/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2014, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels_imgproc.hpp"
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
#endif
namespace cv
{
template <typename T, typename ST, typename QT>
struct Integral_SIMD
{
bool operator()(const T *, size_t,
ST *, size_t,
QT *, size_t,
ST *, size_t,
Size, int) const
{
return false;
}
};
#if CV_SSE2
template <>
struct Integral_SIMD<uchar, int, double>
{
Integral_SIMD()
{
haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
}
bool operator()(const uchar * src, size_t _srcstep,
int * sum, size_t _sumstep,
double * sqsum, size_t,
int * tilted, size_t,
Size size, int cn) const
{
if (sqsum || tilted || cn != 1 || !haveSSE2)
return false;
// the first iteration
memset(sum, 0, (size.width + 1) * sizeof(int));
__m128i v_zero = _mm_setzero_si128(), prev = v_zero;
int j = 0;
// the others
for (int i = 0; i < size.height; ++i)
{
const uchar * src_row = src + _srcstep * i;
int * prev_sum_row = (int *)((uchar *)sum + _sumstep * i) + 1;
int * sum_row = (int *)((uchar *)sum + _sumstep * (i + 1)) + 1;
sum_row[-1] = 0;
prev = v_zero;
j = 0;
for ( ; j + 7 < size.width; j += 8)
{
__m128i vsuml = _mm_loadu_si128((const __m128i *)(prev_sum_row + j));
__m128i vsumh = _mm_loadu_si128((const __m128i *)(prev_sum_row + j + 4));
__m128i el8shr0 = _mm_loadl_epi64((const __m128i *)(src_row + j));
__m128i el8shr1 = _mm_slli_si128(el8shr0, 1);
__m128i el8shr2 = _mm_slli_si128(el8shr0, 2);
__m128i el8shr3 = _mm_slli_si128(el8shr0, 3);
vsuml = _mm_add_epi32(vsuml, prev);
vsumh = _mm_add_epi32(vsumh, prev);
__m128i el8shr12 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr1, v_zero),
_mm_unpacklo_epi8(el8shr2, v_zero));
__m128i el8shr03 = _mm_add_epi16(_mm_unpacklo_epi8(el8shr0, v_zero),
_mm_unpacklo_epi8(el8shr3, v_zero));
__m128i el8 = _mm_add_epi16(el8shr12, el8shr03);
__m128i el4h = _mm_add_epi16(_mm_unpackhi_epi16(el8, v_zero),
_mm_unpacklo_epi16(el8, v_zero));
vsuml = _mm_add_epi32(vsuml, _mm_unpacklo_epi16(el8, v_zero));
vsumh = _mm_add_epi32(vsumh, el4h);
_mm_storeu_si128((__m128i *)(sum_row + j), vsuml);
_mm_storeu_si128((__m128i *)(sum_row + j + 4), vsumh);
prev = _mm_add_epi32(prev, _mm_shuffle_epi32(el4h, _MM_SHUFFLE(3, 3, 3, 3)));
}
for (int v = sum_row[j - 1] - prev_sum_row[j - 1]; j < size.width; ++j)
sum_row[j] = (v += src_row[j]) + prev_sum_row[j];
}
return true;
}
bool haveSSE2;
};
#endif
template<typename T, typename ST, typename QT>
void integral_( const T* src, size_t _srcstep, ST* sum, size_t _sumstep,
QT* sqsum, size_t _sqsumstep, ST* tilted, size_t _tiltedstep,
Size size, int cn )
{
int x, y, k;
if (Integral_SIMD<T, ST, QT>()(src, _srcstep,
sum, _sumstep,
sqsum, _sqsumstep,
tilted, _tiltedstep,
size, cn))
return;
int srcstep = (int)(_srcstep/sizeof(T));
int sumstep = (int)(_sumstep/sizeof(ST));
int tiltedstep = (int)(_tiltedstep/sizeof(ST));
int sqsumstep = (int)(_sqsumstep/sizeof(QT));
size.width *= cn;
memset( sum, 0, (size.width+cn)*sizeof(sum[0]));
sum += sumstep + cn;
if( sqsum )
{
memset( sqsum, 0, (size.width+cn)*sizeof(sqsum[0]));
sqsum += sqsumstep + cn;
}
if( tilted )
{
memset( tilted, 0, (size.width+cn)*sizeof(tilted[0]));
tilted += tiltedstep + cn;
}
if( sqsum == 0 && tilted == 0 )
{
for( y = 0; y < size.height; y++, src += srcstep - cn, sum += sumstep - cn )
{
for( k = 0; k < cn; k++, src++, sum++ )
{
ST s = sum[-cn] = 0;
for( x = 0; x < size.width; x += cn )
{
s += src[x];
sum[x] = sum[x - sumstep] + s;
}
}
}
}
else if( tilted == 0 )
{
for( y = 0; y < size.height; y++, src += srcstep - cn,
sum += sumstep - cn, sqsum += sqsumstep - cn )
{
for( k = 0; k < cn; k++, src++, sum++, sqsum++ )
{
ST s = sum[-cn] = 0;
QT sq = sqsum[-cn] = 0;
for( x = 0; x < size.width; x += cn )
{
T it = src[x];
s += it;
sq += (QT)it*it;
ST t = sum[x - sumstep] + s;
QT tq = sqsum[x - sqsumstep] + sq;
sum[x] = t;
sqsum[x] = tq;
}
}
}
}
else
{
AutoBuffer<ST> _buf(size.width+cn);
ST* buf = _buf;
ST s;
QT sq;
for( k = 0; k < cn; k++, src++, sum++, tilted++, buf++ )
{
sum[-cn] = tilted[-cn] = 0;
for( x = 0, s = 0, sq = 0; x < size.width; x += cn )
{
T it = src[x];
buf[x] = tilted[x] = it;
s += it;
sq += (QT)it*it;
sum[x] = s;
if( sqsum )
sqsum[x] = sq;
}
if( size.width == cn )
buf[cn] = 0;
if( sqsum )
{
sqsum[-cn] = 0;
sqsum++;
}
}
for( y = 1; y < size.height; y++ )
{
src += srcstep - cn;
sum += sumstep - cn;
tilted += tiltedstep - cn;
buf += -cn;
if( sqsum )
sqsum += sqsumstep - cn;
for( k = 0; k < cn; k++, src++, sum++, tilted++, buf++ )
{
T it = src[0];
ST t0 = s = it;
QT tq0 = sq = (QT)it*it;
sum[-cn] = 0;
if( sqsum )
sqsum[-cn] = 0;
tilted[-cn] = tilted[-tiltedstep];
sum[0] = sum[-sumstep] + t0;
if( sqsum )
sqsum[0] = sqsum[-sqsumstep] + tq0;
tilted[0] = tilted[-tiltedstep] + t0 + buf[cn];
for( x = cn; x < size.width - cn; x += cn )
{
ST t1 = buf[x];
buf[x - cn] = t1 + t0;
t0 = it = src[x];
tq0 = (QT)it*it;
s += t0;
sq += tq0;
sum[x] = sum[x - sumstep] + s;
if( sqsum )
sqsum[x] = sqsum[x - sqsumstep] + sq;
t1 += buf[x + cn] + t0 + tilted[x - tiltedstep - cn];
tilted[x] = t1;
}
if( size.width > cn )
{
ST t1 = buf[x];
buf[x - cn] = t1 + t0;
t0 = it = src[x];
tq0 = (QT)it*it;
s += t0;
sq += tq0;
sum[x] = sum[x - sumstep] + s;
if( sqsum )
sqsum[x] = sqsum[x - sqsumstep] + sq;
tilted[x] = t0 + t1 + tilted[x - tiltedstep - cn];
buf[x] = t0;
}
if( sqsum )
sqsum++;
}
}
}
}
#define DEF_INTEGRAL_FUNC(suffix, T, ST, QT) \
static void integral_##suffix( T* src, size_t srcstep, ST* sum, size_t sumstep, QT* sqsum, size_t sqsumstep, \
ST* tilted, size_t tiltedstep, Size size, int cn ) \
{ integral_(src, srcstep, sum, sumstep, sqsum, sqsumstep, tilted, tiltedstep, size, cn); }
DEF_INTEGRAL_FUNC(8u32s, uchar, int, double)
DEF_INTEGRAL_FUNC(8u32s32s, uchar, int, int)
DEF_INTEGRAL_FUNC(8u32f64f, uchar, float, double)
DEF_INTEGRAL_FUNC(8u64f64f, uchar, double, double)
DEF_INTEGRAL_FUNC(16u64f64f, ushort, double, double)
DEF_INTEGRAL_FUNC(16s64f64f, short, double, double)
DEF_INTEGRAL_FUNC(32f32f64f, float, float, double)
DEF_INTEGRAL_FUNC(32f64f64f, float, double, double)
DEF_INTEGRAL_FUNC(64f64f64f, double, double, double)
DEF_INTEGRAL_FUNC(8u32s32f, uchar, int, float)
DEF_INTEGRAL_FUNC(8u32f32f, uchar, float, float)
DEF_INTEGRAL_FUNC(32f32f32f, float, float, float)
typedef void (*IntegralFunc)(const uchar* src, size_t srcstep, uchar* sum, size_t sumstep,
uchar* sqsum, size_t sqsumstep, uchar* tilted, size_t tstep,
Size size, int cn );
#ifdef HAVE_OPENCL
static bool ocl_integral( InputArray _src, OutputArray _sum, int sdepth )
{
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( (_src.type() != CV_8UC1) ||
!(sdepth == CV_32S || sdepth == CV_32F || (doubleSupport && sdepth == CV_64F)))
return false;
static const int tileSize = 16;
String build_opt = format("-D sumT=%s -D LOCAL_SUM_SIZE=%d%s",
ocl::typeToStr(sdepth), tileSize,
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (kcols.empty())
return false;
UMat src = _src.getUMat();
Size src_size = src.size();
Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize);
UMat buf(bufsize, sdepth);
kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf));
size_t gt = src.cols, lt = tileSize;
if (!kcols.run(1, >, <, false))
return false;
ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (krows.empty())
return false;
Size sumsize(src_size.width + 1, src_size.height + 1);
_sum.create(sumsize, sdepth);
UMat sum = _sum.getUMat();
krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::WriteOnly(sum));
gt = src.rows;
return krows.run(1, >, <, false);
}
static bool ocl_integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, int sdepth, int sqdepth )
{
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( _src.type() != CV_8UC1 || (!doubleSupport && (sdepth == CV_64F || sqdepth == CV_64F)) )
return false;
static const int tileSize = 16;
String build_opt = format("-D SUM_SQUARE -D sumT=%s -D sumSQT=%s -D LOCAL_SUM_SIZE=%d%s",
ocl::typeToStr(sdepth), ocl::typeToStr(sqdepth),
tileSize,
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel kcols("integral_sum_cols", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (kcols.empty())
return false;
UMat src = _src.getUMat();
Size src_size = src.size();
Size bufsize(((src_size.height + tileSize - 1) / tileSize) * tileSize, ((src_size.width + tileSize - 1) / tileSize) * tileSize);
UMat buf(bufsize, sdepth);
UMat buf_sq(bufsize, sqdepth);
kcols.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnlyNoSize(buf), ocl::KernelArg::WriteOnlyNoSize(buf_sq));
size_t gt = src.cols, lt = tileSize;
if (!kcols.run(1, >, <, false))
return false;
ocl::Kernel krows("integral_sum_rows", ocl::imgproc::integral_sum_oclsrc, build_opt);
if (krows.empty())
return false;
Size sumsize(src_size.width + 1, src_size.height + 1);
_sum.create(sumsize, sdepth);
UMat sum = _sum.getUMat();
_sqsum.create(sumsize, sqdepth);
UMat sum_sq = _sqsum.getUMat();
krows.args(ocl::KernelArg::ReadOnlyNoSize(buf), ocl::KernelArg::ReadOnlyNoSize(buf_sq), ocl::KernelArg::WriteOnly(sum), ocl::KernelArg::WriteOnlyNoSize(sum_sq));
gt = src.rows;
return krows.run(1, >, <, false);
}
#endif
}
void cv::integral( InputArray _src, OutputArray _sum, OutputArray _sqsum, OutputArray _tilted, int sdepth, int sqdepth )
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
if( sdepth <= 0 )
sdepth = depth == CV_8U ? CV_32S : CV_64F;
if ( sqdepth <= 0 )
sqdepth = CV_64F;
sdepth = CV_MAT_DEPTH(sdepth), sqdepth = CV_MAT_DEPTH(sqdepth);
#ifdef HAVE_OPENCL
if (ocl::useOpenCL() && _sum.isUMat() && !_tilted.needed())
{
if (!_sqsum.needed())
{
CV_OCL_RUN(ocl::useOpenCL(), ocl_integral(_src, _sum, sdepth))
}
else if (_sqsum.isUMat())
CV_OCL_RUN(ocl::useOpenCL(), ocl_integral(_src, _sum, _sqsum, sdepth, sqdepth))
}
#endif
Size ssize = _src.size(), isize(ssize.width + 1, ssize.height + 1);
_sum.create( isize, CV_MAKETYPE(sdepth, cn) );
Mat src = _src.getMat(), sum =_sum.getMat(), sqsum, tilted;
if( _sqsum.needed() )
{
_sqsum.create( isize, CV_MAKETYPE(sqdepth, cn) );
sqsum = _sqsum.getMat();
};
#if defined(HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) // Disabled on ICV due invalid results
CV_IPP_CHECK()
{
if( ( depth == CV_8U ) && ( sdepth == CV_32F || sdepth == CV_32S ) && ( !_tilted.needed() ) && ( !_sqsum.needed() || sqdepth == CV_64F ) && ( cn == 1 ) )
{
IppStatus status = ippStsErr;
IppiSize srcRoiSize = ippiSize( src.cols, src.rows );
if( sdepth == CV_32F )
{
if( _sqsum.needed() )
{
status = ippiSqrIntegral_8u32f64f_C1R( (const Ipp8u*)src.data, (int)src.step, (Ipp32f*)sum.data, (int)sum.step, (Ipp64f*)sqsum.data, (int)sqsum.step, srcRoiSize, 0, 0 );
}
else
{
status = ippiIntegral_8u32f_C1R( (const Ipp8u*)src.data, (int)src.step, (Ipp32f*)sum.data, (int)sum.step, srcRoiSize, 0 );
}
}
else if( sdepth == CV_32S )
{
if( _sqsum.needed() )
{
status = ippiSqrIntegral_8u32s64f_C1R( (const Ipp8u*)src.data, (int)src.step, (Ipp32s*)sum.data, (int)sum.step, (Ipp64f*)sqsum.data, (int)sqsum.step, srcRoiSize, 0, 0 );
}
else
{
status = ippiIntegral_8u32s_C1R( (const Ipp8u*)src.data, (int)src.step, (Ipp32s*)sum.data, (int)sum.step, srcRoiSize, 0 );
}
}
if (0 <= status)
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
}
#endif
if( _tilted.needed() )
{
_tilted.create( isize, CV_MAKETYPE(sdepth, cn) );
tilted = _tilted.getMat();
}
IntegralFunc func = 0;
if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_64F )
func = (IntegralFunc)GET_OPTIMIZED(integral_8u32s);
else if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32F )
func = (IntegralFunc)integral_8u32s32f;
else if( depth == CV_8U && sdepth == CV_32S && sqdepth == CV_32S )
func = (IntegralFunc)integral_8u32s32s;
else if( depth == CV_8U && sdepth == CV_32F && sqdepth == CV_64F )
func = (IntegralFunc)integral_8u32f64f;
else if( depth == CV_8U && sdepth == CV_32F && sqdepth == CV_32F )
func = (IntegralFunc)integral_8u32f32f;
else if( depth == CV_8U && sdepth == CV_64F && sqdepth == CV_64F )
func = (IntegralFunc)integral_8u64f64f;
else if( depth == CV_16U && sdepth == CV_64F && sqdepth == CV_64F )
func = (IntegralFunc)integral_16u64f64f;
else if( depth == CV_16S && sdepth == CV_64F && sqdepth == CV_64F )
func = (IntegralFunc)integral_16s64f64f;
else if( depth == CV_32F && sdepth == CV_32F && sqdepth == CV_64F )
func = (IntegralFunc)integral_32f32f64f;
else if( depth == CV_32F && sdepth == CV_32F && sqdepth == CV_32F )
func = (IntegralFunc)integral_32f32f32f;
else if( depth == CV_32F && sdepth == CV_64F && sqdepth == CV_64F )
func = (IntegralFunc)integral_32f64f64f;
else if( depth == CV_64F && sdepth == CV_64F && sqdepth == CV_64F )
func = (IntegralFunc)integral_64f64f64f;
else
CV_Error( CV_StsUnsupportedFormat, "" );
func( src.ptr(), src.step, sum.ptr(), sum.step, sqsum.ptr(), sqsum.step,
tilted.ptr(), tilted.step, src.size(), cn );
}
void cv::integral( InputArray src, OutputArray sum, int sdepth )
{
integral( src, sum, noArray(), noArray(), sdepth );
}
void cv::integral( InputArray src, OutputArray sum, OutputArray sqsum, int sdepth, int sqdepth )
{
integral( src, sum, sqsum, noArray(), sdepth, sqdepth );
}
CV_IMPL void
cvIntegral( const CvArr* image, CvArr* sumImage,
CvArr* sumSqImage, CvArr* tiltedSumImage )
{
cv::Mat src = cv::cvarrToMat(image), sum = cv::cvarrToMat(sumImage), sum0 = sum;
cv::Mat sqsum0, sqsum, tilted0, tilted;
cv::Mat *psqsum = 0, *ptilted = 0;
if( sumSqImage )
{
sqsum0 = sqsum = cv::cvarrToMat(sumSqImage);
psqsum = &sqsum;
}
if( tiltedSumImage )
{
tilted0 = tilted = cv::cvarrToMat(tiltedSumImage);
ptilted = &tilted;
}
cv::integral( src, sum, psqsum ? cv::_OutputArray(*psqsum) : cv::_OutputArray(),
ptilted ? cv::_OutputArray(*ptilted) : cv::_OutputArray(), sum.depth() );
CV_Assert( sum.data == sum0.data && sqsum.data == sqsum0.data && tilted.data == tilted0.data );
}
/* End of file. */