/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::cuda;
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int, int, double, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorMOG>(); }
#else
namespace cv { namespace cuda { namespace device
{
namespace mog
{
void mog_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzf weight, PtrStepSzf sortKey, PtrStepSzb mean, PtrStepSzb var,
int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma,
cudaStream_t stream);
void getBackgroundImage_gpu(int cn, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, int nmixtures, float backgroundRatio, cudaStream_t stream);
}
}}}
namespace
{
const int defaultNMixtures = 5;
const int defaultHistory = 200;
const float defaultBackgroundRatio = 0.7f;
const float defaultVarThreshold = 2.5f * 2.5f;
const float defaultNoiseSigma = 30.0f * 0.5f;
const float defaultInitialWeight = 0.05f;
class MOGImpl : public cuda::BackgroundSubtractorMOG
{
public:
MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma);
void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream);
void getBackgroundImage(OutputArray backgroundImage) const;
void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const;
int getHistory() const { return history_; }
void setHistory(int nframes) { history_ = nframes; }
int getNMixtures() const { return nmixtures_; }
void setNMixtures(int nmix) { nmixtures_ = nmix; }
double getBackgroundRatio() const { return backgroundRatio_; }
void setBackgroundRatio(double backgroundRatio) { backgroundRatio_ = (float) backgroundRatio; }
double getNoiseSigma() const { return noiseSigma_; }
void setNoiseSigma(double noiseSigma) { noiseSigma_ = (float) noiseSigma; }
private:
//! re-initiaization method
void initialize(Size frameSize, int frameType);
int history_;
int nmixtures_;
float backgroundRatio_;
float noiseSigma_;
float varThreshold_;
Size frameSize_;
int frameType_;
int nframes_;
GpuMat weight_;
GpuMat sortKey_;
GpuMat mean_;
GpuMat var_;
};
MOGImpl::MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma) :
frameSize_(0, 0), frameType_(0), nframes_(0)
{
history_ = history > 0 ? history : defaultHistory;
nmixtures_ = std::min(nmixtures > 0 ? nmixtures : defaultNMixtures, 8);
backgroundRatio_ = backgroundRatio > 0 ? (float) backgroundRatio : defaultBackgroundRatio;
noiseSigma_ = noiseSigma > 0 ? (float) noiseSigma : defaultNoiseSigma;
varThreshold_ = defaultVarThreshold;
}
void MOGImpl::apply(InputArray image, OutputArray fgmask, double learningRate)
{
apply(image, fgmask, learningRate, Stream::Null());
}
void MOGImpl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream& stream)
{
using namespace cv::cuda::device::mog;
GpuMat frame = _frame.getGpuMat();
CV_Assert( frame.depth() == CV_8U );
int ch = frame.channels();
int work_ch = ch;
if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels())
initialize(frame.size(), frame.type());
_fgmask.create(frameSize_, CV_8UC1);
GpuMat fgmask = _fgmask.getGpuMat();
++nframes_;
learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(nframes_, history_);
CV_Assert( learningRate >= 0 );
mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_,
varThreshold_, (float) learningRate, backgroundRatio_, noiseSigma_,
StreamAccessor::getStream(stream));
}
void MOGImpl::getBackgroundImage(OutputArray backgroundImage) const
{
getBackgroundImage(backgroundImage, Stream::Null());
}
void MOGImpl::getBackgroundImage(OutputArray _backgroundImage, Stream& stream) const
{
using namespace cv::cuda::device::mog;
_backgroundImage.create(frameSize_, frameType_);
GpuMat backgroundImage = _backgroundImage.getGpuMat();
getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio_, StreamAccessor::getStream(stream));
}
void MOGImpl::initialize(Size frameSize, int frameType)
{
CV_Assert( frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4 );
frameSize_ = frameSize;
frameType_ = frameType;
int ch = CV_MAT_CN(frameType);
int work_ch = ch;
// for each gaussian mixture of each pixel bg model we store
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
// the mean (nchannels values) and
// the diagonal covariance matrix (another nchannels values)
weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1);
mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch));
weight_.setTo(cv::Scalar::all(0));
sortKey_.setTo(cv::Scalar::all(0));
mean_.setTo(cv::Scalar::all(0));
var_.setTo(cv::Scalar::all(0));
nframes_ = 0;
}
}
Ptr<cuda::BackgroundSubtractorMOG> cv::cuda::createBackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma)
{
return makePtr<MOGImpl>(history, nmixtures, backgroundRatio, noiseSigma);
}
#endif