/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int, double, bool, int, int, int, double, int) { throw_no_cuda(); return Ptr<BroxOpticalFlow>(); }
#else
#define MIN_SIZE 32
// CUDA resize() is fast, but it differs from the CPU analog. Disabling this flag
// leads to an inefficient code. It's for debug purposes only.
#define ENABLE_CUDA_RESIZE 1
namespace cv { namespace cuda { namespace device { namespace optflow_farneback
{
void setPolynomialExpansionConsts(
int polyN, const float *g, const float *xg, const float *xxg,
float ig11, float ig03, float ig33, float ig55);
void polynomialExpansionGpu(const PtrStepSzf &src, int polyN, PtrStepSzf dst, cudaStream_t stream);
void setUpdateMatricesConsts();
void updateMatricesGpu(
const PtrStepSzf flowx, const PtrStepSzf flowy, const PtrStepSzf R0, const PtrStepSzf R1,
PtrStepSzf M, cudaStream_t stream);
void updateFlowGpu(
const PtrStepSzf M, PtrStepSzf flowx, PtrStepSzf flowy, cudaStream_t stream);
void boxFilter5Gpu(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
void boxFilter5Gpu_CC11(const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, cudaStream_t stream);
void setGaussianBlurKernel(const float *gKer, int ksizeHalf);
void gaussianBlurGpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
void gaussianBlur5Gpu_CC11(
const PtrStepSzf src, int ksizeHalf, PtrStepSzf dst, int borderType, cudaStream_t stream);
}}}}
namespace
{
class FarnebackOpticalFlowImpl : public FarnebackOpticalFlow
{
public:
FarnebackOpticalFlowImpl(int numLevels, double pyrScale, bool fastPyramids, int winSize,
int numIters, int polyN, double polySigma, int flags) :
numLevels_(numLevels), pyrScale_(pyrScale), fastPyramids_(fastPyramids), winSize_(winSize),
numIters_(numIters), polyN_(polyN), polySigma_(polySigma), flags_(flags)
{
}
virtual int getNumLevels() const { return numLevels_; }
virtual void setNumLevels(int numLevels) { numLevels_ = numLevels; }
virtual double getPyrScale() const { return pyrScale_; }
virtual void setPyrScale(double pyrScale) { pyrScale_ = pyrScale; }
virtual bool getFastPyramids() const { return fastPyramids_; }
virtual void setFastPyramids(bool fastPyramids) { fastPyramids_ = fastPyramids; }
virtual int getWinSize() const { return winSize_; }
virtual void setWinSize(int winSize) { winSize_ = winSize; }
virtual int getNumIters() const { return numIters_; }
virtual void setNumIters(int numIters) { numIters_ = numIters; }
virtual int getPolyN() const { return polyN_; }
virtual void setPolyN(int polyN) { polyN_ = polyN; }
virtual double getPolySigma() const { return polySigma_; }
virtual void setPolySigma(double polySigma) { polySigma_ = polySigma; }
virtual int getFlags() const { return flags_; }
virtual void setFlags(int flags) { flags_ = flags; }
virtual void calc(InputArray I0, InputArray I1, InputOutputArray flow, Stream& stream);
private:
int numLevels_;
double pyrScale_;
bool fastPyramids_;
int winSize_;
int numIters_;
int polyN_;
double polySigma_;
int flags_;
private:
void prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55);
void setPolynomialExpansionConsts(int n, double sigma);
void updateFlow_boxFilter(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
void updateFlow_gaussianBlur(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
void calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream);
GpuMat frames_[2];
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
std::vector<GpuMat> pyramid0_, pyramid1_;
};
void FarnebackOpticalFlowImpl::calc(InputArray _frame0, InputArray _frame1, InputOutputArray _flow, Stream& stream)
{
const GpuMat frame0 = _frame0.getGpuMat();
const GpuMat frame1 = _frame1.getGpuMat();
BufferPool pool(stream);
GpuMat flowx = pool.getBuffer(frame0.size(), CV_32FC1);
GpuMat flowy = pool.getBuffer(frame0.size(), CV_32FC1);
calcImpl(frame0, frame1, flowx, flowy, stream);
GpuMat flows[] = {flowx, flowy};
cuda::merge(flows, 2, _flow, stream);
}
GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat)
{
if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols)
return mat(Rect(0, 0, cols, rows));
return mat = GpuMat(rows, cols, type);
}
void FarnebackOpticalFlowImpl::prepareGaussian(
int n, double sigma, float *g, float *xg, float *xxg,
double &ig11, double &ig03, double &ig33, double &ig55)
{
double s = 0.;
for (int x = -n; x <= n; x++)
{
g[x] = (float)std::exp(-x*x/(2*sigma*sigma));
s += g[x];
}
s = 1./s;
for (int x = -n; x <= n; x++)
{
g[x] = (float)(g[x]*s);
xg[x] = (float)(x*g[x]);
xxg[x] = (float)(x*x*g[x]);
}
Mat_<double> G(6, 6);
G.setTo(0);
for (int y = -n; y <= n; y++)
{
for (int x = -n; x <= n; x++)
{
G(0,0) += g[y]*g[x];
G(1,1) += g[y]*g[x]*x*x;
G(3,3) += g[y]*g[x]*x*x*x*x;
G(5,5) += g[y]*g[x]*x*x*y*y;
}
}
//G[0][0] = 1.;
G(2,2) = G(0,3) = G(0,4) = G(3,0) = G(4,0) = G(1,1);
G(4,4) = G(3,3);
G(3,4) = G(4,3) = G(5,5);
// invG:
// [ x e e ]
// [ y ]
// [ y ]
// [ e z ]
// [ e z ]
// [ u ]
Mat_<double> invG = G.inv(DECOMP_CHOLESKY);
ig11 = invG(1,1);
ig03 = invG(0,3);
ig33 = invG(3,3);
ig55 = invG(5,5);
}
void FarnebackOpticalFlowImpl::setPolynomialExpansionConsts(int n, double sigma)
{
std::vector<float> buf(n*6 + 3);
float* g = &buf[0] + n;
float* xg = g + n*2 + 1;
float* xxg = xg + n*2 + 1;
if (sigma < FLT_EPSILON)
sigma = n*0.3;
double ig11, ig03, ig33, ig55;
prepareGaussian(n, sigma, g, xg, xxg, ig11, ig03, ig33, ig55);
device::optflow_farneback::setPolynomialExpansionConsts(n, g, xg, xxg, static_cast<float>(ig11), static_cast<float>(ig03), static_cast<float>(ig33), static_cast<float>(ig55));
}
void FarnebackOpticalFlowImpl::updateFlow_boxFilter(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
if (deviceSupports(FEATURE_SET_COMPUTE_12))
device::optflow_farneback::boxFilter5Gpu(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0]));
else
device::optflow_farneback::boxFilter5Gpu_CC11(M, blockSize/2, bufM, StreamAccessor::getStream(streams[0]));
swap(M, bufM);
for (int i = 1; i < 5; ++i)
streams[i].waitForCompletion();
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0]));
}
void FarnebackOpticalFlowImpl::updateFlow_gaussianBlur(
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[])
{
if (deviceSupports(FEATURE_SET_COMPUTE_12))
device::optflow_farneback::gaussianBlur5Gpu(
M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0]));
else
device::optflow_farneback::gaussianBlur5Gpu_CC11(
M, blockSize/2, bufM, BORDER_REPLICATE, StreamAccessor::getStream(streams[0]));
swap(M, bufM);
device::optflow_farneback::updateFlowGpu(M, flowx, flowy, StreamAccessor::getStream(streams[0]));
if (updateMatrices)
device::optflow_farneback::updateMatricesGpu(flowx, flowy, R0, R1, M, StreamAccessor::getStream(streams[0]));
}
void FarnebackOpticalFlowImpl::calcImpl(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &stream)
{
CV_Assert(frame0.channels() == 1 && frame1.channels() == 1);
CV_Assert(frame0.size() == frame1.size());
CV_Assert(polyN_ == 5 || polyN_ == 7);
CV_Assert(!fastPyramids_ || std::abs(pyrScale_ - 0.5) < 1e-6);
Stream streams[5];
if (stream)
streams[0] = stream;
Size size = frame0.size();
GpuMat prevFlowX, prevFlowY, curFlowX, curFlowY;
flowx.create(size, CV_32F);
flowy.create(size, CV_32F);
GpuMat flowx0 = flowx;
GpuMat flowy0 = flowy;
// Crop unnecessary levels
double scale = 1;
int numLevelsCropped = 0;
for (; numLevelsCropped < numLevels_; numLevelsCropped++)
{
scale *= pyrScale_;
if (size.width*scale < MIN_SIZE || size.height*scale < MIN_SIZE)
break;
}
frame0.convertTo(frames_[0], CV_32F, streams[0]);
frame1.convertTo(frames_[1], CV_32F, streams[1]);
if (fastPyramids_)
{
// Build Gaussian pyramids using pyrDown()
pyramid0_.resize(numLevelsCropped + 1);
pyramid1_.resize(numLevelsCropped + 1);
pyramid0_[0] = frames_[0];
pyramid1_[0] = frames_[1];
for (int i = 1; i <= numLevelsCropped; ++i)
{
cuda::pyrDown(pyramid0_[i - 1], pyramid0_[i], streams[0]);
cuda::pyrDown(pyramid1_[i - 1], pyramid1_[i], streams[1]);
}
}
setPolynomialExpansionConsts(polyN_, polySigma_);
device::optflow_farneback::setUpdateMatricesConsts();
for (int k = numLevelsCropped; k >= 0; k--)
{
streams[0].waitForCompletion();
scale = 1;
for (int i = 0; i < k; i++)
scale *= pyrScale_;
double sigma = (1./scale - 1) * 0.5;
int smoothSize = cvRound(sigma*5) | 1;
smoothSize = std::max(smoothSize, 3);
int width = cvRound(size.width*scale);
int height = cvRound(size.height*scale);
if (fastPyramids_)
{
width = pyramid0_[k].cols;
height = pyramid0_[k].rows;
}
if (k > 0)
{
curFlowX.create(height, width, CV_32F);
curFlowY.create(height, width, CV_32F);
}
else
{
curFlowX = flowx0;
curFlowY = flowy0;
}
if (!prevFlowX.data)
{
if (flags_ & OPTFLOW_USE_INITIAL_FLOW)
{
cuda::resize(flowx0, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
cuda::resize(flowy0, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
curFlowX.convertTo(curFlowX, curFlowX.depth(), scale, streams[0]);
curFlowY.convertTo(curFlowY, curFlowY.depth(), scale, streams[1]);
}
else
{
curFlowX.setTo(0, streams[0]);
curFlowY.setTo(0, streams[1]);
}
}
else
{
cuda::resize(prevFlowX, curFlowX, Size(width, height), 0, 0, INTER_LINEAR, streams[0]);
cuda::resize(prevFlowY, curFlowY, Size(width, height), 0, 0, INTER_LINEAR, streams[1]);
curFlowX.convertTo(curFlowX, curFlowX.depth(), 1./pyrScale_, streams[0]);
curFlowY.convertTo(curFlowY, curFlowY.depth(), 1./pyrScale_, streams[1]);
}
GpuMat M = allocMatFromBuf(5*height, width, CV_32F, M_);
GpuMat bufM = allocMatFromBuf(5*height, width, CV_32F, bufM_);
GpuMat R[2] =
{
allocMatFromBuf(5*height, width, CV_32F, R_[0]),
allocMatFromBuf(5*height, width, CV_32F, R_[1])
};
if (fastPyramids_)
{
device::optflow_farneback::polynomialExpansionGpu(pyramid0_[k], polyN_, R[0], StreamAccessor::getStream(streams[0]));
device::optflow_farneback::polynomialExpansionGpu(pyramid1_[k], polyN_, R[1], StreamAccessor::getStream(streams[1]));
}
else
{
GpuMat blurredFrame[2] =
{
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[0]),
allocMatFromBuf(size.height, size.width, CV_32F, blurredFrame_[1])
};
GpuMat pyrLevel[2] =
{
allocMatFromBuf(height, width, CV_32F, pyrLevel_[0]),
allocMatFromBuf(height, width, CV_32F, pyrLevel_[1])
};
Mat g = getGaussianKernel(smoothSize, sigma, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(smoothSize/2), smoothSize/2);
for (int i = 0; i < 2; i++)
{
device::optflow_farneback::gaussianBlurGpu(
frames_[i], smoothSize/2, blurredFrame[i], BORDER_REFLECT101, StreamAccessor::getStream(streams[i]));
cuda::resize(blurredFrame[i], pyrLevel[i], Size(width, height), 0.0, 0.0, INTER_LINEAR, streams[i]);
device::optflow_farneback::polynomialExpansionGpu(pyrLevel[i], polyN_, R[i], StreamAccessor::getStream(streams[i]));
}
}
streams[1].waitForCompletion();
device::optflow_farneback::updateMatricesGpu(curFlowX, curFlowY, R[0], R[1], M, StreamAccessor::getStream(streams[0]));
if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN)
{
Mat g = getGaussianKernel(winSize_, winSize_/2*0.3f, CV_32F);
device::optflow_farneback::setGaussianBlurKernel(g.ptr<float>(winSize_/2), winSize_/2);
}
for (int i = 0; i < numIters_; i++)
{
if (flags_ & OPTFLOW_FARNEBACK_GAUSSIAN)
updateFlow_gaussianBlur(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams);
else
updateFlow_boxFilter(R[0], R[1], curFlowX, curFlowY, M, bufM, winSize_, i < numIters_-1, streams);
}
prevFlowX = curFlowX;
prevFlowY = curFlowY;
}
flowx = curFlowX;
flowy = curFlowY;
if (!stream)
streams[0].waitForCompletion();
}
}
Ptr<FarnebackOpticalFlow> cv::cuda::FarnebackOpticalFlow::create(int numLevels, double pyrScale, bool fastPyramids, int winSize,
int numIters, int polyN, double polySigma, int flags)
{
return makePtr<FarnebackOpticalFlowImpl>(numLevels, pyrScale, fastPyramids, winSize,
numIters, polyN, polySigma, flags);
}
#endif