/**
* @file AKAZEFeatures.cpp
* @brief Main class for detecting and describing binary features in an
* accelerated nonlinear scale space
* @date Sep 15, 2013
* @author Pablo F. Alcantarilla, Jesus Nuevo
*/
#include "../precomp.hpp"
#include "AKAZEFeatures.h"
#include "fed.h"
#include "nldiffusion_functions.h"
#include "utils.h"
#include <iostream>
// Namespaces
namespace cv
{
using namespace std;
/* ************************************************************************* */
/**
* @brief AKAZEFeatures constructor with input options
* @param options AKAZEFeatures configuration options
* @note This constructor allocates memory for the nonlinear scale space
*/
AKAZEFeatures::AKAZEFeatures(const AKAZEOptions& options) : options_(options) {
ncycles_ = 0;
reordering_ = true;
if (options_.descriptor_size > 0 && options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT) {
generateDescriptorSubsample(descriptorSamples_, descriptorBits_, options_.descriptor_size,
options_.descriptor_pattern_size, options_.descriptor_channels);
}
Allocate_Memory_Evolution();
}
/* ************************************************************************* */
/**
* @brief This method allocates the memory for the nonlinear diffusion evolution
*/
void AKAZEFeatures::Allocate_Memory_Evolution(void) {
float rfactor = 0.0f;
int level_height = 0, level_width = 0;
// Allocate the dimension of the matrices for the evolution
for (int i = 0, power = 1; i <= options_.omax - 1; i++, power *= 2) {
rfactor = 1.0f / power;
level_height = (int)(options_.img_height*rfactor);
level_width = (int)(options_.img_width*rfactor);
// Smallest possible octave and allow one scale if the image is small
if ((level_width < 80 || level_height < 40) && i != 0) {
options_.omax = i;
break;
}
for (int j = 0; j < options_.nsublevels; j++) {
TEvolution step;
step.Lx = Mat::zeros(level_height, level_width, CV_32F);
step.Ly = Mat::zeros(level_height, level_width, CV_32F);
step.Lxx = Mat::zeros(level_height, level_width, CV_32F);
step.Lxy = Mat::zeros(level_height, level_width, CV_32F);
step.Lyy = Mat::zeros(level_height, level_width, CV_32F);
step.Lt = Mat::zeros(level_height, level_width, CV_32F);
step.Ldet = Mat::zeros(level_height, level_width, CV_32F);
step.Lsmooth = Mat::zeros(level_height, level_width, CV_32F);
step.esigma = options_.soffset*pow(2.f, (float)(j) / (float)(options_.nsublevels) + i);
step.sigma_size = fRound(step.esigma);
step.etime = 0.5f*(step.esigma*step.esigma);
step.octave = i;
step.sublevel = j;
evolution_.push_back(step);
}
}
// Allocate memory for the number of cycles and time steps
for (size_t i = 1; i < evolution_.size(); i++) {
int naux = 0;
vector<float> tau;
float ttime = 0.0f;
ttime = evolution_[i].etime - evolution_[i - 1].etime;
naux = fed_tau_by_process_time(ttime, 1, 0.25f, reordering_, tau);
nsteps_.push_back(naux);
tsteps_.push_back(tau);
ncycles_++;
}
}
/* ************************************************************************* */
/**
* @brief This method creates the nonlinear scale space for a given image
* @param img Input image for which the nonlinear scale space needs to be created
* @return 0 if the nonlinear scale space was created successfully, -1 otherwise
*/
int AKAZEFeatures::Create_Nonlinear_Scale_Space(const Mat& img)
{
CV_Assert(evolution_.size() > 0);
// Copy the original image to the first level of the evolution
img.copyTo(evolution_[0].Lt);
gaussian_2D_convolution(evolution_[0].Lt, evolution_[0].Lt, 0, 0, options_.soffset);
evolution_[0].Lt.copyTo(evolution_[0].Lsmooth);
// Allocate memory for the flow and step images
Mat Lflow = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
Mat Lstep = Mat::zeros(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32F);
// First compute the kcontrast factor
options_.kcontrast = compute_k_percentile(img, options_.kcontrast_percentile, 1.0f, options_.kcontrast_nbins, 0, 0);
// Now generate the rest of evolution levels
for (size_t i = 1; i < evolution_.size(); i++) {
if (evolution_[i].octave > evolution_[i - 1].octave) {
halfsample_image(evolution_[i - 1].Lt, evolution_[i].Lt);
options_.kcontrast = options_.kcontrast*0.75f;
// Allocate memory for the resized flow and step images
Lflow = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F);
Lstep = Mat::zeros(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32F);
}
else {
evolution_[i - 1].Lt.copyTo(evolution_[i].Lt);
}
gaussian_2D_convolution(evolution_[i].Lt, evolution_[i].Lsmooth, 0, 0, 1.0f);
// Compute the Gaussian derivatives Lx and Ly
image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Lx, 1, 0);
image_derivatives_scharr(evolution_[i].Lsmooth, evolution_[i].Ly, 0, 1);
// Compute the conductivity equation
switch (options_.diffusivity) {
case KAZE::DIFF_PM_G1:
pm_g1(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
break;
case KAZE::DIFF_PM_G2:
pm_g2(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
break;
case KAZE::DIFF_WEICKERT:
weickert_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
break;
case KAZE::DIFF_CHARBONNIER:
charbonnier_diffusivity(evolution_[i].Lx, evolution_[i].Ly, Lflow, options_.kcontrast);
break;
default:
CV_Error(options_.diffusivity, "Diffusivity is not supported");
break;
}
// Perform FED n inner steps
for (int j = 0; j < nsteps_[i - 1]; j++) {
nld_step_scalar(evolution_[i].Lt, Lflow, Lstep, tsteps_[i - 1][j]);
}
}
return 0;
}
/* ************************************************************************* */
/**
* @brief This method selects interesting keypoints through the nonlinear scale space
* @param kpts Vector of detected keypoints
*/
void AKAZEFeatures::Feature_Detection(std::vector<KeyPoint>& kpts)
{
kpts.clear();
Compute_Determinant_Hessian_Response();
Find_Scale_Space_Extrema(kpts);
Do_Subpixel_Refinement(kpts);
}
/* ************************************************************************* */
class MultiscaleDerivativesAKAZEInvoker : public ParallelLoopBody
{
public:
explicit MultiscaleDerivativesAKAZEInvoker(std::vector<TEvolution>& ev, const AKAZEOptions& opt)
: evolution_(&ev)
, options_(opt)
{
}
void operator()(const Range& range) const
{
std::vector<TEvolution>& evolution = *evolution_;
for (int i = range.start; i < range.end; i++)
{
float ratio = (float)fastpow(2, evolution[i].octave);
int sigma_size_ = fRound(evolution[i].esigma * options_.derivative_factor / ratio);
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Lx, 1, 0, sigma_size_);
compute_scharr_derivatives(evolution[i].Lsmooth, evolution[i].Ly, 0, 1, sigma_size_);
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxx, 1, 0, sigma_size_);
compute_scharr_derivatives(evolution[i].Ly, evolution[i].Lyy, 0, 1, sigma_size_);
compute_scharr_derivatives(evolution[i].Lx, evolution[i].Lxy, 0, 1, sigma_size_);
evolution[i].Lx = evolution[i].Lx*((sigma_size_));
evolution[i].Ly = evolution[i].Ly*((sigma_size_));
evolution[i].Lxx = evolution[i].Lxx*((sigma_size_)*(sigma_size_));
evolution[i].Lxy = evolution[i].Lxy*((sigma_size_)*(sigma_size_));
evolution[i].Lyy = evolution[i].Lyy*((sigma_size_)*(sigma_size_));
}
}
private:
std::vector<TEvolution>* evolution_;
AKAZEOptions options_;
};
/* ************************************************************************* */
/**
* @brief This method computes the multiscale derivatives for the nonlinear scale space
*/
void AKAZEFeatures::Compute_Multiscale_Derivatives(void)
{
parallel_for_(Range(0, (int)evolution_.size()),
MultiscaleDerivativesAKAZEInvoker(evolution_, options_));
}
/* ************************************************************************* */
/**
* @brief This method computes the feature detector response for the nonlinear scale space
* @note We use the Hessian determinant as the feature detector response
*/
void AKAZEFeatures::Compute_Determinant_Hessian_Response(void) {
// Firstly compute the multiscale derivatives
Compute_Multiscale_Derivatives();
for (size_t i = 0; i < evolution_.size(); i++)
{
for (int ix = 0; ix < evolution_[i].Ldet.rows; ix++)
{
for (int jx = 0; jx < evolution_[i].Ldet.cols; jx++)
{
float lxx = *(evolution_[i].Lxx.ptr<float>(ix)+jx);
float lxy = *(evolution_[i].Lxy.ptr<float>(ix)+jx);
float lyy = *(evolution_[i].Lyy.ptr<float>(ix)+jx);
*(evolution_[i].Ldet.ptr<float>(ix)+jx) = (lxx*lyy - lxy*lxy);
}
}
}
}
/* ************************************************************************* */
/**
* @brief This method finds extrema in the nonlinear scale space
* @param kpts Vector of detected keypoints
*/
void AKAZEFeatures::Find_Scale_Space_Extrema(std::vector<KeyPoint>& kpts)
{
float value = 0.0;
float dist = 0.0, ratio = 0.0, smax = 0.0;
int npoints = 0, id_repeated = 0;
int sigma_size_ = 0, left_x = 0, right_x = 0, up_y = 0, down_y = 0;
bool is_extremum = false, is_repeated = false, is_out = false;
KeyPoint point;
vector<KeyPoint> kpts_aux;
// Set maximum size
if (options_.descriptor == AKAZE::DESCRIPTOR_MLDB_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_MLDB) {
smax = 10.0f*sqrtf(2.0f);
}
else if (options_.descriptor == AKAZE::DESCRIPTOR_KAZE_UPRIGHT || options_.descriptor == AKAZE::DESCRIPTOR_KAZE) {
smax = 12.0f*sqrtf(2.0f);
}
for (size_t i = 0; i < evolution_.size(); i++) {
float* prev = evolution_[i].Ldet.ptr<float>(0);
float* curr = evolution_[i].Ldet.ptr<float>(1);
for (int ix = 1; ix < evolution_[i].Ldet.rows - 1; ix++) {
float* next = evolution_[i].Ldet.ptr<float>(ix + 1);
for (int jx = 1; jx < evolution_[i].Ldet.cols - 1; jx++) {
is_extremum = false;
is_repeated = false;
is_out = false;
value = *(evolution_[i].Ldet.ptr<float>(ix)+jx);
// Filter the points with the detector threshold
if (value > options_.dthreshold && value >= options_.min_dthreshold &&
value > curr[jx-1] &&
value > curr[jx+1] &&
value > prev[jx-1] &&
value > prev[jx] &&
value > prev[jx+1] &&
value > next[jx-1] &&
value > next[jx] &&
value > next[jx+1]) {
is_extremum = true;
point.response = fabs(value);
point.size = evolution_[i].esigma*options_.derivative_factor;
point.octave = (int)evolution_[i].octave;
point.class_id = (int)i;
ratio = (float)fastpow(2, point.octave);
sigma_size_ = fRound(point.size / ratio);
point.pt.x = static_cast<float>(jx);
point.pt.y = static_cast<float>(ix);
// Compare response with the same and lower scale
for (size_t ik = 0; ik < kpts_aux.size(); ik++) {
if ((point.class_id - 1) == kpts_aux[ik].class_id ||
point.class_id == kpts_aux[ik].class_id) {
float distx = point.pt.x*ratio - kpts_aux[ik].pt.x;
float disty = point.pt.y*ratio - kpts_aux[ik].pt.y;
dist = distx * distx + disty * disty;
if (dist <= point.size * point.size) {
if (point.response > kpts_aux[ik].response) {
id_repeated = (int)ik;
is_repeated = true;
}
else {
is_extremum = false;
}
break;
}
}
}
// Check out of bounds
if (is_extremum == true) {
// Check that the point is under the image limits for the descriptor computation
left_x = fRound(point.pt.x - smax*sigma_size_) - 1;
right_x = fRound(point.pt.x + smax*sigma_size_) + 1;
up_y = fRound(point.pt.y - smax*sigma_size_) - 1;
down_y = fRound(point.pt.y + smax*sigma_size_) + 1;
if (left_x < 0 || right_x >= evolution_[i].Ldet.cols ||
up_y < 0 || down_y >= evolution_[i].Ldet.rows) {
is_out = true;
}
if (is_out == false) {
if (is_repeated == false) {
point.pt.x *= ratio;
point.pt.y *= ratio;
kpts_aux.push_back(point);
npoints++;
}
else {
point.pt.x *= ratio;
point.pt.y *= ratio;
kpts_aux[id_repeated] = point;
}
} // if is_out
} //if is_extremum
}
} // for jx
prev = curr;
curr = next;
} // for ix
} // for i
// Now filter points with the upper scale level
for (size_t i = 0; i < kpts_aux.size(); i++) {
is_repeated = false;
const KeyPoint& pt = kpts_aux[i];
for (size_t j = i + 1; j < kpts_aux.size(); j++) {
// Compare response with the upper scale
if ((pt.class_id + 1) == kpts_aux[j].class_id) {
float distx = pt.pt.x - kpts_aux[j].pt.x;
float disty = pt.pt.y - kpts_aux[j].pt.y;
dist = distx * distx + disty * disty;
if (dist <= pt.size * pt.size) {
if (pt.response < kpts_aux[j].response) {
is_repeated = true;
break;
}
}
}
}
if (is_repeated == false)
kpts.push_back(pt);
}
}
/* ************************************************************************* */
/**
* @brief This method performs subpixel refinement of the detected keypoints
* @param kpts Vector of detected keypoints
*/
void AKAZEFeatures::Do_Subpixel_Refinement(std::vector<KeyPoint>& kpts)
{
float Dx = 0.0, Dy = 0.0, ratio = 0.0;
float Dxx = 0.0, Dyy = 0.0, Dxy = 0.0;
int x = 0, y = 0;
Matx22f A(0, 0, 0, 0);
Vec2f b(0, 0);
Vec2f dst(0, 0);
for (size_t i = 0; i < kpts.size(); i++) {
ratio = (float)fastpow(2, kpts[i].octave);
x = fRound(kpts[i].pt.x / ratio);
y = fRound(kpts[i].pt.y / ratio);
// Compute the gradient
Dx = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1)
- *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1));
Dy = (0.5f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x)
- *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x));
// Compute the Hessian
Dxx = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x + 1)
+ *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x - 1)
- 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x)));
Dyy = (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x)
+ *(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x)
- 2.0f*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y)+x)));
Dxy = (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x + 1)
+ (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x - 1)))
- (0.25f)*(*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y - 1) + x + 1)
+ (*(evolution_[kpts[i].class_id].Ldet.ptr<float>(y + 1) + x - 1)));
// Solve the linear system
A(0, 0) = Dxx;
A(1, 1) = Dyy;
A(0, 1) = A(1, 0) = Dxy;
b(0) = -Dx;
b(1) = -Dy;
solve(A, b, dst, DECOMP_LU);
if (fabs(dst(0)) <= 1.0f && fabs(dst(1)) <= 1.0f) {
kpts[i].pt.x = x + dst(0);
kpts[i].pt.y = y + dst(1);
int power = fastpow(2, evolution_[kpts[i].class_id].octave);
kpts[i].pt.x *= power;
kpts[i].pt.y *= power;
kpts[i].angle = 0.0;
// In OpenCV the size of a keypoint its the diameter
kpts[i].size *= 2.0f;
}
// Delete the point since its not stable
else {
kpts.erase(kpts.begin() + i);
i--;
}
}
}
/* ************************************************************************* */
class SURF_Descriptor_Upright_64_Invoker : public ParallelLoopBody
{
public:
SURF_Descriptor_Upright_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator() (const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
Get_SURF_Descriptor_Upright_64((*keypoints_)[i], descriptors_->ptr<float>(i));
}
}
void Get_SURF_Descriptor_Upright_64(const KeyPoint& kpt, float* desc) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
};
class SURF_Descriptor_64_Invoker : public ParallelLoopBody
{
public:
SURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator()(const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_);
Get_SURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i));
}
}
void Get_SURF_Descriptor_64(const KeyPoint& kpt, float* desc) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
};
class MSURF_Upright_Descriptor_64_Invoker : public ParallelLoopBody
{
public:
MSURF_Upright_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator()(const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
Get_MSURF_Upright_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i));
}
}
void Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float* desc) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
};
class MSURF_Descriptor_64_Invoker : public ParallelLoopBody
{
public:
MSURF_Descriptor_64_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
{
}
void operator() (const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_);
Get_MSURF_Descriptor_64((*keypoints_)[i], descriptors_->ptr<float>(i));
}
}
void Get_MSURF_Descriptor_64(const KeyPoint& kpt, float* desc) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
};
class Upright_MLDB_Full_Descriptor_Invoker : public ParallelLoopBody
{
public:
Upright_MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
{
}
void operator() (const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
Get_Upright_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
}
}
void Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
AKAZEOptions* options_;
};
class Upright_MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody
{
public:
Upright_MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts,
Mat& desc,
std::vector<TEvolution>& evolution,
AKAZEOptions& options,
Mat descriptorSamples,
Mat descriptorBits)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
, descriptorSamples_(descriptorSamples)
, descriptorBits_(descriptorBits)
{
}
void operator() (const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
Get_Upright_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
}
}
void Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
AKAZEOptions* options_;
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
Mat descriptorBits_;
};
class MLDB_Full_Descriptor_Invoker : public ParallelLoopBody
{
public:
MLDB_Full_Descriptor_Invoker(std::vector<KeyPoint>& kpts, Mat& desc, std::vector<TEvolution>& evolution, AKAZEOptions& options)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
{
}
void operator() (const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_);
Get_MLDB_Full_Descriptor((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
}
}
void Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const;
void MLDB_Fill_Values(float* values, int sample_step, int level,
float xf, float yf, float co, float si, float scale) const;
void MLDB_Binary_Comparisons(float* values, unsigned char* desc,
int count, int& dpos) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
AKAZEOptions* options_;
};
class MLDB_Descriptor_Subset_Invoker : public ParallelLoopBody
{
public:
MLDB_Descriptor_Subset_Invoker(std::vector<KeyPoint>& kpts,
Mat& desc,
std::vector<TEvolution>& evolution,
AKAZEOptions& options,
Mat descriptorSamples,
Mat descriptorBits)
: keypoints_(&kpts)
, descriptors_(&desc)
, evolution_(&evolution)
, options_(&options)
, descriptorSamples_(descriptorSamples)
, descriptorBits_(descriptorBits)
{
}
void operator() (const Range& range) const
{
for (int i = range.start; i < range.end; i++)
{
AKAZEFeatures::Compute_Main_Orientation((*keypoints_)[i], *evolution_);
Get_MLDB_Descriptor_Subset((*keypoints_)[i], descriptors_->ptr<unsigned char>(i));
}
}
void Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char* desc) const;
private:
std::vector<KeyPoint>* keypoints_;
Mat* descriptors_;
std::vector<TEvolution>* evolution_;
AKAZEOptions* options_;
Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
Mat descriptorBits_;
};
/**
* @brief This method computes the set of descriptors through the nonlinear scale space
* @param kpts Vector of detected keypoints
* @param desc Matrix to store the descriptors
*/
void AKAZEFeatures::Compute_Descriptors(std::vector<KeyPoint>& kpts, Mat& desc)
{
for(size_t i = 0; i < kpts.size(); i++)
{
CV_Assert(0 <= kpts[i].class_id && kpts[i].class_id < static_cast<int>(evolution_.size()));
}
// Allocate memory for the matrix with the descriptors
if (options_.descriptor < AKAZE::DESCRIPTOR_MLDB_UPRIGHT) {
desc = Mat::zeros((int)kpts.size(), 64, CV_32FC1);
}
else {
// We use the full length binary descriptor -> 486 bits
if (options_.descriptor_size == 0) {
int t = (6 + 36 + 120)*options_.descriptor_channels;
desc = Mat::zeros((int)kpts.size(), (int)ceil(t / 8.), CV_8UC1);
}
else {
// We use the random bit selection length binary descriptor
desc = Mat::zeros((int)kpts.size(), (int)ceil(options_.descriptor_size / 8.), CV_8UC1);
}
}
switch (options_.descriptor)
{
case AKAZE::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant to rotation
{
parallel_for_(Range(0, (int)kpts.size()), MSURF_Upright_Descriptor_64_Invoker(kpts, desc, evolution_));
}
break;
case AKAZE::DESCRIPTOR_KAZE:
{
parallel_for_(Range(0, (int)kpts.size()), MSURF_Descriptor_64_Invoker(kpts, desc, evolution_));
}
break;
case AKAZE::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant to rotation
{
if (options_.descriptor_size == 0)
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
else
parallel_for_(Range(0, (int)kpts.size()), Upright_MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_));
}
break;
case AKAZE::DESCRIPTOR_MLDB:
{
if (options_.descriptor_size == 0)
parallel_for_(Range(0, (int)kpts.size()), MLDB_Full_Descriptor_Invoker(kpts, desc, evolution_, options_));
else
parallel_for_(Range(0, (int)kpts.size()), MLDB_Descriptor_Subset_Invoker(kpts, desc, evolution_, options_, descriptorSamples_, descriptorBits_));
}
break;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the main orientation for a given keypoint
* @param kpt Input keypoint
* @note The orientation is computed using a similar approach as described in the
* original SURF method. See Bay et al., Speeded Up Robust Features, ECCV 2006
*/
void AKAZEFeatures::Compute_Main_Orientation(KeyPoint& kpt, const std::vector<TEvolution>& evolution_)
{
/* ************************************************************************* */
/// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
static const float gauss25[7][7] =
{
{ 0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f },
{ 0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f },
{ 0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f },
{ 0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f },
{ 0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f },
{ 0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f },
{ 0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f }
};
int ix = 0, iy = 0, idx = 0, s = 0, level = 0;
float xf = 0.0, yf = 0.0, gweight = 0.0, ratio = 0.0;
const int ang_size = 109;
float resX[ang_size], resY[ang_size], Ang[ang_size];
const int id[] = { 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6 };
// Variables for computing the dominant direction
float sumX = 0.0, sumY = 0.0, max = 0.0, ang1 = 0.0, ang2 = 0.0;
// Get the information from the keypoint
level = kpt.class_id;
ratio = (float)(1 << evolution_[level].octave);
s = fRound(0.5f*kpt.size / ratio);
xf = kpt.pt.x / ratio;
yf = kpt.pt.y / ratio;
// Calculate derivatives responses for points within radius of 6*scale
for (int i = -6; i <= 6; ++i) {
for (int j = -6; j <= 6; ++j) {
if (i*i + j*j < 36) {
iy = fRound(yf + j*s);
ix = fRound(xf + i*s);
gweight = gauss25[id[i + 6]][id[j + 6]];
resX[idx] = gweight*(*(evolution_[level].Lx.ptr<float>(iy)+ix));
resY[idx] = gweight*(*(evolution_[level].Ly.ptr<float>(iy)+ix));
++idx;
}
}
}
hal::fastAtan2(resY, resX, Ang, ang_size, false);
// Loop slides pi/3 window around feature point
for (ang1 = 0; ang1 < (float)(2.0 * CV_PI); ang1 += 0.15f) {
ang2 = (ang1 + (float)(CV_PI / 3.0) >(float)(2.0*CV_PI) ? ang1 - (float)(5.0*CV_PI / 3.0) : ang1 + (float)(CV_PI / 3.0));
sumX = sumY = 0.f;
for (int k = 0; k < ang_size; ++k) {
// Get angle from the x-axis of the sample point
const float & ang = Ang[k];
// Determine whether the point is within the window
if (ang1 < ang2 && ang1 < ang && ang < ang2) {
sumX += resX[k];
sumY += resY[k];
}
else if (ang2 < ang1 &&
((ang > 0 && ang < ang2) || (ang > ang1 && ang < 2.0f*CV_PI))) {
sumX += resX[k];
sumY += resY[k];
}
}
// if the vector produced from this window is longer than all
// previous vectors then this forms the new dominant direction
if (sumX*sumX + sumY*sumY > max) {
// store largest orientation
max = sumX*sumX + sumY*sumY;
kpt.angle = getAngle(sumX, sumY);
}
}
}
/* ************************************************************************* */
/**
* @brief This method computes the upright descriptor (not rotation invariant) of
* the provided keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void MSURF_Upright_Descriptor_64_Invoker::Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float *desc) const {
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0;
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
int scale = 0, dsize = 0, level = 0;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
const std::vector<TEvolution>& evolution = *evolution_;
// Set the descriptor size and the sample and pattern sizes
dsize = 64;
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
ratio = (float)(1 << kpt.octave);
scale = fRound(0.5f*kpt.size / ratio);
level = kpt.class_id;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dx = dy = mdx = mdy = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
ys = yf + (ky*scale);
xs = xf + (kx*scale);
for (int k = i; k < i + 9; k++) {
for (int l = j; l < j + 9; l++) {
sample_y = k*scale + yf;
sample_x = l*scale + xf;
//Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.50f*scale);
y1 = (int)(sample_y - .5);
x1 = (int)(sample_x - .5);
y2 = (int)(sample_y + .5);
x2 = (int)(sample_x + .5);
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
rx = gauss_s1*rx;
ry = gauss_s1*ry;
// Sum the derivatives to the cumulative descriptor
dx += rx;
dy += ry;
mdx += fabs(rx);
mdy += fabs(ry);
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dx*gauss_s2;
desc[dcount++] = dy*gauss_s2;
desc[dcount++] = mdx*gauss_s2;
desc[dcount++] = mdy*gauss_s2;
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
// convert to unit vector
len = sqrt(len);
for (i = 0; i < dsize; i++) {
desc[i] /= len;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the descriptor of the provided keypoint given the
* main orientation of the keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
* @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor is inspired
* from Agrawal et al., CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching,
* ECCV 2008
*/
void MSURF_Descriptor_64_Invoker::Get_MSURF_Descriptor_64(const KeyPoint& kpt, float *desc) const {
float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, gauss_s2 = 0.0;
float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0;
float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0;
float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, res4 = 0.0;
int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0;
int kx = 0, ky = 0, i = 0, j = 0, dcount = 0;
int scale = 0, dsize = 0, level = 0;
// Subregion centers for the 4x4 gaussian weighting
float cx = -0.5f, cy = 0.5f;
const std::vector<TEvolution>& evolution = *evolution_;
// Set the descriptor size and the sample and pattern sizes
dsize = 64;
sample_step = 5;
pattern_size = 12;
// Get the information from the keypoint
ratio = (float)(1 << kpt.octave);
scale = fRound(0.5f*kpt.size / ratio);
angle = kpt.angle;
level = kpt.class_id;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
co = cos(angle);
si = sin(angle);
i = -8;
// Calculate descriptor for this interest point
// Area of size 24 s x 24 s
while (i < pattern_size) {
j = -8;
i = i - 4;
cx += 1.0f;
cy = -0.5f;
while (j < pattern_size) {
dx = dy = mdx = mdy = 0.0;
cy += 1.0f;
j = j - 4;
ky = i + sample_step;
kx = j + sample_step;
xs = xf + (-kx*scale*si + ky*scale*co);
ys = yf + (kx*scale*co + ky*scale*si);
for (int k = i; k < i + 9; ++k) {
for (int l = j; l < j + 9; ++l) {
// Get coords of sample point on the rotated axis
sample_y = yf + (l*scale*co + k*scale*si);
sample_x = xf + (-l*scale*si + k*scale*co);
// Get the gaussian weighted x and y responses
gauss_s1 = gaussian(xs - sample_x, ys - sample_y, 2.5f*scale);
y1 = fRound(sample_y - 0.5f);
x1 = fRound(sample_x - 0.5f);
y2 = fRound(sample_y + 0.5f);
x2 = fRound(sample_x + 0.5f);
fx = sample_x - x1;
fy = sample_y - y1;
res1 = *(evolution[level].Lx.ptr<float>(y1)+x1);
res2 = *(evolution[level].Lx.ptr<float>(y1)+x2);
res3 = *(evolution[level].Lx.ptr<float>(y2)+x1);
res4 = *(evolution[level].Lx.ptr<float>(y2)+x2);
rx = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
res1 = *(evolution[level].Ly.ptr<float>(y1)+x1);
res2 = *(evolution[level].Ly.ptr<float>(y1)+x2);
res3 = *(evolution[level].Ly.ptr<float>(y2)+x1);
res4 = *(evolution[level].Ly.ptr<float>(y2)+x2);
ry = (1.0f - fx)*(1.0f - fy)*res1 + fx*(1.0f - fy)*res2 + (1.0f - fx)*fy*res3 + fx*fy*res4;
// Get the x and y derivatives on the rotated axis
rry = gauss_s1*(rx*co + ry*si);
rrx = gauss_s1*(-rx*si + ry*co);
// Sum the derivatives to the cumulative descriptor
dx += rrx;
dy += rry;
mdx += fabs(rrx);
mdy += fabs(rry);
}
}
// Add the values to the descriptor vector
gauss_s2 = gaussian(cx - 2.0f, cy - 2.0f, 1.5f);
desc[dcount++] = dx*gauss_s2;
desc[dcount++] = dy*gauss_s2;
desc[dcount++] = mdx*gauss_s2;
desc[dcount++] = mdy*gauss_s2;
len += (dx*dx + dy*dy + mdx*mdx + mdy*mdy)*gauss_s2*gauss_s2;
j += 9;
}
i += 9;
}
// convert to unit vector
len = sqrt(len);
for (i = 0; i < dsize; i++) {
desc[i] /= len;
}
}
/* ************************************************************************* */
/**
* @brief This method computes the rupright descriptor (not rotation invariant) of
* the provided keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void Upright_MLDB_Full_Descriptor_Invoker::Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const {
float di = 0.0, dx = 0.0, dy = 0.0;
float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0;
float sample_x = 0.0, sample_y = 0.0, ratio = 0.0;
int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0;
int level = 0, nsamples = 0, scale = 0;
int dcount1 = 0, dcount2 = 0;
const AKAZEOptions & options = *options_;
const std::vector<TEvolution>& evolution = *evolution_;
// Matrices for the M-LDB descriptor
Mat values_1 = Mat::zeros(4, options.descriptor_channels, CV_32FC1);
Mat values_2 = Mat::zeros(9, options.descriptor_channels, CV_32FC1);
Mat values_3 = Mat::zeros(16, options.descriptor_channels, CV_32FC1);
// Get the information from the keypoint
ratio = (float)(1 << kpt.octave);
scale = fRound(0.5f*kpt.size / ratio);
level = kpt.class_id;
yf = kpt.pt.y / ratio;
xf = kpt.pt.x / ratio;
// First 2x2 grid
pattern_size = options_->descriptor_pattern_size;
sample_step = pattern_size;
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
di = dx = dy = 0.0;
nsamples = 0;
for (int k = i; k < i + sample_step; k++) {
for (int l = j; l < j + sample_step; l++) {
// Get the coordinates of the sample point
sample_y = yf + l*scale;
sample_x = xf + k*scale;
y1 = fRound(sample_y);
x1 = fRound(sample_x);
ri = *(evolution[level].Lt.ptr<float>(y1)+x1);
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
di += ri;
dx += rx;
dy += ry;
nsamples++;
}
}
di /= nsamples;
dx /= nsamples;
dy /= nsamples;
*(values_1.ptr<float>(dcount2)) = di;
*(values_1.ptr<float>(dcount2)+1) = dx;
*(values_1.ptr<float>(dcount2)+2) = dy;
dcount2++;
}
}
// Do binary comparison first level
for (int i = 0; i < 4; i++) {
for (int j = i + 1; j < 4; j++) {
if (*(values_1.ptr<float>(i)) > *(values_1.ptr<float>(j))) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
if (*(values_1.ptr<float>(i)+1) > *(values_1.ptr<float>(j)+1)) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
if (*(values_1.ptr<float>(i)+2) > *(values_1.ptr<float>(j)+2)) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
}
}
// Second 3x3 grid
sample_step = static_cast<int>(ceil(pattern_size*2. / 3.));
dcount2 = 0;
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
di = dx = dy = 0.0;
nsamples = 0;
for (int k = i; k < i + sample_step; k++) {
for (int l = j; l < j + sample_step; l++) {
// Get the coordinates of the sample point
sample_y = yf + l*scale;
sample_x = xf + k*scale;
y1 = fRound(sample_y);
x1 = fRound(sample_x);
ri = *(evolution[level].Lt.ptr<float>(y1)+x1);
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
di += ri;
dx += rx;
dy += ry;
nsamples++;
}
}
di /= nsamples;
dx /= nsamples;
dy /= nsamples;
*(values_2.ptr<float>(dcount2)) = di;
*(values_2.ptr<float>(dcount2)+1) = dx;
*(values_2.ptr<float>(dcount2)+2) = dy;
dcount2++;
}
}
//Do binary comparison second level
dcount2 = 0;
for (int i = 0; i < 9; i++) {
for (int j = i + 1; j < 9; j++) {
if (*(values_2.ptr<float>(i)) > *(values_2.ptr<float>(j))) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
if (*(values_2.ptr<float>(i)+1) > *(values_2.ptr<float>(j)+1)) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
if (*(values_2.ptr<float>(i)+2) > *(values_2.ptr<float>(j)+2)) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
}
}
// Third 4x4 grid
sample_step = pattern_size / 2;
dcount2 = 0;
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
di = dx = dy = 0.0;
nsamples = 0;
for (int k = i; k < i + sample_step; k++) {
for (int l = j; l < j + sample_step; l++) {
// Get the coordinates of the sample point
sample_y = yf + l*scale;
sample_x = xf + k*scale;
y1 = fRound(sample_y);
x1 = fRound(sample_x);
ri = *(evolution[level].Lt.ptr<float>(y1)+x1);
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
di += ri;
dx += rx;
dy += ry;
nsamples++;
}
}
di /= nsamples;
dx /= nsamples;
dy /= nsamples;
*(values_3.ptr<float>(dcount2)) = di;
*(values_3.ptr<float>(dcount2)+1) = dx;
*(values_3.ptr<float>(dcount2)+2) = dy;
dcount2++;
}
}
//Do binary comparison third level
dcount2 = 0;
for (int i = 0; i < 16; i++) {
for (int j = i + 1; j < 16; j++) {
if (*(values_3.ptr<float>(i)) > *(values_3.ptr<float>(j))) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
if (*(values_3.ptr<float>(i)+1) > *(values_3.ptr<float>(j)+1)) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
if (*(values_3.ptr<float>(i)+2) > *(values_3.ptr<float>(j)+2)) {
desc[dcount1 / 8] |= (1 << (dcount1 % 8));
}
dcount1++;
}
}
}
void MLDB_Full_Descriptor_Invoker::MLDB_Fill_Values(float* values, int sample_step, int level,
float xf, float yf, float co, float si, float scale) const
{
const std::vector<TEvolution>& evolution = *evolution_;
int pattern_size = options_->descriptor_pattern_size;
int chan = options_->descriptor_channels;
int valpos = 0;
for (int i = -pattern_size; i < pattern_size; i += sample_step) {
for (int j = -pattern_size; j < pattern_size; j += sample_step) {
float di, dx, dy;
di = dx = dy = 0.0;
int nsamples = 0;
for (int k = i; k < i + sample_step; k++) {
for (int l = j; l < j + sample_step; l++) {
float sample_y = yf + (l*co * scale + k*si*scale);
float sample_x = xf + (-l*si * scale + k*co*scale);
int y1 = fRound(sample_y);
int x1 = fRound(sample_x);
float ri = *(evolution[level].Lt.ptr<float>(y1)+x1);
di += ri;
if(chan > 1) {
float rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
float ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
if (chan == 2) {
dx += sqrtf(rx*rx + ry*ry);
}
else {
float rry = rx*co + ry*si;
float rrx = -rx*si + ry*co;
dx += rrx;
dy += rry;
}
}
nsamples++;
}
}
di /= nsamples;
dx /= nsamples;
dy /= nsamples;
values[valpos] = di;
if (chan > 1) {
values[valpos + 1] = dx;
}
if (chan > 2) {
values[valpos + 2] = dy;
}
valpos += chan;
}
}
}
void MLDB_Full_Descriptor_Invoker::MLDB_Binary_Comparisons(float* values, unsigned char* desc,
int count, int& dpos) const {
int chan = options_->descriptor_channels;
int* ivalues = (int*) values;
for(int i = 0; i < count * chan; i++) {
ivalues[i] = CV_TOGGLE_FLT(ivalues[i]);
}
for(int pos = 0; pos < chan; pos++) {
for (int i = 0; i < count; i++) {
int ival = ivalues[chan * i + pos];
for (int j = i + 1; j < count; j++) {
int res = ival > ivalues[chan * j + pos];
desc[dpos >> 3] |= (res << (dpos & 7));
dpos++;
}
}
}
}
/* ************************************************************************* */
/**
* @brief This method computes the descriptor of the provided keypoint given the
* main orientation of the keypoint
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void MLDB_Full_Descriptor_Invoker::Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char *desc) const {
const int max_channels = 3;
CV_Assert(options_->descriptor_channels <= max_channels);
float values[16*max_channels];
const double size_mult[3] = {1, 2.0/3.0, 1.0/2.0};
float ratio = (float)(1 << kpt.octave);
float scale = (float)fRound(0.5f*kpt.size / ratio);
float xf = kpt.pt.x / ratio;
float yf = kpt.pt.y / ratio;
float co = cos(kpt.angle);
float si = sin(kpt.angle);
int pattern_size = options_->descriptor_pattern_size;
int dpos = 0;
for(int lvl = 0; lvl < 3; lvl++) {
int val_count = (lvl + 2) * (lvl + 2);
int sample_step = static_cast<int>(ceil(pattern_size * size_mult[lvl]));
MLDB_Fill_Values(values, sample_step, kpt.class_id, xf, yf, co, si, scale);
MLDB_Binary_Comparisons(values, desc, val_count, dpos);
}
}
/* ************************************************************************* */
/**
* @brief This method computes the M-LDB descriptor of the provided keypoint given the
* main orientation of the keypoint. The descriptor is computed based on a subset of
* the bits of the whole descriptor
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void MLDB_Descriptor_Subset_Invoker::Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const {
float di = 0.f, dx = 0.f, dy = 0.f;
float rx = 0.f, ry = 0.f;
float sample_x = 0.f, sample_y = 0.f;
int x1 = 0, y1 = 0;
const AKAZEOptions & options = *options_;
const std::vector<TEvolution>& evolution = *evolution_;
// Get the information from the keypoint
float ratio = (float)(1 << kpt.octave);
int scale = fRound(0.5f*kpt.size / ratio);
float angle = kpt.angle;
int level = kpt.class_id;
float yf = kpt.pt.y / ratio;
float xf = kpt.pt.x / ratio;
float co = cos(angle);
float si = sin(angle);
// Allocate memory for the matrix of values
Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1);
// Sample everything, but only do the comparisons
vector<int> steps(3);
steps.at(0) = options.descriptor_pattern_size;
steps.at(1) = (int)ceil(2.f*options.descriptor_pattern_size / 3.f);
steps.at(2) = options.descriptor_pattern_size / 2;
for (int i = 0; i < descriptorSamples_.rows; i++) {
const int *coords = descriptorSamples_.ptr<int>(i);
int sample_step = steps.at(coords[0]);
di = 0.0f;
dx = 0.0f;
dy = 0.0f;
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
// Get the coordinates of the sample point
sample_y = yf + (l*scale*co + k*scale*si);
sample_x = xf + (-l*scale*si + k*scale*co);
y1 = fRound(sample_y);
x1 = fRound(sample_x);
di += *(evolution[level].Lt.ptr<float>(y1)+x1);
if (options.descriptor_channels > 1) {
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
if (options.descriptor_channels == 2) {
dx += sqrtf(rx*rx + ry*ry);
}
else if (options.descriptor_channels == 3) {
// Get the x and y derivatives on the rotated axis
dx += rx*co + ry*si;
dy += -rx*si + ry*co;
}
}
}
}
*(values.ptr<float>(options.descriptor_channels*i)) = di;
if (options.descriptor_channels == 2) {
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
}
else if (options.descriptor_channels == 3) {
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy;
}
}
// Do the comparisons
const float *vals = values.ptr<float>(0);
const int *comps = descriptorBits_.ptr<int>(0);
for (int i = 0; i<descriptorBits_.rows; i++) {
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) {
desc[i / 8] |= (1 << (i % 8));
}
}
}
/* ************************************************************************* */
/**
* @brief This method computes the upright (not rotation invariant) M-LDB descriptor
* of the provided keypoint given the main orientation of the keypoint.
* The descriptor is computed based on a subset of the bits of the whole descriptor
* @param kpt Input keypoint
* @param desc Descriptor vector
*/
void Upright_MLDB_Descriptor_Subset_Invoker::Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, unsigned char *desc) const {
float di = 0.0f, dx = 0.0f, dy = 0.0f;
float rx = 0.0f, ry = 0.0f;
float sample_x = 0.0f, sample_y = 0.0f;
int x1 = 0, y1 = 0;
const AKAZEOptions & options = *options_;
const std::vector<TEvolution>& evolution = *evolution_;
// Get the information from the keypoint
float ratio = (float)(1 << kpt.octave);
int scale = fRound(0.5f*kpt.size / ratio);
int level = kpt.class_id;
float yf = kpt.pt.y / ratio;
float xf = kpt.pt.x / ratio;
// Allocate memory for the matrix of values
Mat values = Mat_<float>::zeros((4 + 9 + 16)*options.descriptor_channels, 1);
vector<int> steps(3);
steps.at(0) = options.descriptor_pattern_size;
steps.at(1) = static_cast<int>(ceil(2.f*options.descriptor_pattern_size / 3.f));
steps.at(2) = options.descriptor_pattern_size / 2;
for (int i = 0; i < descriptorSamples_.rows; i++) {
const int *coords = descriptorSamples_.ptr<int>(i);
int sample_step = steps.at(coords[0]);
di = 0.0f, dx = 0.0f, dy = 0.0f;
for (int k = coords[1]; k < coords[1] + sample_step; k++) {
for (int l = coords[2]; l < coords[2] + sample_step; l++) {
// Get the coordinates of the sample point
sample_y = yf + l*scale;
sample_x = xf + k*scale;
y1 = fRound(sample_y);
x1 = fRound(sample_x);
di += *(evolution[level].Lt.ptr<float>(y1)+x1);
if (options.descriptor_channels > 1) {
rx = *(evolution[level].Lx.ptr<float>(y1)+x1);
ry = *(evolution[level].Ly.ptr<float>(y1)+x1);
if (options.descriptor_channels == 2) {
dx += sqrtf(rx*rx + ry*ry);
}
else if (options.descriptor_channels == 3) {
dx += rx;
dy += ry;
}
}
}
}
*(values.ptr<float>(options.descriptor_channels*i)) = di;
if (options.descriptor_channels == 2) {
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
}
else if (options.descriptor_channels == 3) {
*(values.ptr<float>(options.descriptor_channels*i + 1)) = dx;
*(values.ptr<float>(options.descriptor_channels*i + 2)) = dy;
}
}
// Do the comparisons
const float *vals = values.ptr<float>(0);
const int *comps = descriptorBits_.ptr<int>(0);
for (int i = 0; i<descriptorBits_.rows; i++) {
if (vals[comps[2 * i]] > vals[comps[2 * i + 1]]) {
desc[i / 8] |= (1 << (i % 8));
}
}
}
/* ************************************************************************* */
/**
* @brief This function computes a (quasi-random) list of bits to be taken
* from the full descriptor. To speed the extraction, the function creates
* a list of the samples that are involved in generating at least a bit (sampleList)
* and a list of the comparisons between those samples (comparisons)
* @param sampleList
* @param comparisons The matrix with the binary comparisons
* @param nbits The number of bits of the descriptor
* @param pattern_size The pattern size for the binary descriptor
* @param nchannels Number of channels to consider in the descriptor (1-3)
* @note The function keeps the 18 bits (3-channels by 6 comparisons) of the
* coarser grid, since it provides the most robust estimations
*/
void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits,
int pattern_size, int nchannels) {
int ssz = 0;
for (int i = 0; i < 3; i++) {
int gz = (i + 2)*(i + 2);
ssz += gz*(gz - 1) / 2;
}
ssz *= nchannels;
CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor
// Since the full descriptor is usually under 10k elements, we pick
// the selection from the full matrix. We take as many samples per
// pick as the number of channels. For every pick, we
// take the two samples involved and put them in the sampling list
Mat_<int> fullM(ssz / nchannels, 5);
for (int i = 0, c = 0; i < 3; i++) {
int gdiv = i + 2; //grid divisions, per row
int gsz = gdiv*gdiv;
int psz = (int)ceil(2.f*pattern_size / (float)gdiv);
for (int j = 0; j < gsz; j++) {
for (int k = j + 1; k < gsz; k++, c++) {
fullM(c, 0) = i;
fullM(c, 1) = psz*(j % gdiv) - pattern_size;
fullM(c, 2) = psz*(j / gdiv) - pattern_size;
fullM(c, 3) = psz*(k % gdiv) - pattern_size;
fullM(c, 4) = psz*(k / gdiv) - pattern_size;
}
}
}
srand(1024);
Mat_<int> comps = Mat_<int>(nchannels * (int)ceil(nbits / (float)nchannels), 2);
comps = 1000;
// Select some samples. A sample includes all channels
int count = 0;
int npicks = (int)ceil(nbits / (float)nchannels);
Mat_<int> samples(29, 3);
Mat_<int> fullcopy = fullM.clone();
samples = -1;
for (int i = 0; i < npicks; i++) {
int k = rand() % (fullM.rows - i);
if (i < 6) {
// Force use of the coarser grid values and comparisons
k = i;
}
bool n = true;
for (int j = 0; j < count; j++) {
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 1) && samples(j, 2) == fullcopy(k, 2)) {
n = false;
comps(i*nchannels, 0) = nchannels*j;
comps(i*nchannels + 1, 0) = nchannels*j + 1;
comps(i*nchannels + 2, 0) = nchannels*j + 2;
break;
}
}
if (n) {
samples(count, 0) = fullcopy(k, 0);
samples(count, 1) = fullcopy(k, 1);
samples(count, 2) = fullcopy(k, 2);
comps(i*nchannels, 0) = nchannels*count;
comps(i*nchannels + 1, 0) = nchannels*count + 1;
comps(i*nchannels + 2, 0) = nchannels*count + 2;
count++;
}
n = true;
for (int j = 0; j < count; j++) {
if (samples(j, 0) == fullcopy(k, 0) && samples(j, 1) == fullcopy(k, 3) && samples(j, 2) == fullcopy(k, 4)) {
n = false;
comps(i*nchannels, 1) = nchannels*j;
comps(i*nchannels + 1, 1) = nchannels*j + 1;
comps(i*nchannels + 2, 1) = nchannels*j + 2;
break;
}
}
if (n) {
samples(count, 0) = fullcopy(k, 0);
samples(count, 1) = fullcopy(k, 3);
samples(count, 2) = fullcopy(k, 4);
comps(i*nchannels, 1) = nchannels*count;
comps(i*nchannels + 1, 1) = nchannels*count + 1;
comps(i*nchannels + 2, 1) = nchannels*count + 2;
count++;
}
Mat tmp = fullcopy.row(k);
fullcopy.row(fullcopy.rows - i - 1).copyTo(tmp);
}
sampleList = samples.rowRange(0, count).clone();
comparisons = comps.rowRange(0, nbits).clone();
}
}