/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
cv::Mat cv::getDefaultNewCameraMatrix( InputArray _cameraMatrix, Size imgsize,
bool centerPrincipalPoint )
{
Mat cameraMatrix = _cameraMatrix.getMat();
if( !centerPrincipalPoint && cameraMatrix.type() == CV_64F )
return cameraMatrix;
Mat newCameraMatrix;
cameraMatrix.convertTo(newCameraMatrix, CV_64F);
if( centerPrincipalPoint )
{
newCameraMatrix.ptr<double>()[2] = (imgsize.width-1)*0.5;
newCameraMatrix.ptr<double>()[5] = (imgsize.height-1)*0.5;
}
return newCameraMatrix;
}
void cv::initUndistortRectifyMap( InputArray _cameraMatrix, InputArray _distCoeffs,
InputArray _matR, InputArray _newCameraMatrix,
Size size, int m1type, OutputArray _map1, OutputArray _map2 )
{
Mat cameraMatrix = _cameraMatrix.getMat(), distCoeffs = _distCoeffs.getMat();
Mat matR = _matR.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
if( m1type <= 0 )
m1type = CV_16SC2;
CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 );
_map1.create( size, m1type );
Mat map1 = _map1.getMat(), map2;
if( m1type != CV_32FC2 )
{
_map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 );
map2 = _map2.getMat();
}
else
_map2.release();
Mat_<double> R = Mat_<double>::eye(3, 3);
Mat_<double> A = Mat_<double>(cameraMatrix), Ar;
if( !newCameraMatrix.empty() )
Ar = Mat_<double>(newCameraMatrix);
else
Ar = getDefaultNewCameraMatrix( A, size, true );
if( !matR.empty() )
R = Mat_<double>(matR);
if( !distCoeffs.empty() )
distCoeffs = Mat_<double>(distCoeffs);
else
{
distCoeffs.create(12, 1, CV_64F);
distCoeffs = 0.;
}
CV_Assert( A.size() == Size(3,3) && A.size() == R.size() );
CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3));
Mat_<double> iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU);
const double* ir = &iR(0,0);
double u0 = A(0, 2), v0 = A(1, 2);
double fx = A(0, 0), fy = A(1, 1);
CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(4, 1) ||
distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(5, 1) ||
distCoeffs.size() == Size(1, 8) || distCoeffs.size() == Size(8, 1) ||
distCoeffs.size() == Size(1, 12) || distCoeffs.size() == Size(12, 1));
if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() )
distCoeffs = distCoeffs.t();
const double* const distPtr = distCoeffs.ptr<double>();
double k1 = distPtr[0];
double k2 = distPtr[1];
double p1 = distPtr[2];
double p2 = distPtr[3];
double k3 = distCoeffs.cols + distCoeffs.rows - 1 >= 5 ? distPtr[4] : 0.;
double k4 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[5] : 0.;
double k5 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[6] : 0.;
double k6 = distCoeffs.cols + distCoeffs.rows - 1 >= 8 ? distPtr[7] : 0.;
double s1 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[8] : 0.;
double s2 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[9] : 0.;
double s3 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[10] : 0.;
double s4 = distCoeffs.cols + distCoeffs.rows - 1 >= 12 ? distPtr[11] : 0.;
for( int i = 0; i < size.height; i++ )
{
float* m1f = map1.ptr<float>(i);
float* m2f = map2.empty() ? 0 : map2.ptr<float>(i);
short* m1 = (short*)m1f;
ushort* m2 = (ushort*)m2f;
double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8];
for( int j = 0; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] )
{
double w = 1./_w, x = _x*w, y = _y*w;
double x2 = x*x, y2 = y*y;
double r2 = x2 + y2, _2xy = 2*x*y;
double kr = (1 + ((k3*r2 + k2)*r2 + k1)*r2)/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
double u = fx*(x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+s2*r2*r2) + u0;
double v = fy*(y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+s4*r2*r2) + v0;
if( m1type == CV_16SC2 )
{
int iu = saturate_cast<int>(u*INTER_TAB_SIZE);
int iv = saturate_cast<int>(v*INTER_TAB_SIZE);
m1[j*2] = (short)(iu >> INTER_BITS);
m1[j*2+1] = (short)(iv >> INTER_BITS);
m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1)));
}
else if( m1type == CV_32FC1 )
{
m1f[j] = (float)u;
m2f[j] = (float)v;
}
else
{
m1f[j*2] = (float)u;
m1f[j*2+1] = (float)v;
}
}
}
}
void cv::undistort( InputArray _src, OutputArray _dst, InputArray _cameraMatrix,
InputArray _distCoeffs, InputArray _newCameraMatrix )
{
Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
Mat distCoeffs = _distCoeffs.getMat(), newCameraMatrix = _newCameraMatrix.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
CV_Assert( dst.data != src.data );
int stripe_size0 = std::min(std::max(1, (1 << 12) / std::max(src.cols, 1)), src.rows);
Mat map1(stripe_size0, src.cols, CV_16SC2), map2(stripe_size0, src.cols, CV_16UC1);
Mat_<double> A, Ar, I = Mat_<double>::eye(3,3);
cameraMatrix.convertTo(A, CV_64F);
if( !distCoeffs.empty() )
distCoeffs = Mat_<double>(distCoeffs);
else
{
distCoeffs.create(5, 1, CV_64F);
distCoeffs = 0.;
}
if( !newCameraMatrix.empty() )
newCameraMatrix.convertTo(Ar, CV_64F);
else
A.copyTo(Ar);
double v0 = Ar(1, 2);
for( int y = 0; y < src.rows; y += stripe_size0 )
{
int stripe_size = std::min( stripe_size0, src.rows - y );
Ar(1, 2) = v0 - y;
Mat map1_part = map1.rowRange(0, stripe_size),
map2_part = map2.rowRange(0, stripe_size),
dst_part = dst.rowRange(y, y + stripe_size);
initUndistortRectifyMap( A, distCoeffs, I, Ar, Size(src.cols, stripe_size),
map1_part.type(), map1_part, map2_part );
remap( src, dst_part, map1_part, map2_part, INTER_LINEAR, BORDER_CONSTANT );
}
}
CV_IMPL void
cvUndistort2( const CvArr* srcarr, CvArr* dstarr, const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat* newAarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst;
cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs), newA;
if( newAarr )
newA = cv::cvarrToMat(newAarr);
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
cv::undistort( src, dst, A, distCoeffs, newA );
}
CV_IMPL void cvInitUndistortMap( const CvMat* Aarr, const CvMat* dist_coeffs,
CvArr* mapxarr, CvArr* mapyarr )
{
cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs);
cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;
if( mapyarr )
mapy0 = mapy = cv::cvarrToMat(mapyarr);
cv::initUndistortRectifyMap( A, distCoeffs, cv::Mat(), A,
mapx.size(), mapx.type(), mapx, mapy );
CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
}
void
cvInitUndistortRectifyMap( const CvMat* Aarr, const CvMat* dist_coeffs,
const CvMat *Rarr, const CvMat* ArArr, CvArr* mapxarr, CvArr* mapyarr )
{
cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs, R, Ar;
cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0;
if( mapyarr )
mapy0 = mapy = cv::cvarrToMat(mapyarr);
if( dist_coeffs )
distCoeffs = cv::cvarrToMat(dist_coeffs);
if( Rarr )
R = cv::cvarrToMat(Rarr);
if( ArArr )
Ar = cv::cvarrToMat(ArArr);
cv::initUndistortRectifyMap( A, distCoeffs, R, Ar, mapx.size(), mapx.type(), mapx, mapy );
CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data );
}
void cvUndistortPoints( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,
const CvMat* _distCoeffs,
const CvMat* matR, const CvMat* matP )
{
double A[3][3], RR[3][3], k[12]={0,0,0,0,0,0,0,0,0,0,0}, fx, fy, ifx, ify, cx, cy;
CvMat matA=cvMat(3, 3, CV_64F, A), _Dk;
CvMat _RR=cvMat(3, 3, CV_64F, RR);
const CvPoint2D32f* srcf;
const CvPoint2D64f* srcd;
CvPoint2D32f* dstf;
CvPoint2D64f* dstd;
int stype, dtype;
int sstep, dstep;
int i, j, n, iters = 1;
CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&
(_src->rows == 1 || _src->cols == 1) &&
(_dst->rows == 1 || _dst->cols == 1) &&
_src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&
(CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&
(CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));
CV_Assert( CV_IS_MAT(_cameraMatrix) &&
_cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );
cvConvert( _cameraMatrix, &matA );
if( _distCoeffs )
{
CV_Assert( CV_IS_MAT(_distCoeffs) &&
(_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&
(_distCoeffs->rows*_distCoeffs->cols == 4 ||
_distCoeffs->rows*_distCoeffs->cols == 5 ||
_distCoeffs->rows*_distCoeffs->cols == 8 ||
_distCoeffs->rows*_distCoeffs->cols == 12));
_Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,
CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);
cvConvert( _distCoeffs, &_Dk );
iters = 5;
}
if( matR )
{
CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );
cvConvert( matR, &_RR );
}
else
cvSetIdentity(&_RR);
if( matP )
{
double PP[3][3];
CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);
CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));
cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
cvMatMul( &_PP, &_RR, &_RR );
}
srcf = (const CvPoint2D32f*)_src->data.ptr;
srcd = (const CvPoint2D64f*)_src->data.ptr;
dstf = (CvPoint2D32f*)_dst->data.ptr;
dstd = (CvPoint2D64f*)_dst->data.ptr;
stype = CV_MAT_TYPE(_src->type);
dtype = CV_MAT_TYPE(_dst->type);
sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);
dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);
n = _src->rows + _src->cols - 1;
fx = A[0][0];
fy = A[1][1];
ifx = 1./fx;
ify = 1./fy;
cx = A[0][2];
cy = A[1][2];
for( i = 0; i < n; i++ )
{
double x, y, x0, y0;
if( stype == CV_32FC2 )
{
x = srcf[i*sstep].x;
y = srcf[i*sstep].y;
}
else
{
x = srcd[i*sstep].x;
y = srcd[i*sstep].y;
}
x0 = x = (x - cx)*ifx;
y0 = y = (y - cy)*ify;
// compensate distortion iteratively
for( j = 0; j < iters; j++ )
{
double r2 = x*x + y*y;
double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x)+ k[8]*r2+k[9]*r2*r2;
double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y+ k[10]*r2+k[11]*r2*r2;
x = (x0 - deltaX)*icdist;
y = (y0 - deltaY)*icdist;
}
double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
x = xx*ww;
y = yy*ww;
if( dtype == CV_32FC2 )
{
dstf[i*dstep].x = (float)x;
dstf[i*dstep].y = (float)y;
}
else
{
dstd[i*dstep].x = x;
dstd[i*dstep].y = y;
}
}
}
void cv::undistortPoints( InputArray _src, OutputArray _dst,
InputArray _cameraMatrix,
InputArray _distCoeffs,
InputArray _Rmat,
InputArray _Pmat )
{
Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat();
CV_Assert( src.isContinuous() && (src.depth() == CV_32F || src.depth() == CV_64F) &&
((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2));
_dst.create(src.size(), src.type(), -1, true);
Mat dst = _dst.getMat();
CvMat _csrc = src, _cdst = dst, _ccameraMatrix = cameraMatrix;
CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0;
if( !R.empty() )
pR = &(matR = R);
if( !P.empty() )
pP = &(matP = P);
if( !distCoeffs.empty() )
pD = &(_cdistCoeffs = distCoeffs);
cvUndistortPoints(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP);
}
namespace cv
{
static Point2f mapPointSpherical(const Point2f& p, float alpha, Vec4d* J, int projType)
{
double x = p.x, y = p.y;
double beta = 1 + 2*alpha;
double v = x*x + y*y + 1, iv = 1/v;
double u = std::sqrt(beta*v + alpha*alpha);
double k = (u - alpha)*iv;
double kv = (v*beta/u - (u - alpha)*2)*iv*iv;
double kx = kv*x, ky = kv*y;
if( projType == PROJ_SPHERICAL_ORTHO )
{
if(J)
*J = Vec4d(kx*x + k, kx*y, ky*x, ky*y + k);
return Point2f((float)(x*k), (float)(y*k));
}
if( projType == PROJ_SPHERICAL_EQRECT )
{
// equirectangular
double iR = 1/(alpha + 1);
double x1 = std::max(std::min(x*k*iR, 1.), -1.);
double y1 = std::max(std::min(y*k*iR, 1.), -1.);
if(J)
{
double fx1 = iR/std::sqrt(1 - x1*x1);
double fy1 = iR/std::sqrt(1 - y1*y1);
*J = Vec4d(fx1*(kx*x + k), fx1*ky*x, fy1*kx*y, fy1*(ky*y + k));
}
return Point2f((float)asin(x1), (float)asin(y1));
}
CV_Error(CV_StsBadArg, "Unknown projection type");
return Point2f();
}
static Point2f invMapPointSpherical(Point2f _p, float alpha, int projType)
{
static int avgiter = 0, avgn = 0;
double eps = 1e-12;
Vec2d p(_p.x, _p.y), q(_p.x, _p.y), err;
Vec4d J;
int i, maxiter = 5;
for( i = 0; i < maxiter; i++ )
{
Point2f p1 = mapPointSpherical(Point2f((float)q[0], (float)q[1]), alpha, &J, projType);
err = Vec2d(p1.x, p1.y) - p;
if( err[0]*err[0] + err[1]*err[1] < eps )
break;
Vec4d JtJ(J[0]*J[0] + J[2]*J[2], J[0]*J[1] + J[2]*J[3],
J[0]*J[1] + J[2]*J[3], J[1]*J[1] + J[3]*J[3]);
double d = JtJ[0]*JtJ[3] - JtJ[1]*JtJ[2];
d = d ? 1./d : 0;
Vec4d iJtJ(JtJ[3]*d, -JtJ[1]*d, -JtJ[2]*d, JtJ[0]*d);
Vec2d JtErr(J[0]*err[0] + J[2]*err[1], J[1]*err[0] + J[3]*err[1]);
q -= Vec2d(iJtJ[0]*JtErr[0] + iJtJ[1]*JtErr[1], iJtJ[2]*JtErr[0] + iJtJ[3]*JtErr[1]);
//Matx22d J(kx*x + k, kx*y, ky*x, ky*y + k);
//q -= Vec2d((J.t()*J).inv()*(J.t()*err));
}
if( i < maxiter )
{
avgiter += i;
avgn++;
if( avgn == 1500 )
printf("avg iters = %g\n", (double)avgiter/avgn);
}
return i < maxiter ? Point2f((float)q[0], (float)q[1]) : Point2f(-FLT_MAX, -FLT_MAX);
}
}
float cv::initWideAngleProjMap( InputArray _cameraMatrix0, InputArray _distCoeffs0,
Size imageSize, int destImageWidth, int m1type,
OutputArray _map1, OutputArray _map2, int projType, double _alpha )
{
Mat cameraMatrix0 = _cameraMatrix0.getMat(), distCoeffs0 = _distCoeffs0.getMat();
double k[12] = {0,0,0,0,0,0,0,0,0,0,0}, M[9]={0,0,0,0,0,0,0,0,0};
Mat distCoeffs(distCoeffs0.rows, distCoeffs0.cols, CV_MAKETYPE(CV_64F,distCoeffs0.channels()), k);
Mat cameraMatrix(3,3,CV_64F,M);
Point2f scenter((float)cameraMatrix.at<double>(0,2), (float)cameraMatrix.at<double>(1,2));
Point2f dcenter((destImageWidth-1)*0.5f, 0.f);
float xmin = FLT_MAX, xmax = -FLT_MAX, ymin = FLT_MAX, ymax = -FLT_MAX;
int N = 9;
std::vector<Point2f> uvec(1), vvec(1);
Mat I = Mat::eye(3,3,CV_64F);
float alpha = (float)_alpha;
int ndcoeffs = distCoeffs0.cols*distCoeffs0.rows*distCoeffs0.channels();
CV_Assert((distCoeffs0.cols == 1 || distCoeffs0.rows == 1) &&
(ndcoeffs == 4 || ndcoeffs == 5 || ndcoeffs == 8));
CV_Assert(cameraMatrix0.size() == Size(3,3));
distCoeffs0.convertTo(distCoeffs,CV_64F);
cameraMatrix0.convertTo(cameraMatrix,CV_64F);
alpha = std::min(alpha, 0.999f);
for( int i = 0; i < N; i++ )
for( int j = 0; j < N; j++ )
{
Point2f p((float)j*imageSize.width/(N-1), (float)i*imageSize.height/(N-1));
uvec[0] = p;
undistortPoints(uvec, vvec, cameraMatrix, distCoeffs, I, I);
Point2f q = mapPointSpherical(vvec[0], alpha, 0, projType);
if( xmin > q.x ) xmin = q.x;
if( xmax < q.x ) xmax = q.x;
if( ymin > q.y ) ymin = q.y;
if( ymax < q.y ) ymax = q.y;
}
float scale = (float)std::min(dcenter.x/fabs(xmax), dcenter.x/fabs(xmin));
Size dsize(destImageWidth, cvCeil(std::max(scale*fabs(ymin)*2, scale*fabs(ymax)*2)));
dcenter.y = (dsize.height - 1)*0.5f;
Mat mapxy(dsize, CV_32FC2);
double k1 = k[0], k2 = k[1], k3 = k[2], p1 = k[3], p2 = k[4], k4 = k[5], k5 = k[6], k6 = k[7], s1 = k[8], s2 = k[9], s3 = k[10], s4 = k[11];
double fx = cameraMatrix.at<double>(0,0), fy = cameraMatrix.at<double>(1,1), cx = scenter.x, cy = scenter.y;
for( int y = 0; y < dsize.height; y++ )
{
Point2f* mxy = mapxy.ptr<Point2f>(y);
for( int x = 0; x < dsize.width; x++ )
{
Point2f p = (Point2f((float)x, (float)y) - dcenter)*(1.f/scale);
Point2f q = invMapPointSpherical(p, alpha, projType);
if( q.x <= -FLT_MAX && q.y <= -FLT_MAX )
{
mxy[x] = Point2f(-1.f, -1.f);
continue;
}
double x2 = q.x*q.x, y2 = q.y*q.y;
double r2 = x2 + y2, _2xy = 2*q.x*q.y;
double kr = 1 + ((k3*r2 + k2)*r2 + k1)*r2/(1 + ((k6*r2 + k5)*r2 + k4)*r2);
double u = fx*(q.x*kr + p1*_2xy + p2*(r2 + 2*x2) + s1*r2+ s2*r2*r2) + cx;
double v = fy*(q.y*kr + p1*(r2 + 2*y2) + p2*_2xy + s3*r2+ s4*r2*r2) + cy;
mxy[x] = Point2f((float)u, (float)v);
}
}
if(m1type == CV_32FC2)
{
_map1.create(mapxy.size(), mapxy.type());
Mat map1 = _map1.getMat();
mapxy.copyTo(map1);
_map2.release();
}
else
convertMaps(mapxy, Mat(), _map1, _map2, m1type, false);
return scale;
}
/* End of file */