaseTest
{
public:
CV_OptFlowPyrLKTest();
protected:
void run(int);
};
CV_OptFlowPyrLKTest::CV_OptFlowPyrLKTest() {}
void CV_OptFlowPyrLKTest::run( int )
{
int code = cvtest::TS::OK;
const double success_error_level = 0.3;
const int bad_points_max = 8;
/* test parameters */
double max_err = 0., sum_err = 0;
int pt_cmpd = 0;
int pt_exceed = 0;
int merr_i = 0, merr_j = 0, merr_k = 0;
char filename[1000];
CvPoint2D32f *u = 0, *v = 0, *v2 = 0;
CvMat *_u = 0, *_v = 0, *_v2 = 0;
char* status = 0;
IplImage imgI;
IplImage imgJ;
cv::Mat imgI2, imgJ2;
int n = 0, i = 0;
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "lk_prev.dat" );
_u = (CvMat*)cvLoad( filename );
if( !_u )
{
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename );
code = cvtest::TS::FAIL_MISSING_TEST_DATA;
goto _exit_;
}
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "lk_next.dat" );
_v = (CvMat*)cvLoad( filename );
if( !_v )
{
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename );
code = cvtest::TS::FAIL_MISSING_TEST_DATA;
goto _exit_;
}
if( _u->cols != 2 || CV_MAT_TYPE(_u->type) != CV_32F ||
_v->cols != 2 || CV_MAT_TYPE(_v->type) != CV_32F || _v->rows != _u->rows )
{
ts->printf( cvtest::TS::LOG, "the loaded matrices of points are not valid\n" );
code = cvtest::TS::FAIL_MISSING_TEST_DATA;
goto _exit_;
}
u = (CvPoint2D32f*)_u->data.fl;
v = (CvPoint2D32f*)_v->data.fl;
/* allocate adidtional buffers */
_v2 = cvCloneMat( _u );
v2 = (CvPoint2D32f*)_v2->data.fl;
/* read first image */
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "rock_1.bmp" );
imgI2 = cv::imread( filename, cv::IMREAD_UNCHANGED );
imgI = imgI2;
if( imgI2.empty() )
{
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename );
code = cvtest::TS::FAIL_MISSING_TEST_DATA;
goto _exit_;
}
/* read second image */
sprintf( filename, "%soptflow/%s", ts->get_data_path().c_str(), "rock_2.bmp" );
imgJ2 = cv::imread( filename, cv::IMREAD_UNCHANGED );
imgJ = imgJ2;
if( imgJ2.empty() )
{
ts->printf( cvtest::TS::LOG, "could not read %s\n", filename );
code = cvtest::TS::FAIL_MISSING_TEST_DATA;
goto _exit_;
}
n = _u->rows;
status = (char*)cvAlloc(n*sizeof(status[0]));
/* calculate flow */
cvCalcOpticalFlowPyrLK( &imgI, &imgJ, 0, 0, u, v2, n, cvSize( 41, 41 ),
4, status, 0, cvTermCriteria( CV_TERMCRIT_ITER|
CV_TERMCRIT_EPS, 30, 0.01f ), 0 );
/* compare results */
for( i = 0; i < n; i++ )
{
if( status[i] != 0 )
{
double err;
if( cvIsNaN(v[i].x) )
{
merr_j++;
continue;
}
err = fabs(v2[i].x - v[i].x) + fabs(v2[i].y - v[i].y);
if( err > max_err )
{
max_err = err;
merr_i = i;
}
pt_exceed += err > success_error_level;
sum_err += err;
pt_cmpd++;
}
else
{
if( !cvIsNaN( v[i].x ))
{
merr_i = i;
merr_k++;
ts->printf( cvtest::TS::LOG, "The algorithm lost the point #%d\n", i );
code = cvtest::TS::FAIL_BAD_ACCURACY;
goto _exit_;
}
}
}
if( pt_exceed > bad_points_max )
{
ts->printf( cvtest::TS::LOG,
"The number of poorly tracked points is too big (>=%d)\n", pt_exceed );
code = cvtest::TS::FAIL_BAD_ACCURACY;
goto _exit_;
}
if( max_err > 1 )
{
ts->printf( cvtest::TS::LOG, "Maximum tracking error is too big (=%g) at %d\n", max_err, merr_i );
code = cvtest::TS::FAIL_BAD_ACCURACY;
goto _exit_;
}
_exit_:
cvFree( &status );
cvReleaseMat( &_u );
cvReleaseMat( &_v );
cvReleaseMat( &_v2 );
if( code < 0 )
ts->set_failed_test_info( code );
}
TEST(Video_OpticalFlowPyrLK, accuracy) { CV_OptFlowPyrLKTest test; test.safe_run(); }
TEST(Video_OpticalFlowPyrLK, submat)
{
// see bug #2075
std::string path = cvtest::TS::ptr()->get_data_path() + "../cv/shared/lena.png";
cv::Mat lenaImg = cv::imread(path);
ASSERT_FALSE(lenaImg.empty());
cv::Mat wholeImage;
cv::resize(lenaImg, wholeImage, cv::Size(1024, 1024));
cv::Mat img1 = wholeImage(cv::Rect(0, 0, 640, 360)).clone();
cv::Mat img2 = wholeImage(cv::Rect(40, 60, 640, 360));
std::vector<uchar> status;
std::vector<float> error;
std::vector<cv::Point2f> prev;
std::vector<cv::Point2f> next;
cv::RNG rng(123123);
for(int i = 0; i < 50; ++i)
{
int x = rng.uniform(0, 640);
int y = rng.uniform(0, 360);
prev.push_back(cv::Point2f((float)x, (float)y));
}
ASSERT_NO_THROW(cv::calcOpticalFlowPyrLK(img1, img2, prev, next, status, error));
}