/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencv2/core/opencl/runtime/opencl_clamdfft.hpp"
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#include "opencl_kernels_core.hpp"
#include <map>
namespace cv
{
// On Win64 optimized versions of DFT and DCT fail the tests (fixed in VS2010)
#if defined _MSC_VER && !defined CV_ICC && defined _M_X64 && _MSC_VER < 1600
# pragma optimize("", off)
# pragma warning(disable: 4748)
#endif
#if IPP_VERSION_X100 >= 701
#define USE_IPP_DFT 1
#else
#undef USE_IPP_DFT
#endif
/****************************************************************************************\
Discrete Fourier Transform
\****************************************************************************************/
#define CV_MAX_LOCAL_DFT_SIZE (1 << 15)
static unsigned char bitrevTab[] =
{
0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0,
0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8,0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8,
0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4,0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4,
0x0c,0x8c,0x4c,0xcc,0x2c,0xac,0x6c,0xec,0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc,
0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2,0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2,
0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea,0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa,
0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6,0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6,
0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee,0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe,
0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1,0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1,
0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9,0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9,
0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5,0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5,
0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed,0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd,
0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3,0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3,
0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb,0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb,
0x07,0x87,0x47,0xc7,0x27,0xa7,0x67,0xe7,0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7,
0x0f,0x8f,0x4f,0xcf,0x2f,0xaf,0x6f,0xef,0x1f,0x9f,0x5f,0xdf,0x3f,0xbf,0x7f,0xff
};
static const double DFTTab[][2] =
{
{ 1.00000000000000000, 0.00000000000000000 },
{-1.00000000000000000, 0.00000000000000000 },
{ 0.00000000000000000, 1.00000000000000000 },
{ 0.70710678118654757, 0.70710678118654746 },
{ 0.92387953251128674, 0.38268343236508978 },
{ 0.98078528040323043, 0.19509032201612825 },
{ 0.99518472667219693, 0.09801714032956060 },
{ 0.99879545620517241, 0.04906767432741802 },
{ 0.99969881869620425, 0.02454122852291229 },
{ 0.99992470183914450, 0.01227153828571993 },
{ 0.99998117528260111, 0.00613588464915448 },
{ 0.99999529380957619, 0.00306795676296598 },
{ 0.99999882345170188, 0.00153398018628477 },
{ 0.99999970586288223, 0.00076699031874270 },
{ 0.99999992646571789, 0.00038349518757140 },
{ 0.99999998161642933, 0.00019174759731070 },
{ 0.99999999540410733, 0.00009587379909598 },
{ 0.99999999885102686, 0.00004793689960307 },
{ 0.99999999971275666, 0.00002396844980842 },
{ 0.99999999992818922, 0.00001198422490507 },
{ 0.99999999998204725, 0.00000599211245264 },
{ 0.99999999999551181, 0.00000299605622633 },
{ 0.99999999999887801, 0.00000149802811317 },
{ 0.99999999999971945, 0.00000074901405658 },
{ 0.99999999999992983, 0.00000037450702829 },
{ 0.99999999999998246, 0.00000018725351415 },
{ 0.99999999999999567, 0.00000009362675707 },
{ 0.99999999999999889, 0.00000004681337854 },
{ 0.99999999999999978, 0.00000002340668927 },
{ 0.99999999999999989, 0.00000001170334463 },
{ 1.00000000000000000, 0.00000000585167232 },
{ 1.00000000000000000, 0.00000000292583616 }
};
#define BitRev(i,shift) \
((int)((((unsigned)bitrevTab[(i)&255] << 24)+ \
((unsigned)bitrevTab[((i)>> 8)&255] << 16)+ \
((unsigned)bitrevTab[((i)>>16)&255] << 8)+ \
((unsigned)bitrevTab[((i)>>24)])) >> (shift)))
static int
DFTFactorize( int n, int* factors )
{
int nf = 0, f, i, j;
if( n <= 5 )
{
factors[0] = n;
return 1;
}
f = (((n - 1)^n)+1) >> 1;
if( f > 1 )
{
factors[nf++] = f;
n = f == n ? 1 : n/f;
}
for( f = 3; n > 1; )
{
int d = n/f;
if( d*f == n )
{
factors[nf++] = f;
n = d;
}
else
{
f += 2;
if( f*f > n )
break;
}
}
if( n > 1 )
factors[nf++] = n;
f = (factors[0] & 1) == 0;
for( i = f; i < (nf+f)/2; i++ )
CV_SWAP( factors[i], factors[nf-i-1+f], j );
return nf;
}
static void
DFTInit( int n0, int nf, int* factors, int* itab, int elem_size, void* _wave, int inv_itab )
{
int digits[34], radix[34];
int n = factors[0], m = 0;
int* itab0 = itab;
int i, j, k;
Complex<double> w, w1;
double t;
if( n0 <= 5 )
{
itab[0] = 0;
itab[n0-1] = n0-1;
if( n0 != 4 )
{
for( i = 1; i < n0-1; i++ )
itab[i] = i;
}
else
{
itab[1] = 2;
itab[2] = 1;
}
if( n0 == 5 )
{
if( elem_size == sizeof(Complex<double>) )
((Complex<double>*)_wave)[0] = Complex<double>(1.,0.);
else
((Complex<float>*)_wave)[0] = Complex<float>(1.f,0.f);
}
if( n0 != 4 )
return;
m = 2;
}
else
{
// radix[] is initialized from index 'nf' down to zero
assert (nf < 34);
radix[nf] = 1;
digits[nf] = 0;
for( i = 0; i < nf; i++ )
{
digits[i] = 0;
radix[nf-i-1] = radix[nf-i]*factors[nf-i-1];
}
if( inv_itab && factors[0] != factors[nf-1] )
itab = (int*)_wave;
if( (n & 1) == 0 )
{
int a = radix[1], na2 = n*a>>1, na4 = na2 >> 1;
for( m = 0; (unsigned)(1 << m) < (unsigned)n; m++ )
;
if( n <= 2 )
{
itab[0] = 0;
itab[1] = na2;
}
else if( n <= 256 )
{
int shift = 10 - m;
for( i = 0; i <= n - 4; i += 4 )
{
j = (bitrevTab[i>>2]>>shift)*a;
itab[i] = j;
itab[i+1] = j + na2;
itab[i+2] = j + na4;
itab[i+3] = j + na2 + na4;
}
}
else
{
int shift = 34 - m;
for( i = 0; i < n; i += 4 )
{
int i4 = i >> 2;
j = BitRev(i4,shift)*a;
itab[i] = j;
itab[i+1] = j + na2;
itab[i+2] = j + na4;
itab[i+3] = j + na2 + na4;
}
}
digits[1]++;
if( nf >= 2 )
{
for( i = n, j = radix[2]; i < n0; )
{
for( k = 0; k < n; k++ )
itab[i+k] = itab[k] + j;
if( (i += n) >= n0 )
break;
j += radix[2];
for( k = 1; ++digits[k] >= factors[k]; k++ )
{
digits[k] = 0;
j += radix[k+2] - radix[k];
}
}
}
}
else
{
for( i = 0, j = 0;; )
{
itab[i] = j;
if( ++i >= n0 )
break;
j += radix[1];
for( k = 0; ++digits[k] >= factors[k]; k++ )
{
digits[k] = 0;
j += radix[k+2] - radix[k];
}
}
}
if( itab != itab0 )
{
itab0[0] = 0;
for( i = n0 & 1; i < n0; i += 2 )
{
int k0 = itab[i];
int k1 = itab[i+1];
itab0[k0] = i;
itab0[k1] = i+1;
}
}
}
if( (n0 & (n0-1)) == 0 )
{
w.re = w1.re = DFTTab[m][0];
w.im = w1.im = -DFTTab[m][1];
}
else
{
t = -CV_PI*2/n0;
w.im = w1.im = sin(t);
w.re = w1.re = std::sqrt(1. - w1.im*w1.im);
}
n = (n0+1)/2;
if( elem_size == sizeof(Complex<double>) )
{
Complex<double>* wave = (Complex<double>*)_wave;
wave[0].re = 1.;
wave[0].im = 0.;
if( (n0 & 1) == 0 )
{
wave[n].re = -1.;
wave[n].im = 0;
}
for( i = 1; i < n; i++ )
{
wave[i] = w;
wave[n0-i].re = w.re;
wave[n0-i].im = -w.im;
t = w.re*w1.re - w.im*w1.im;
w.im = w.re*w1.im + w.im*w1.re;
w.re = t;
}
}
else
{
Complex<float>* wave = (Complex<float>*)_wave;
assert( elem_size == sizeof(Complex<float>) );
wave[0].re = 1.f;
wave[0].im = 0.f;
if( (n0 & 1) == 0 )
{
wave[n].re = -1.f;
wave[n].im = 0.f;
}
for( i = 1; i < n; i++ )
{
wave[i].re = (float)w.re;
wave[i].im = (float)w.im;
wave[n0-i].re = (float)w.re;
wave[n0-i].im = (float)-w.im;
t = w.re*w1.re - w.im*w1.im;
w.im = w.re*w1.im + w.im*w1.re;
w.re = t;
}
}
}
template<typename T> struct DFT_VecR4
{
int operator()(Complex<T>*, int, int, int&, const Complex<T>*) const { return 1; }
};
#if CV_SSE3
// optimized radix-4 transform
template<> struct DFT_VecR4<float>
{
int operator()(Complex<float>* dst, int N, int n0, int& _dw0, const Complex<float>* wave) const
{
int n = 1, i, j, nx, dw, dw0 = _dw0;
__m128 z = _mm_setzero_ps(), x02=z, x13=z, w01=z, w23=z, y01, y23, t0, t1;
Cv32suf t; t.i = 0x80000000;
__m128 neg0_mask = _mm_load_ss(&t.f);
__m128 neg3_mask = _mm_shuffle_ps(neg0_mask, neg0_mask, _MM_SHUFFLE(0,1,2,3));
for( ; n*4 <= N; )
{
nx = n;
n *= 4;
dw0 /= 4;
for( i = 0; i < n0; i += n )
{
Complexf *v0, *v1;
v0 = dst + i;
v1 = v0 + nx*2;
x02 = _mm_loadl_pi(x02, (const __m64*)&v0[0]);
x13 = _mm_loadl_pi(x13, (const __m64*)&v0[nx]);
x02 = _mm_loadh_pi(x02, (const __m64*)&v1[0]);
x13 = _mm_loadh_pi(x13, (const __m64*)&v1[nx]);
y01 = _mm_add_ps(x02, x13);
y23 = _mm_sub_ps(x02, x13);
t1 = _mm_xor_ps(_mm_shuffle_ps(y01, y23, _MM_SHUFFLE(2,3,3,2)), neg3_mask);
t0 = _mm_movelh_ps(y01, y23);
y01 = _mm_add_ps(t0, t1);
y23 = _mm_sub_ps(t0, t1);
_mm_storel_pi((__m64*)&v0[0], y01);
_mm_storeh_pi((__m64*)&v0[nx], y01);
_mm_storel_pi((__m64*)&v1[0], y23);
_mm_storeh_pi((__m64*)&v1[nx], y23);
for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
v0 = dst + i + j;
v1 = v0 + nx*2;
x13 = _mm_loadl_pi(x13, (const __m64*)&v0[nx]);
w23 = _mm_loadl_pi(w23, (const __m64*)&wave[dw*2]);
x13 = _mm_loadh_pi(x13, (const __m64*)&v1[nx]); // x1, x3 = r1 i1 r3 i3
w23 = _mm_loadh_pi(w23, (const __m64*)&wave[dw*3]); // w2, w3 = wr2 wi2 wr3 wi3
t0 = _mm_mul_ps(_mm_moveldup_ps(x13), w23);
t1 = _mm_mul_ps(_mm_movehdup_ps(x13), _mm_shuffle_ps(w23, w23, _MM_SHUFFLE(2,3,0,1)));
x13 = _mm_addsub_ps(t0, t1);
// re(x1*w2), im(x1*w2), re(x3*w3), im(x3*w3)
x02 = _mm_loadl_pi(x02, (const __m64*)&v1[0]); // x2 = r2 i2
w01 = _mm_loadl_pi(w01, (const __m64*)&wave[dw]); // w1 = wr1 wi1
x02 = _mm_shuffle_ps(x02, x02, _MM_SHUFFLE(0,0,1,1));
w01 = _mm_shuffle_ps(w01, w01, _MM_SHUFFLE(1,0,0,1));
x02 = _mm_mul_ps(x02, w01);
x02 = _mm_addsub_ps(x02, _mm_movelh_ps(x02, x02));
// re(x0) im(x0) re(x2*w1), im(x2*w1)
x02 = _mm_loadl_pi(x02, (const __m64*)&v0[0]);
y01 = _mm_add_ps(x02, x13);
y23 = _mm_sub_ps(x02, x13);
t1 = _mm_xor_ps(_mm_shuffle_ps(y01, y23, _MM_SHUFFLE(2,3,3,2)), neg3_mask);
t0 = _mm_movelh_ps(y01, y23);
y01 = _mm_add_ps(t0, t1);
y23 = _mm_sub_ps(t0, t1);
_mm_storel_pi((__m64*)&v0[0], y01);
_mm_storeh_pi((__m64*)&v0[nx], y01);
_mm_storel_pi((__m64*)&v1[0], y23);
_mm_storeh_pi((__m64*)&v1[nx], y23);
}
}
}
_dw0 = dw0;
return n;
}
};
#endif
#ifdef USE_IPP_DFT
static IppStatus ippsDFTFwd_CToC( const Complex<float>* src, Complex<float>* dst,
const void* spec, uchar* buf)
{
return ippsDFTFwd_CToC_32fc( (const Ipp32fc*)src, (Ipp32fc*)dst,
(const IppsDFTSpec_C_32fc*)spec, buf);
}
static IppStatus ippsDFTFwd_CToC( const Complex<double>* src, Complex<double>* dst,
const void* spec, uchar* buf)
{
return ippsDFTFwd_CToC_64fc( (const Ipp64fc*)src, (Ipp64fc*)dst,
(const IppsDFTSpec_C_64fc*)spec, buf);
}
static IppStatus ippsDFTInv_CToC( const Complex<float>* src, Complex<float>* dst,
const void* spec, uchar* buf)
{
return ippsDFTInv_CToC_32fc( (const Ipp32fc*)src, (Ipp32fc*)dst,
(const IppsDFTSpec_C_32fc*)spec, buf);
}
static IppStatus ippsDFTInv_CToC( const Complex<double>* src, Complex<double>* dst,
const void* spec, uchar* buf)
{
return ippsDFTInv_CToC_64fc( (const Ipp64fc*)src, (Ipp64fc*)dst,
(const IppsDFTSpec_C_64fc*)spec, buf);
}
static IppStatus ippsDFTFwd_RToPack( const float* src, float* dst,
const void* spec, uchar* buf)
{
return ippsDFTFwd_RToPack_32f( src, dst, (const IppsDFTSpec_R_32f*)spec, buf);
}
static IppStatus ippsDFTFwd_RToPack( const double* src, double* dst,
const void* spec, uchar* buf)
{
return ippsDFTFwd_RToPack_64f( src, dst, (const IppsDFTSpec_R_64f*)spec, buf);
}
static IppStatus ippsDFTInv_PackToR( const float* src, float* dst,
const void* spec, uchar* buf)
{
return ippsDFTInv_PackToR_32f( src, dst, (const IppsDFTSpec_R_32f*)spec, buf);
}
static IppStatus ippsDFTInv_PackToR( const double* src, double* dst,
const void* spec, uchar* buf)
{
return ippsDFTInv_PackToR_64f( src, dst, (const IppsDFTSpec_R_64f*)spec, buf);
}
#endif
enum { DFT_NO_PERMUTE=256, DFT_COMPLEX_INPUT_OR_OUTPUT=512 };
// mixed-radix complex discrete Fourier transform: double-precision version
template<typename T> static void
DFT( const Complex<T>* src, Complex<T>* dst, int n,
int nf, const int* factors, const int* itab,
const Complex<T>* wave, int tab_size,
const void*
#ifdef USE_IPP_DFT
spec
#endif
, Complex<T>* buf,
int flags, double _scale )
{
static const T sin_120 = (T)0.86602540378443864676372317075294;
static const T fft5_2 = (T)0.559016994374947424102293417182819;
static const T fft5_3 = (T)-0.951056516295153572116439333379382;
static const T fft5_4 = (T)-1.538841768587626701285145288018455;
static const T fft5_5 = (T)0.363271264002680442947733378740309;
int n0 = n, f_idx, nx;
int inv = flags & DFT_INVERSE;
int dw0 = tab_size, dw;
int i, j, k;
Complex<T> t;
T scale = (T)_scale;
int tab_step;
#ifdef USE_IPP_DFT
if( spec )
{
if( !inv )
{
if (ippsDFTFwd_CToC( src, dst, spec, (uchar*)buf ) >= 0)
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
}
else
{
if (ippsDFTInv_CToC( src, dst, spec, (uchar*)buf ) >= 0)
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
}
setIppErrorStatus();
}
#endif
tab_step = tab_size == n ? 1 : tab_size == n*2 ? 2 : tab_size/n;
// 0. shuffle data
if( dst != src )
{
assert( (flags & DFT_NO_PERMUTE) == 0 );
if( !inv )
{
for( i = 0; i <= n - 2; i += 2, itab += 2*tab_step )
{
int k0 = itab[0], k1 = itab[tab_step];
assert( (unsigned)k0 < (unsigned)n && (unsigned)k1 < (unsigned)n );
dst[i] = src[k0]; dst[i+1] = src[k1];
}
if( i < n )
dst[n-1] = src[n-1];
}
else
{
for( i = 0; i <= n - 2; i += 2, itab += 2*tab_step )
{
int k0 = itab[0], k1 = itab[tab_step];
assert( (unsigned)k0 < (unsigned)n && (unsigned)k1 < (unsigned)n );
t.re = src[k0].re; t.im = -src[k0].im;
dst[i] = t;
t.re = src[k1].re; t.im = -src[k1].im;
dst[i+1] = t;
}
if( i < n )
{
t.re = src[n-1].re; t.im = -src[n-1].im;
dst[i] = t;
}
}
}
else
{
if( (flags & DFT_NO_PERMUTE) == 0 )
{
CV_Assert( factors[0] == factors[nf-1] );
if( nf == 1 )
{
if( (n & 3) == 0 )
{
int n2 = n/2;
Complex<T>* dsth = dst + n2;
for( i = 0; i < n2; i += 2, itab += tab_step*2 )
{
j = itab[0];
assert( (unsigned)j < (unsigned)n2 );
CV_SWAP(dst[i+1], dsth[j], t);
if( j > i )
{
CV_SWAP(dst[i], dst[j], t);
CV_SWAP(dsth[i+1], dsth[j+1], t);
}
}
}
// else do nothing
}
else
{
for( i = 0; i < n; i++, itab += tab_step )
{
j = itab[0];
assert( (unsigned)j < (unsigned)n );
if( j > i )
CV_SWAP(dst[i], dst[j], t);
}
}
}
if( inv )
{
for( i = 0; i <= n - 2; i += 2 )
{
T t0 = -dst[i].im;
T t1 = -dst[i+1].im;
dst[i].im = t0; dst[i+1].im = t1;
}
if( i < n )
dst[n-1].im = -dst[n-1].im;
}
}
n = 1;
// 1. power-2 transforms
if( (factors[0] & 1) == 0 )
{
if( factors[0] >= 4 && checkHardwareSupport(CV_CPU_SSE3))
{
DFT_VecR4<T> vr4;
n = vr4(dst, factors[0], n0, dw0, wave);
}
// radix-4 transform
for( ; n*4 <= factors[0]; )
{
nx = n;
n *= 4;
dw0 /= 4;
for( i = 0; i < n0; i += n )
{
Complex<T> *v0, *v1;
T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4;
v0 = dst + i;
v1 = v0 + nx*2;
r0 = v1[0].re; i0 = v1[0].im;
r4 = v1[nx].re; i4 = v1[nx].im;
r1 = r0 + r4; i1 = i0 + i4;
r3 = i0 - i4; i3 = r4 - r0;
r2 = v0[0].re; i2 = v0[0].im;
r4 = v0[nx].re; i4 = v0[nx].im;
r0 = r2 + r4; i0 = i2 + i4;
r2 -= r4; i2 -= i4;
v0[0].re = r0 + r1; v0[0].im = i0 + i1;
v1[0].re = r0 - r1; v1[0].im = i0 - i1;
v0[nx].re = r2 + r3; v0[nx].im = i2 + i3;
v1[nx].re = r2 - r3; v1[nx].im = i2 - i3;
for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
v0 = dst + i + j;
v1 = v0 + nx*2;
r2 = v0[nx].re*wave[dw*2].re - v0[nx].im*wave[dw*2].im;
i2 = v0[nx].re*wave[dw*2].im + v0[nx].im*wave[dw*2].re;
r0 = v1[0].re*wave[dw].im + v1[0].im*wave[dw].re;
i0 = v1[0].re*wave[dw].re - v1[0].im*wave[dw].im;
r3 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
i3 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;
r1 = i0 + i3; i1 = r0 + r3;
r3 = r0 - r3; i3 = i3 - i0;
r4 = v0[0].re; i4 = v0[0].im;
r0 = r4 + r2; i0 = i4 + i2;
r2 = r4 - r2; i2 = i4 - i2;
v0[0].re = r0 + r1; v0[0].im = i0 + i1;
v1[0].re = r0 - r1; v1[0].im = i0 - i1;
v0[nx].re = r2 + r3; v0[nx].im = i2 + i3;
v1[nx].re = r2 - r3; v1[nx].im = i2 - i3;
}
}
}
for( ; n < factors[0]; )
{
// do the remaining radix-2 transform
nx = n;
n *= 2;
dw0 /= 2;
for( i = 0; i < n0; i += n )
{
Complex<T>* v = dst + i;
T r0 = v[0].re + v[nx].re;
T i0 = v[0].im + v[nx].im;
T r1 = v[0].re - v[nx].re;
T i1 = v[0].im - v[nx].im;
v[0].re = r0; v[0].im = i0;
v[nx].re = r1; v[nx].im = i1;
for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
v = dst + i + j;
r1 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
i1 = v[nx].im*wave[dw].re + v[nx].re*wave[dw].im;
r0 = v[0].re; i0 = v[0].im;
v[0].re = r0 + r1; v[0].im = i0 + i1;
v[nx].re = r0 - r1; v[nx].im = i0 - i1;
}
}
}
}
// 2. all the other transforms
for( f_idx = (factors[0]&1) ? 0 : 1; f_idx < nf; f_idx++ )
{
int factor = factors[f_idx];
nx = n;
n *= factor;
dw0 /= factor;
if( factor == 3 )
{
// radix-3
for( i = 0; i < n0; i += n )
{
Complex<T>* v = dst + i;
T r1 = v[nx].re + v[nx*2].re;
T i1 = v[nx].im + v[nx*2].im;
T r0 = v[0].re;
T i0 = v[0].im;
T r2 = sin_120*(v[nx].im - v[nx*2].im);
T i2 = sin_120*(v[nx*2].re - v[nx].re);
v[0].re = r0 + r1; v[0].im = i0 + i1;
r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
v[nx].re = r0 + r2; v[nx].im = i0 + i2;
v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
for( j = 1, dw = dw0; j < nx; j++, dw += dw0 )
{
v = dst + i + j;
r0 = v[nx].re*wave[dw].re - v[nx].im*wave[dw].im;
i0 = v[nx].re*wave[dw].im + v[nx].im*wave[dw].re;
i2 = v[nx*2].re*wave[dw*2].re - v[nx*2].im*wave[dw*2].im;
r2 = v[nx*2].re*wave[dw*2].im + v[nx*2].im*wave[dw*2].re;
r1 = r0 + i2; i1 = i0 + r2;
r2 = sin_120*(i0 - r2); i2 = sin_120*(i2 - r0);
r0 = v[0].re; i0 = v[0].im;
v[0].re = r0 + r1; v[0].im = i0 + i1;
r0 -= (T)0.5*r1; i0 -= (T)0.5*i1;
v[nx].re = r0 + r2; v[nx].im = i0 + i2;
v[nx*2].re = r0 - r2; v[nx*2].im = i0 - i2;
}
}
}
else if( factor == 5 )
{
// radix-5
for( i = 0; i < n0; i += n )
{
for( j = 0, dw = 0; j < nx; j++, dw += dw0 )
{
Complex<T>* v0 = dst + i + j;
Complex<T>* v1 = v0 + nx*2;
Complex<T>* v2 = v1 + nx*2;
T r0, i0, r1, i1, r2, i2, r3, i3, r4, i4, r5, i5;
r3 = v0[nx].re*wave[dw].re - v0[nx].im*wave[dw].im;
i3 = v0[nx].re*wave[dw].im + v0[nx].im*wave[dw].re;
r2 = v2[0].re*wave[dw*4].re - v2[0].im*wave[dw*4].im;
i2 = v2[0].re*wave[dw*4].im + v2[0].im*wave[dw*4].re;
r1 = r3 + r2; i1 = i3 + i2;
r3 -= r2; i3 -= i2;
r4 = v1[nx].re*wave[dw*3].re - v1[nx].im*wave[dw*3].im;
i4 = v1[nx].re*wave[dw*3].im + v1[nx].im*wave[dw*3].re;
r0 = v1[0].re*wave[dw*2].re - v1[0].im*wave[dw*2].im;
i0 = v1[0].re*wave[dw*2].im + v1[0].im*wave[dw*2].re;
r2 = r4 + r0; i2 = i4 + i0;
r4 -= r0; i4 -= i0;
r0 = v0[0].re; i0 = v0[0].im;
r5 = r1 + r2; i5 = i1 + i2;
v0[0].re = r0 + r5; v0[0].im = i0 + i5;
r0 -= (T)0.25*r5; i0 -= (T)0.25*i5;
r1 = fft5_2*(r1 - r2); i1 = fft5_2*(i1 - i2);
r2 = -fft5_3*(i3 + i4); i2 = fft5_3*(r3 + r4);
i3 *= -fft5_5; r3 *= fft5_5;
i4 *= -fft5_4; r4 *= fft5_4;
r5 = r2 + i3; i5 = i2 + r3;
r2 -= i4; i2 -= r4;
r3 = r0 + r1; i3 = i0 + i1;
r0 -= r1; i0 -= i1;
v0[nx].re = r3 + r2; v0[nx].im = i3 + i2;
v2[0].re = r3 - r2; v2[0].im = i3 - i2;
v1[0].re = r0 + r5; v1[0].im = i0 + i5;
v1[nx].re = r0 - r5; v1[nx].im = i0 - i5;
}
}
}
else
{
// radix-"factor" - an odd number
int p, q, factor2 = (factor - 1)/2;
int d, dd, dw_f = tab_size/factor;
Complex<T>* a = buf;
Complex<T>* b = buf + factor2;
for( i = 0; i < n0; i += n )
{
for( j = 0, dw = 0; j < nx; j++, dw += dw0 )
{
Complex<T>* v = dst + i + j;
Complex<T> v_0 = v[0];
Complex<T> vn_0 = v_0;
if( j == 0 )
{
for( p = 1, k = nx; p <= factor2; p++, k += nx )
{
T r0 = v[k].re + v[n-k].re;
T i0 = v[k].im - v[n-k].im;
T r1 = v[k].re - v[n-k].re;
T i1 = v[k].im + v[n-k].im;
vn_0.re += r0; vn_0.im += i1;
a[p-1].re = r0; a[p-1].im = i0;
b[p-1].re = r1; b[p-1].im = i1;
}
}
else
{
const Complex<T>* wave_ = wave + dw*factor;
d = dw;
for( p = 1, k = nx; p <= factor2; p++, k += nx, d += dw )
{
T r2 = v[k].re*wave[d].re - v[k].im*wave[d].im;
T i2 = v[k].re*wave[d].im + v[k].im*wave[d].re;
T r1 = v[n-k].re*wave_[-d].re - v[n-k].im*wave_[-d].im;
T i1 = v[n-k].re*wave_[-d].im + v[n-k].im*wave_[-d].re;
T r0 = r2 + r1;
T i0 = i2 - i1;
r1 = r2 - r1;
i1 = i2 + i1;
vn_0.re += r0; vn_0.im += i1;
a[p-1].re = r0; a[p-1].im = i0;
b[p-1].re = r1; b[p-1].im = i1;
}
}
v[0] = vn_0;
for( p = 1, k = nx; p <= factor2; p++, k += nx )
{
Complex<T> s0 = v_0, s1 = v_0;
d = dd = dw_f*p;
for( q = 0; q < factor2; q++ )
{
T r0 = wave[d].re * a[q].re;
T i0 = wave[d].im * a[q].im;
T r1 = wave[d].re * b[q].im;
T i1 = wave[d].im * b[q].re;
s1.re += r0 + i0; s0.re += r0 - i0;
s1.im += r1 - i1; s0.im += r1 + i1;
d += dd;
d -= -(d >= tab_size) & tab_size;
}
v[k] = s0;
v[n-k] = s1;
}
}
}
}
}
if( scale != 1 )
{
T re_scale = scale, im_scale = scale;
if( inv )
im_scale = -im_scale;
for( i = 0; i < n0; i++ )
{
T t0 = dst[i].re*re_scale;
T t1 = dst[i].im*im_scale;
dst[i].re = t0;
dst[i].im = t1;
}
}
else if( inv )
{
for( i = 0; i <= n0 - 2; i += 2 )
{
T t0 = -dst[i].im;
T t1 = -dst[i+1].im;
dst[i].im = t0;
dst[i+1].im = t1;
}
if( i < n0 )
dst[n0-1].im = -dst[n0-1].im;
}
}
/* FFT of real vector
output vector format:
re(0), re(1), im(1), ... , re(n/2-1), im((n+1)/2-1) [, re((n+1)/2)] OR ...
re(0), 0, re(1), im(1), ..., re(n/2-1), im((n+1)/2-1) [, re((n+1)/2), 0] */
template<typename T> static void
RealDFT( const T* src, T* dst, int n, int nf, int* factors, const int* itab,
const Complex<T>* wave, int tab_size, const void*
#ifdef USE_IPP_DFT
spec
#endif
,
Complex<T>* buf, int flags, double _scale )
{
int complex_output = (flags & DFT_COMPLEX_INPUT_OR_OUTPUT) != 0;
T scale = (T)_scale;
int j, n2 = n >> 1;
dst += complex_output;
#ifdef USE_IPP_DFT
if( spec )
{
if (ippsDFTFwd_RToPack( src, dst, spec, (uchar*)buf ) >=0)
{
if( complex_output )
{
dst[-1] = dst[0];
dst[0] = 0;
if( (n & 1) == 0 )
dst[n] = 0;
}
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
#endif
assert( tab_size == n );
if( n == 1 )
{
dst[0] = src[0]*scale;
}
else if( n == 2 )
{
T t = (src[0] + src[1])*scale;
dst[1] = (src[0] - src[1])*scale;
dst[0] = t;
}
else if( n & 1 )
{
dst -= complex_output;
Complex<T>* _dst = (Complex<T>*)dst;
_dst[0].re = src[0]*scale;
_dst[0].im = 0;
for( j = 1; j < n; j += 2 )
{
T t0 = src[itab[j]]*scale;
T t1 = src[itab[j+1]]*scale;
_dst[j].re = t0;
_dst[j].im = 0;
_dst[j+1].re = t1;
_dst[j+1].im = 0;
}
DFT( _dst, _dst, n, nf, factors, itab, wave,
tab_size, 0, buf, DFT_NO_PERMUTE, 1 );
if( !complex_output )
dst[1] = dst[0];
}
else
{
T t0, t;
T h1_re, h1_im, h2_re, h2_im;
T scale2 = scale*(T)0.5;
factors[0] >>= 1;
DFT( (Complex<T>*)src, (Complex<T>*)dst, n2, nf - (factors[0] == 1),
factors + (factors[0] == 1),
itab, wave, tab_size, 0, buf, 0, 1 );
factors[0] <<= 1;
t = dst[0] - dst[1];
dst[0] = (dst[0] + dst[1])*scale;
dst[1] = t*scale;
t0 = dst[n2];
t = dst[n-1];
dst[n-1] = dst[1];
for( j = 2, wave++; j < n2; j += 2, wave++ )
{
/* calc odd */
h2_re = scale2*(dst[j+1] + t);
h2_im = scale2*(dst[n-j] - dst[j]);
/* calc even */
h1_re = scale2*(dst[j] + dst[n-j]);
h1_im = scale2*(dst[j+1] - t);
/* rotate */
t = h2_re*wave->re - h2_im*wave->im;
h2_im = h2_re*wave->im + h2_im*wave->re;
h2_re = t;
t = dst[n-j-1];
dst[j-1] = h1_re + h2_re;
dst[n-j-1] = h1_re - h2_re;
dst[j] = h1_im + h2_im;
dst[n-j] = h2_im - h1_im;
}
if( j <= n2 )
{
dst[n2-1] = t0*scale;
dst[n2] = -t*scale;
}
}
if( complex_output && ((n & 1) == 0 || n == 1))
{
dst[-1] = dst[0];
dst[0] = 0;
if( n > 1 )
dst[n] = 0;
}
}
/* Inverse FFT of complex conjugate-symmetric vector
input vector format:
re[0], re[1], im[1], ... , re[n/2-1], im[n/2-1], re[n/2] OR
re(0), 0, re(1), im(1), ..., re(n/2-1), im((n+1)/2-1) [, re((n+1)/2), 0] */
template<typename T> static void
CCSIDFT( const T* src, T* dst, int n, int nf, int* factors, const int* itab,
const Complex<T>* wave, int tab_size,
const void*
#ifdef USE_IPP_DFT
spec
#endif
, Complex<T>* buf,
int flags, double _scale )
{
int complex_input = (flags & DFT_COMPLEX_INPUT_OR_OUTPUT) != 0;
int j, k, n2 = (n+1) >> 1;
T scale = (T)_scale;
T save_s1 = 0.;
T t0, t1, t2, t3, t;
assert( tab_size == n );
if( complex_input )
{
assert( src != dst );
save_s1 = src[1];
((T*)src)[1] = src[0];
src++;
}
#ifdef USE_IPP_DFT
if( spec )
{
if (ippsDFTInv_PackToR( src, dst, spec, (uchar*)buf ) >=0)
{
if( complex_input )
((T*)src)[0] = (T)save_s1;
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
#endif
if( n == 1 )
{
dst[0] = (T)(src[0]*scale);
}
else if( n == 2 )
{
t = (src[0] + src[1])*scale;
dst[1] = (src[0] - src[1])*scale;
dst[0] = t;
}
else if( n & 1 )
{
Complex<T>* _src = (Complex<T>*)(src-1);
Complex<T>* _dst = (Complex<T>*)dst;
_dst[0].re = src[0];
_dst[0].im = 0;
for( j = 1; j < n2; j++ )
{
int k0 = itab[j], k1 = itab[n-j];
t0 = _src[j].re; t1 = _src[j].im;
_dst[k0].re = t0; _dst[k0].im = -t1;
_dst[k1].re = t0; _dst[k1].im = t1;
}
DFT( _dst, _dst, n, nf, factors, itab, wave,
tab_size, 0, buf, DFT_NO_PERMUTE, 1. );
dst[0] *= scale;
for( j = 1; j < n; j += 2 )
{
t0 = dst[j*2]*scale;
t1 = dst[j*2+2]*scale;
dst[j] = t0;
dst[j+1] = t1;
}
}
else
{
int inplace = src == dst;
const Complex<T>* w = wave;
t = src[1];
t0 = (src[0] + src[n-1]);
t1 = (src[n-1] - src[0]);
dst[0] = t0;
dst[1] = t1;
for( j = 2, w++; j < n2; j += 2, w++ )
{
T h1_re, h1_im, h2_re, h2_im;
h1_re = (t + src[n-j-1]);
h1_im = (src[j] - src[n-j]);
h2_re = (t - src[n-j-1]);
h2_im = (src[j] + src[n-j]);
t = h2_re*w->re + h2_im*w->im;
h2_im = h2_im*w->re - h2_re*w->im;
h2_re = t;
t = src[j+1];
t0 = h1_re - h2_im;
t1 = -h1_im - h2_re;
t2 = h1_re + h2_im;
t3 = h1_im - h2_re;
if( inplace )
{
dst[j] = t0;
dst[j+1] = t1;
dst[n-j] = t2;
dst[n-j+1]= t3;
}
else
{
int j2 = j >> 1;
k = itab[j2];
dst[k] = t0;
dst[k+1] = t1;
k = itab[n2-j2];
dst[k] = t2;
dst[k+1]= t3;
}
}
if( j <= n2 )
{
t0 = t*2;
t1 = src[n2]*2;
if( inplace )
{
dst[n2] = t0;
dst[n2+1] = t1;
}
else
{
k = itab[n2];
dst[k*2] = t0;
dst[k*2+1] = t1;
}
}
factors[0] >>= 1;
DFT( (Complex<T>*)dst, (Complex<T>*)dst, n2,
nf - (factors[0] == 1),
factors + (factors[0] == 1), itab,
wave, tab_size, 0, buf,
inplace ? 0 : DFT_NO_PERMUTE, 1. );
factors[0] <<= 1;
for( j = 0; j < n; j += 2 )
{
t0 = dst[j]*scale;
t1 = dst[j+1]*(-scale);
dst[j] = t0;
dst[j+1] = t1;
}
}
if( complex_input )
((T*)src)[0] = (T)save_s1;
}
static void
CopyColumn( const uchar* _src, size_t src_step,
uchar* _dst, size_t dst_step,
int len, size_t elem_size )
{
int i, t0, t1;
const int* src = (const int*)_src;
int* dst = (int*)_dst;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
if( elem_size == sizeof(int) )
{
for( i = 0; i < len; i++, src += src_step, dst += dst_step )
dst[0] = src[0];
}
else if( elem_size == sizeof(int)*2 )
{
for( i = 0; i < len; i++, src += src_step, dst += dst_step )
{
t0 = src[0]; t1 = src[1];
dst[0] = t0; dst[1] = t1;
}
}
else if( elem_size == sizeof(int)*4 )
{
for( i = 0; i < len; i++, src += src_step, dst += dst_step )
{
t0 = src[0]; t1 = src[1];
dst[0] = t0; dst[1] = t1;
t0 = src[2]; t1 = src[3];
dst[2] = t0; dst[3] = t1;
}
}
}
static void
CopyFrom2Columns( const uchar* _src, size_t src_step,
uchar* _dst0, uchar* _dst1,
int len, size_t elem_size )
{
int i, t0, t1;
const int* src = (const int*)_src;
int* dst0 = (int*)_dst0;
int* dst1 = (int*)_dst1;
src_step /= sizeof(src[0]);
if( elem_size == sizeof(int) )
{
for( i = 0; i < len; i++, src += src_step )
{
t0 = src[0]; t1 = src[1];
dst0[i] = t0; dst1[i] = t1;
}
}
else if( elem_size == sizeof(int)*2 )
{
for( i = 0; i < len*2; i += 2, src += src_step )
{
t0 = src[0]; t1 = src[1];
dst0[i] = t0; dst0[i+1] = t1;
t0 = src[2]; t1 = src[3];
dst1[i] = t0; dst1[i+1] = t1;
}
}
else if( elem_size == sizeof(int)*4 )
{
for( i = 0; i < len*4; i += 4, src += src_step )
{
t0 = src[0]; t1 = src[1];
dst0[i] = t0; dst0[i+1] = t1;
t0 = src[2]; t1 = src[3];
dst0[i+2] = t0; dst0[i+3] = t1;
t0 = src[4]; t1 = src[5];
dst1[i] = t0; dst1[i+1] = t1;
t0 = src[6]; t1 = src[7];
dst1[i+2] = t0; dst1[i+3] = t1;
}
}
}
static void
CopyTo2Columns( const uchar* _src0, const uchar* _src1,
uchar* _dst, size_t dst_step,
int len, size_t elem_size )
{
int i, t0, t1;
const int* src0 = (const int*)_src0;
const int* src1 = (const int*)_src1;
int* dst = (int*)_dst;
dst_step /= sizeof(dst[0]);
if( elem_size == sizeof(int) )
{
for( i = 0; i < len; i++, dst += dst_step )
{
t0 = src0[i]; t1 = src1[i];
dst[0] = t0; dst[1] = t1;
}
}
else if( elem_size == sizeof(int)*2 )
{
for( i = 0; i < len*2; i += 2, dst += dst_step )
{
t0 = src0[i]; t1 = src0[i+1];
dst[0] = t0; dst[1] = t1;
t0 = src1[i]; t1 = src1[i+1];
dst[2] = t0; dst[3] = t1;
}
}
else if( elem_size == sizeof(int)*4 )
{
for( i = 0; i < len*4; i += 4, dst += dst_step )
{
t0 = src0[i]; t1 = src0[i+1];
dst[0] = t0; dst[1] = t1;
t0 = src0[i+2]; t1 = src0[i+3];
dst[2] = t0; dst[3] = t1;
t0 = src1[i]; t1 = src1[i+1];
dst[4] = t0; dst[5] = t1;
t0 = src1[i+2]; t1 = src1[i+3];
dst[6] = t0; dst[7] = t1;
}
}
}
static void
ExpandCCS( uchar* _ptr, int n, int elem_size )
{
int i;
if( elem_size == (int)sizeof(float) )
{
float* p = (float*)_ptr;
for( i = 1; i < (n+1)/2; i++ )
{
p[(n-i)*2] = p[i*2-1];
p[(n-i)*2+1] = -p[i*2];
}
if( (n & 1) == 0 )
{
p[n] = p[n-1];
p[n+1] = 0.f;
n--;
}
for( i = n-1; i > 0; i-- )
p[i+1] = p[i];
p[1] = 0.f;
}
else
{
double* p = (double*)_ptr;
for( i = 1; i < (n+1)/2; i++ )
{
p[(n-i)*2] = p[i*2-1];
p[(n-i)*2+1] = -p[i*2];
}
if( (n & 1) == 0 )
{
p[n] = p[n-1];
p[n+1] = 0.f;
n--;
}
for( i = n-1; i > 0; i-- )
p[i+1] = p[i];
p[1] = 0.f;
}
}
typedef void (*DFTFunc)(
const void* src, void* dst, int n, int nf, int* factors,
const int* itab, const void* wave, int tab_size,
const void* spec, void* buf, int inv, double scale );
static void DFT_32f( const Complexf* src, Complexf* dst, int n,
int nf, const int* factors, const int* itab,
const Complexf* wave, int tab_size,
const void* spec, Complexf* buf,
int flags, double scale )
{
DFT(src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}
static void DFT_64f( const Complexd* src, Complexd* dst, int n,
int nf, const int* factors, const int* itab,
const Complexd* wave, int tab_size,
const void* spec, Complexd* buf,
int flags, double scale )
{
DFT(src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}
static void RealDFT_32f( const float* src, float* dst, int n, int nf, int* factors,
const int* itab, const Complexf* wave, int tab_size, const void* spec,
Complexf* buf, int flags, double scale )
{
RealDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}
static void RealDFT_64f( const double* src, double* dst, int n, int nf, int* factors,
const int* itab, const Complexd* wave, int tab_size, const void* spec,
Complexd* buf, int flags, double scale )
{
RealDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}
static void CCSIDFT_32f( const float* src, float* dst, int n, int nf, int* factors,
const int* itab, const Complexf* wave, int tab_size, const void* spec,
Complexf* buf, int flags, double scale )
{
CCSIDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}
static void CCSIDFT_64f( const double* src, double* dst, int n, int nf, int* factors,
const int* itab, const Complexd* wave, int tab_size, const void* spec,
Complexd* buf, int flags, double scale )
{
CCSIDFT( src, dst, n, nf, factors, itab, wave, tab_size, spec, buf, flags, scale);
}
}
#ifdef USE_IPP_DFT
typedef IppStatus (CV_STDCALL* IppDFTGetSizeFunc)(int, int, IppHintAlgorithm, int*, int*, int*);
typedef IppStatus (CV_STDCALL* IppDFTInitFunc)(int, int, IppHintAlgorithm, void*, uchar*);
#endif
namespace cv
{
#if defined USE_IPP_DFT
typedef IppStatus (CV_STDCALL* ippiDFT_C_Func)(const Ipp32fc*, int, Ipp32fc*, int, const IppiDFTSpec_C_32fc*, Ipp8u*);
typedef IppStatus (CV_STDCALL* ippiDFT_R_Func)(const Ipp32f* , int, Ipp32f* , int, const IppiDFTSpec_R_32f* , Ipp8u*);
template <typename Dft>
class Dft_C_IPPLoop_Invoker : public ParallelLoopBody
{
public:
Dft_C_IPPLoop_Invoker(const Mat& _src, Mat& _dst, const Dft& _ippidft, int _norm_flag, bool *_ok) :
ParallelLoopBody(), src(_src), dst(_dst), ippidft(_ippidft), norm_flag(_norm_flag), ok(_ok)
{
*ok = true;
}
virtual void operator()(const Range& range) const
{
IppStatus status;
Ipp8u* pBuffer = 0;
Ipp8u* pMemInit= 0;
int sizeBuffer=0;
int sizeSpec=0;
int sizeInit=0;
IppiSize srcRoiSize = {src.cols, 1};
status = ippiDFTGetSize_C_32fc(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
if ( status < 0 )
{
*ok = false;
return;
}
IppiDFTSpec_C_32fc* pDFTSpec = (IppiDFTSpec_C_32fc*)ippMalloc( sizeSpec );
if ( sizeInit > 0 )
pMemInit = (Ipp8u*)ippMalloc( sizeInit );
if ( sizeBuffer > 0 )
pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );
status = ippiDFTInit_C_32fc( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );
if ( sizeInit > 0 )
ippFree( pMemInit );
if ( status < 0 )
{
ippFree( pDFTSpec );
if ( sizeBuffer > 0 )
ippFree( pBuffer );
*ok = false;
return;
}
for( int i = range.start; i < range.end; ++i)
if(!ippidft(src.ptr<Ipp32fc>(i), (int)src.step,dst.ptr<Ipp32fc>(i), (int)dst.step, pDFTSpec, (Ipp8u*)pBuffer))
{
*ok = false;
}
if ( sizeBuffer > 0 )
ippFree( pBuffer );
ippFree( pDFTSpec );
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
}
private:
const Mat& src;
Mat& dst;
const Dft& ippidft;
int norm_flag;
bool *ok;
const Dft_C_IPPLoop_Invoker& operator= (const Dft_C_IPPLoop_Invoker&);
};
template <typename Dft>
class Dft_R_IPPLoop_Invoker : public ParallelLoopBody
{
public:
Dft_R_IPPLoop_Invoker(const Mat& _src, Mat& _dst, const Dft& _ippidft, int _norm_flag, bool *_ok) :
ParallelLoopBody(), src(_src), dst(_dst), ippidft(_ippidft), norm_flag(_norm_flag), ok(_ok)
{
*ok = true;
}
virtual void operator()(const Range& range) const
{
IppStatus status;
Ipp8u* pBuffer = 0;
Ipp8u* pMemInit= 0;
int sizeBuffer=0;
int sizeSpec=0;
int sizeInit=0;
IppiSize srcRoiSize = {src.cols, 1};
status = ippiDFTGetSize_R_32f(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
if ( status < 0 )
{
*ok = false;
return;
}
IppiDFTSpec_R_32f* pDFTSpec = (IppiDFTSpec_R_32f*)ippMalloc( sizeSpec );
if ( sizeInit > 0 )
pMemInit = (Ipp8u*)ippMalloc( sizeInit );
if ( sizeBuffer > 0 )
pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );
status = ippiDFTInit_R_32f( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );
if ( sizeInit > 0 )
ippFree( pMemInit );
if ( status < 0 )
{
ippFree( pDFTSpec );
if ( sizeBuffer > 0 )
ippFree( pBuffer );
*ok = false;
return;
}
for( int i = range.start; i < range.end; ++i)
if(!ippidft(src.ptr<float>(i), (int)src.step,dst.ptr<float>(i), (int)dst.step, pDFTSpec, (Ipp8u*)pBuffer))
{
*ok = false;
}
if ( sizeBuffer > 0 )
ippFree( pBuffer );
ippFree( pDFTSpec );
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
}
private:
const Mat& src;
Mat& dst;
const Dft& ippidft;
int norm_flag;
bool *ok;
const Dft_R_IPPLoop_Invoker& operator= (const Dft_R_IPPLoop_Invoker&);
};
template <typename Dft>
bool Dft_C_IPPLoop(const Mat& src, Mat& dst, const Dft& ippidft, int norm_flag)
{
bool ok;
parallel_for_(Range(0, src.rows), Dft_C_IPPLoop_Invoker<Dft>(src, dst, ippidft, norm_flag, &ok), src.total()/(double)(1<<16) );
return ok;
}
template <typename Dft>
bool Dft_R_IPPLoop(const Mat& src, Mat& dst, const Dft& ippidft, int norm_flag)
{
bool ok;
parallel_for_(Range(0, src.rows), Dft_R_IPPLoop_Invoker<Dft>(src, dst, ippidft, norm_flag, &ok), src.total()/(double)(1<<16) );
return ok;
}
struct IPPDFT_C_Functor
{
IPPDFT_C_Functor(ippiDFT_C_Func _func) : func(_func){}
bool operator()(const Ipp32fc* src, int srcStep, Ipp32fc* dst, int dstStep, const IppiDFTSpec_C_32fc* pDFTSpec, Ipp8u* pBuffer) const
{
return func ? func(src, srcStep, dst, dstStep, pDFTSpec, pBuffer) >= 0 : false;
}
private:
ippiDFT_C_Func func;
};
struct IPPDFT_R_Functor
{
IPPDFT_R_Functor(ippiDFT_R_Func _func) : func(_func){}
bool operator()(const Ipp32f* src, int srcStep, Ipp32f* dst, int dstStep, const IppiDFTSpec_R_32f* pDFTSpec, Ipp8u* pBuffer) const
{
return func ? func(src, srcStep, dst, dstStep, pDFTSpec, pBuffer) >= 0 : false;
}
private:
ippiDFT_R_Func func;
};
static bool ippi_DFT_C_32F(const Mat& src, Mat& dst, bool inv, int norm_flag)
{
IppStatus status;
Ipp8u* pBuffer = 0;
Ipp8u* pMemInit= 0;
int sizeBuffer=0;
int sizeSpec=0;
int sizeInit=0;
IppiSize srcRoiSize = {src.cols, src.rows};
status = ippiDFTGetSize_C_32fc(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
if ( status < 0 )
return false;
IppiDFTSpec_C_32fc* pDFTSpec = (IppiDFTSpec_C_32fc*)ippMalloc( sizeSpec );
if ( sizeInit > 0 )
pMemInit = (Ipp8u*)ippMalloc( sizeInit );
if ( sizeBuffer > 0 )
pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );
status = ippiDFTInit_C_32fc( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );
if ( sizeInit > 0 )
ippFree( pMemInit );
if ( status < 0 )
{
ippFree( pDFTSpec );
if ( sizeBuffer > 0 )
ippFree( pBuffer );
return false;
}
if (!inv)
status = ippiDFTFwd_CToC_32fc_C1R( src.ptr<Ipp32fc>(), (int)src.step, dst.ptr<Ipp32fc>(), (int)dst.step, pDFTSpec, pBuffer );
else
status = ippiDFTInv_CToC_32fc_C1R( src.ptr<Ipp32fc>(), (int)src.step, dst.ptr<Ipp32fc>(), (int)dst.step, pDFTSpec, pBuffer );
if ( sizeBuffer > 0 )
ippFree( pBuffer );
ippFree( pDFTSpec );
if(status >= 0)
{
CV_IMPL_ADD(CV_IMPL_IPP);
return true;
}
return false;
}
static bool ippi_DFT_R_32F(const Mat& src, Mat& dst, bool inv, int norm_flag)
{
IppStatus status;
Ipp8u* pBuffer = 0;
Ipp8u* pMemInit= 0;
int sizeBuffer=0;
int sizeSpec=0;
int sizeInit=0;
IppiSize srcRoiSize = {src.cols, src.rows};
status = ippiDFTGetSize_R_32f(srcRoiSize, norm_flag, ippAlgHintNone, &sizeSpec, &sizeInit, &sizeBuffer );
if ( status < 0 )
return false;
IppiDFTSpec_R_32f* pDFTSpec = (IppiDFTSpec_R_32f*)ippMalloc( sizeSpec );
if ( sizeInit > 0 )
pMemInit = (Ipp8u*)ippMalloc( sizeInit );
if ( sizeBuffer > 0 )
pBuffer = (Ipp8u*)ippMalloc( sizeBuffer );
status = ippiDFTInit_R_32f( srcRoiSize, norm_flag, ippAlgHintNone, pDFTSpec, pMemInit );
if ( sizeInit > 0 )
ippFree( pMemInit );
if ( status < 0 )
{
ippFree( pDFTSpec );
if ( sizeBuffer > 0 )
ippFree( pBuffer );
return false;
}
if (!inv)
status = ippiDFTFwd_RToPack_32f_C1R( src.ptr<float>(), (int)(src.step), dst.ptr<float>(), (int)dst.step, pDFTSpec, pBuffer );
else
status = ippiDFTInv_PackToR_32f_C1R( src.ptr<float>(), (int)src.step, dst.ptr<float>(), (int)dst.step, pDFTSpec, pBuffer );
if ( sizeBuffer > 0 )
ippFree( pBuffer );
ippFree( pDFTSpec );
if(status >= 0)
{
CV_IMPL_ADD(CV_IMPL_IPP);
return true;
}
return false;
}
#endif
}
#ifdef HAVE_OPENCL
namespace cv
{
enum FftType
{
R2R = 0, // real to CCS in case forward transform, CCS to real otherwise
C2R = 1, // complex to real in case inverse transform
R2C = 2, // real to complex in case forward transform
C2C = 3 // complex to complex
};
struct OCL_FftPlan
{
private:
UMat twiddles;
String buildOptions;
int thread_count;
int dft_size;
int dft_depth;
bool status;
public:
OCL_FftPlan(int _size, int _depth) : dft_size(_size), dft_depth(_depth), status(true)
{
CV_Assert( dft_depth == CV_32F || dft_depth == CV_64F );
int min_radix;
std::vector<int> radixes, blocks;
ocl_getRadixes(dft_size, radixes, blocks, min_radix);
thread_count = dft_size / min_radix;
if (thread_count > (int) ocl::Device::getDefault().maxWorkGroupSize())
{
status = false;
return;
}
// generate string with radix calls
String radix_processing;
int n = 1, twiddle_size = 0;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i], block = blocks[i];
if (block > 1)
radix_processing += format("fft_radix%d_B%d(smem,twiddles+%d,ind,%d,%d);", radix, block, twiddle_size, n, dft_size/radix);
else
radix_processing += format("fft_radix%d(smem,twiddles+%d,ind,%d,%d);", radix, twiddle_size, n, dft_size/radix);
twiddle_size += (radix-1)*n;
n *= radix;
}
twiddles.create(1, twiddle_size, CV_MAKE_TYPE(dft_depth, 2));
if (dft_depth == CV_32F)
fillRadixTable<float>(twiddles, radixes);
else
fillRadixTable<double>(twiddles, radixes);
buildOptions = format("-D LOCAL_SIZE=%d -D kercn=%d -D FT=%s -D CT=%s%s -D RADIX_PROCESS=%s",
dft_size, min_radix, ocl::typeToStr(dft_depth), ocl::typeToStr(CV_MAKE_TYPE(dft_depth, 2)),
dft_depth == CV_64F ? " -D DOUBLE_SUPPORT" : "", radix_processing.c_str());
}
bool enqueueTransform(InputArray _src, OutputArray _dst, int num_dfts, int flags, int fftType, bool rows = true) const
{
if (!status)
return false;
UMat src = _src.getUMat();
UMat dst = _dst.getUMat();
size_t globalsize[2];
size_t localsize[2];
String kernel_name;
bool is1d = (flags & DFT_ROWS) != 0 || num_dfts == 1;
bool inv = (flags & DFT_INVERSE) != 0;
String options = buildOptions;
if (rows)
{
globalsize[0] = thread_count; globalsize[1] = src.rows;
localsize[0] = thread_count; localsize[1] = 1;
kernel_name = !inv ? "fft_multi_radix_rows" : "ifft_multi_radix_rows";
if ((is1d || inv) && (flags & DFT_SCALE))
options += " -D DFT_SCALE";
}
else
{
globalsize[0] = num_dfts; globalsize[1] = thread_count;
localsize[0] = 1; localsize[1] = thread_count;
kernel_name = !inv ? "fft_multi_radix_cols" : "ifft_multi_radix_cols";
if (flags & DFT_SCALE)
options += " -D DFT_SCALE";
}
options += src.channels() == 1 ? " -D REAL_INPUT" : " -D COMPLEX_INPUT";
options += dst.channels() == 1 ? " -D REAL_OUTPUT" : " -D COMPLEX_OUTPUT";
options += is1d ? " -D IS_1D" : "";
if (!inv)
{
if ((is1d && src.channels() == 1) || (rows && (fftType == R2R)))
options += " -D NO_CONJUGATE";
}
else
{
if (rows && (fftType == C2R || fftType == R2R))
options += " -D NO_CONJUGATE";
if (dst.cols % 2 == 0)
options += " -D EVEN";
}
ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, options);
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::ReadOnlyNoSize(twiddles), thread_count, num_dfts);
return k.run(2, globalsize, localsize, false);
}
private:
static void ocl_getRadixes(int cols, std::vector<int>& radixes, std::vector<int>& blocks, int& min_radix)
{
int factors[34];
int nf = DFTFactorize(cols, factors);
int n = 1;
int factor_index = 0;
min_radix = INT_MAX;
// 2^n transforms
if ((factors[factor_index] & 1) == 0)
{
for( ; n < factors[factor_index];)
{
int radix = 2, block = 1;
if (8*n <= factors[0])
radix = 8;
else if (4*n <= factors[0])
{
radix = 4;
if (cols % 12 == 0)
block = 3;
else if (cols % 8 == 0)
block = 2;
}
else
{
if (cols % 10 == 0)
block = 5;
else if (cols % 8 == 0)
block = 4;
else if (cols % 6 == 0)
block = 3;
else if (cols % 4 == 0)
block = 2;
}
radixes.push_back(radix);
blocks.push_back(block);
min_radix = min(min_radix, block*radix);
n *= radix;
}
factor_index++;
}
// all the other transforms
for( ; factor_index < nf; factor_index++)
{
int radix = factors[factor_index], block = 1;
if (radix == 3)
{
if (cols % 12 == 0)
block = 4;
else if (cols % 9 == 0)
block = 3;
else if (cols % 6 == 0)
block = 2;
}
else if (radix == 5)
{
if (cols % 10 == 0)
block = 2;
}
radixes.push_back(radix);
blocks.push_back(block);
min_radix = min(min_radix, block*radix);
}
}
template <typename T>
static void fillRadixTable(UMat twiddles, const std::vector<int>& radixes)
{
Mat tw = twiddles.getMat(ACCESS_WRITE);
T* ptr = tw.ptr<T>();
int ptr_index = 0;
int n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int j=1; j<radix; j++)
{
double theta = -CV_2PI*j/n;
for (int k=0; k<(n/radix); k++)
{
ptr[ptr_index++] = (T) cos(k*theta);
ptr[ptr_index++] = (T) sin(k*theta);
}
}
}
}
};
class OCL_FftPlanCache
{
public:
static OCL_FftPlanCache & getInstance()
{
static OCL_FftPlanCache planCache;
return planCache;
}
Ptr<OCL_FftPlan> getFftPlan(int dft_size, int depth)
{
int key = (dft_size << 16) | (depth & 0xFFFF);
std::map<int, Ptr<OCL_FftPlan> >::iterator f = planStorage.find(key);
if (f != planStorage.end())
{
return f->second;
}
else
{
Ptr<OCL_FftPlan> newPlan = Ptr<OCL_FftPlan>(new OCL_FftPlan(dft_size, depth));
planStorage[key] = newPlan;
return newPlan;
}
}
~OCL_FftPlanCache()
{
planStorage.clear();
}
protected:
OCL_FftPlanCache() :
planStorage()
{
}
std::map<int, Ptr<OCL_FftPlan> > planStorage;
};
static bool ocl_dft_rows(InputArray _src, OutputArray _dst, int nonzero_rows, int flags, int fftType)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type);
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.cols(), depth);
return plan->enqueueTransform(_src, _dst, nonzero_rows, flags, fftType, true);
}
static bool ocl_dft_cols(InputArray _src, OutputArray _dst, int nonzero_cols, int flags, int fftType)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type);
Ptr<OCL_FftPlan> plan = OCL_FftPlanCache::getInstance().getFftPlan(_src.rows(), depth);
return plan->enqueueTransform(_src, _dst, nonzero_cols, flags, fftType, false);
}
static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_rows)
{
int type = _src.type(), cn = CV_MAT_CN(type), depth = CV_MAT_DEPTH(type);
Size ssize = _src.size();
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( !((cn == 1 || cn == 2) && (depth == CV_32F || (depth == CV_64F && doubleSupport))) )
return false;
// if is not a multiplication of prime numbers { 2, 3, 5 }
if (ssize.area() != getOptimalDFTSize(ssize.area()))
return false;
UMat src = _src.getUMat();
int complex_input = cn == 2 ? 1 : 0;
int complex_output = (flags & DFT_COMPLEX_OUTPUT) != 0;
int real_input = cn == 1 ? 1 : 0;
int real_output = (flags & DFT_REAL_OUTPUT) != 0;
bool inv = (flags & DFT_INVERSE) != 0 ? 1 : 0;
if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
nonzero_rows = _src.rows();
bool is1d = (flags & DFT_ROWS) != 0 || nonzero_rows == 1;
// if output format is not specified
if (complex_output + real_output == 0)
{
if (real_input)
real_output = 1;
else
complex_output = 1;
}
FftType fftType = (FftType)(complex_input << 0 | complex_output << 1);
// Forward Complex to CCS not supported
if (fftType == C2R && !inv)
fftType = C2C;
// Inverse CCS to Complex not supported
if (fftType == R2C && inv)
fftType = R2R;
UMat output;
if (fftType == C2C || fftType == R2C)
{
// complex output
_dst.create(src.size(), CV_MAKETYPE(depth, 2));
output = _dst.getUMat();
}
else
{
// real output
if (is1d)
{
_dst.create(src.size(), CV_MAKETYPE(depth, 1));
output = _dst.getUMat();
}
else
{
_dst.create(src.size(), CV_MAKETYPE(depth, 1));
output.create(src.size(), CV_MAKETYPE(depth, 2));
}
}
if (!inv)
{
if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
return false;
if (!is1d)
{
int nonzero_cols = fftType == R2R ? output.cols/2 + 1 : output.cols;
if (!ocl_dft_cols(output, _dst, nonzero_cols, flags, fftType))
return false;
}
}
else
{
if (fftType == C2C)
{
// complex output
if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
return false;
if (!is1d)
{
if (!ocl_dft_cols(output, output, output.cols, flags, fftType))
return false;
}
}
else
{
if (is1d)
{
if (!ocl_dft_rows(src, output, nonzero_rows, flags, fftType))
return false;
}
else
{
int nonzero_cols = src.cols/2 + 1;
if (!ocl_dft_cols(src, output, nonzero_cols, flags, fftType))
return false;
if (!ocl_dft_rows(output, _dst, nonzero_rows, flags, fftType))
return false;
}
}
}
return true;
}
} // namespace cv;
#endif
#ifdef HAVE_CLAMDFFT
namespace cv {
#define CLAMDDFT_Assert(func) \
{ \
clAmdFftStatus s = (func); \
CV_Assert(s == CLFFT_SUCCESS); \
}
class PlanCache
{
struct FftPlan
{
FftPlan(const Size & _dft_size, int _src_step, int _dst_step, bool _doubleFP, bool _inplace, int _flags, FftType _fftType) :
dft_size(_dft_size), src_step(_src_step), dst_step(_dst_step),
doubleFP(_doubleFP), inplace(_inplace), flags(_flags), fftType(_fftType),
context((cl_context)ocl::Context::getDefault().ptr()), plHandle(0)
{
bool dft_inverse = (flags & DFT_INVERSE) != 0;
bool dft_scale = (flags & DFT_SCALE) != 0;
bool dft_rows = (flags & DFT_ROWS) != 0;
clAmdFftLayout inLayout = CLFFT_REAL, outLayout = CLFFT_REAL;
clAmdFftDim dim = dft_size.height == 1 || dft_rows ? CLFFT_1D : CLFFT_2D;
size_t batchSize = dft_rows ? dft_size.height : 1;
size_t clLengthsIn[3] = { dft_size.width, dft_rows ? 1 : dft_size.height, 1 };
size_t clStridesIn[3] = { 1, 1, 1 };
size_t clStridesOut[3] = { 1, 1, 1 };
int elemSize = doubleFP ? sizeof(double) : sizeof(float);
switch (fftType)
{
case C2C:
inLayout = CLFFT_COMPLEX_INTERLEAVED;
outLayout = CLFFT_COMPLEX_INTERLEAVED;
clStridesIn[1] = src_step / (elemSize << 1);
clStridesOut[1] = dst_step / (elemSize << 1);
break;
case R2C:
inLayout = CLFFT_REAL;
outLayout = CLFFT_HERMITIAN_INTERLEAVED;
clStridesIn[1] = src_step / elemSize;
clStridesOut[1] = dst_step / (elemSize << 1);
break;
case C2R:
inLayout = CLFFT_HERMITIAN_INTERLEAVED;
outLayout = CLFFT_REAL;
clStridesIn[1] = src_step / (elemSize << 1);
clStridesOut[1] = dst_step / elemSize;
break;
case R2R:
default:
CV_Error(Error::StsNotImplemented, "AMD Fft does not support this type");
break;
}
clStridesIn[2] = dft_rows ? clStridesIn[1] : dft_size.width * clStridesIn[1];
clStridesOut[2] = dft_rows ? clStridesOut[1] : dft_size.width * clStridesOut[1];
CLAMDDFT_Assert(clAmdFftCreateDefaultPlan(&plHandle, (cl_context)ocl::Context::getDefault().ptr(), dim, clLengthsIn))
// setting plan properties
CLAMDDFT_Assert(clAmdFftSetPlanPrecision(plHandle, doubleFP ? CLFFT_DOUBLE : CLFFT_SINGLE));
CLAMDDFT_Assert(clAmdFftSetResultLocation(plHandle, inplace ? CLFFT_INPLACE : CLFFT_OUTOFPLACE))
CLAMDDFT_Assert(clAmdFftSetLayout(plHandle, inLayout, outLayout))
CLAMDDFT_Assert(clAmdFftSetPlanBatchSize(plHandle, batchSize))
CLAMDDFT_Assert(clAmdFftSetPlanInStride(plHandle, dim, clStridesIn))
CLAMDDFT_Assert(clAmdFftSetPlanOutStride(plHandle, dim, clStridesOut))
CLAMDDFT_Assert(clAmdFftSetPlanDistance(plHandle, clStridesIn[dim], clStridesOut[dim]))
float scale = dft_scale ? 1.0f / (dft_rows ? dft_size.width : dft_size.area()) : 1.0f;
CLAMDDFT_Assert(clAmdFftSetPlanScale(plHandle, dft_inverse ? CLFFT_BACKWARD : CLFFT_FORWARD, scale))
// ready to bake
cl_command_queue queue = (cl_command_queue)ocl::Queue::getDefault().ptr();
CLAMDDFT_Assert(clAmdFftBakePlan(plHandle, 1, &queue, NULL, NULL))
}
~FftPlan()
{
// clAmdFftDestroyPlan(&plHandle);
}
friend class PlanCache;
private:
Size dft_size;
int src_step, dst_step;
bool doubleFP;
bool inplace;
int flags;
FftType fftType;
cl_context context;
clAmdFftPlanHandle plHandle;
};
public:
static PlanCache & getInstance()
{
static PlanCache planCache;
return planCache;
}
clAmdFftPlanHandle getPlanHandle(const Size & dft_size, int src_step, int dst_step, bool doubleFP,
bool inplace, int flags, FftType fftType)
{
cl_context currentContext = (cl_context)ocl::Context::getDefault().ptr();
for (size_t i = 0, size = planStorage.size(); i < size; ++i)
{
const FftPlan * const plan = planStorage[i];
if (plan->dft_size == dft_size &&
plan->flags == flags &&
plan->src_step == src_step &&
plan->dst_step == dst_step &&
plan->doubleFP == doubleFP &&
plan->fftType == fftType &&
plan->inplace == inplace)
{
if (plan->context != currentContext)
{
planStorage.erase(planStorage.begin() + i);
break;
}
return plan->plHandle;
}
}
// no baked plan is found, so let's create a new one
Ptr<FftPlan> newPlan = Ptr<FftPlan>(new FftPlan(dft_size, src_step, dst_step, doubleFP, inplace, flags, fftType));
planStorage.push_back(newPlan);
return newPlan->plHandle;
}
~PlanCache()
{
planStorage.clear();
}
protected:
PlanCache() :
planStorage()
{
}
std::vector<Ptr<FftPlan> > planStorage;
};
extern "C" {
static void CL_CALLBACK oclCleanupCallback(cl_event e, cl_int, void *p)
{
UMatData * u = (UMatData *)p;
if( u && CV_XADD(&u->urefcount, -1) == 1 )
u->currAllocator->deallocate(u);
u = 0;
clReleaseEvent(e), e = 0;
}
}
static bool ocl_dft_amdfft(InputArray _src, OutputArray _dst, int flags)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
Size ssize = _src.size();
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( (!doubleSupport && depth == CV_64F) ||
!(type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2) ||
_src.offset() != 0)
return false;
// if is not a multiplication of prime numbers { 2, 3, 5 }
if (ssize.area() != getOptimalDFTSize(ssize.area()))
return false;
int dst_complex_input = cn == 2 ? 1 : 0;
bool dft_inverse = (flags & DFT_INVERSE) != 0 ? 1 : 0;
int dft_complex_output = (flags & DFT_COMPLEX_OUTPUT) != 0;
bool dft_real_output = (flags & DFT_REAL_OUTPUT) != 0;
CV_Assert(dft_complex_output + dft_real_output < 2);
FftType fftType = (FftType)(dst_complex_input << 0 | dft_complex_output << 1);
switch (fftType)
{
case C2C:
_dst.create(ssize.height, ssize.width, CV_MAKE_TYPE(depth, 2));
break;
case R2C: // TODO implement it if possible
case C2R: // TODO implement it if possible
case R2R: // AMD Fft does not support this type
default:
return false;
}
UMat src = _src.getUMat(), dst = _dst.getUMat();
bool inplace = src.u == dst.u;
clAmdFftPlanHandle plHandle = PlanCache::getInstance().
getPlanHandle(ssize, (int)src.step, (int)dst.step,
depth == CV_64F, inplace, flags, fftType);
// get the bufferSize
size_t bufferSize = 0;
CLAMDDFT_Assert(clAmdFftGetTmpBufSize(plHandle, &bufferSize))
UMat tmpBuffer(1, (int)bufferSize, CV_8UC1);
cl_mem srcarg = (cl_mem)src.handle(ACCESS_READ);
cl_mem dstarg = (cl_mem)dst.handle(ACCESS_RW);
cl_command_queue queue = (cl_command_queue)ocl::Queue::getDefault().ptr();
cl_event e = 0;
CLAMDDFT_Assert(clAmdFftEnqueueTransform(plHandle, dft_inverse ? CLFFT_BACKWARD : CLFFT_FORWARD,
1, &queue, 0, NULL, &e,
&srcarg, &dstarg, (cl_mem)tmpBuffer.handle(ACCESS_RW)))
tmpBuffer.addref();
clSetEventCallback(e, CL_COMPLETE, oclCleanupCallback, tmpBuffer.u);
return true;
}
#undef DFT_ASSERT
}
#endif // HAVE_CLAMDFFT
namespace cv
{
static void complementComplexOutput(Mat& dst, int len, int dft_dims)
{
int i, n = dst.cols;
size_t elem_size = dst.elemSize1();
if( elem_size == sizeof(float) )
{
float* p0 = dst.ptr<float>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{
float* p = p0 + dstep*i;
float* q = dft_dims == 1 || i == 0 || i*2 == len ? p : p0 + dstep*(len-i);
for( int j = 1; j < (n+1)/2; j++ )
{
p[(n-j)*2] = q[j*2];
p[(n-j)*2+1] = -q[j*2+1];
}
}
}
else
{
double* p0 = dst.ptr<double>();
size_t dstep = dst.step/sizeof(p0[0]);
for( i = 0; i < len; i++ )
{
double* p = p0 + dstep*i;
double* q = dft_dims == 1 || i == 0 || i*2 == len ? p : p0 + dstep*(len-i);
for( int j = 1; j < (n+1)/2; j++ )
{
p[(n-j)*2] = q[j*2];
p[(n-j)*2+1] = -q[j*2+1];
}
}
}
}
}
void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
{
#ifdef HAVE_CLAMDFFT
CV_OCL_RUN(ocl::haveAmdFft() && ocl::Device::getDefault().type() != ocl::Device::TYPE_CPU &&
_dst.isUMat() && _src0.dims() <= 2 && nonzero_rows == 0,
ocl_dft_amdfft(_src0, _dst, flags))
#endif
#ifdef HAVE_OPENCL
CV_OCL_RUN(_dst.isUMat() && _src0.dims() <= 2,
ocl_dft(_src0, _dst, flags, nonzero_rows))
#endif
static DFTFunc dft_tbl[6] =
{
(DFTFunc)DFT_32f,
(DFTFunc)RealDFT_32f,
(DFTFunc)CCSIDFT_32f,
(DFTFunc)DFT_64f,
(DFTFunc)RealDFT_64f,
(DFTFunc)CCSIDFT_64f
};
AutoBuffer<uchar> buf;
Mat src0 = _src0.getMat(), src = src0;
int prev_len = 0, stage = 0;
bool inv = (flags & DFT_INVERSE) != 0;
int nf = 0, real_transform = src.channels() == 1 || (inv && (flags & DFT_REAL_OUTPUT)!=0);
int type = src.type(), depth = src.depth();
int elem_size = (int)src.elemSize1(), complex_elem_size = elem_size*2;
int factors[34];
bool inplace_transform = false;
#ifdef USE_IPP_DFT
AutoBuffer<uchar> ippbuf;
int ipp_norm_flag = !(flags & DFT_SCALE) ? 8 : inv ? 2 : 1;
#endif
CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );
if( !inv && src.channels() == 1 && (flags & DFT_COMPLEX_OUTPUT) )
_dst.create( src.size(), CV_MAKETYPE(depth, 2) );
else if( inv && src.channels() == 2 && (flags & DFT_REAL_OUTPUT) )
_dst.create( src.size(), depth );
else
_dst.create( src.size(), type );
Mat dst = _dst.getMat();
#if defined USE_IPP_DFT
CV_IPP_CHECK()
{
if ((src.depth() == CV_32F) && (src.total()>(int)(1<<6)) && nonzero_rows == 0)
{
if ((flags & DFT_ROWS) == 0)
{
if (src.channels() == 2 && !(inv && (flags & DFT_REAL_OUTPUT)))
{
if (ippi_DFT_C_32F(src, dst, inv, ipp_norm_flag))
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
if (src.channels() == 1 && (inv || !(flags & DFT_COMPLEX_OUTPUT)))
{
if (ippi_DFT_R_32F(src, dst, inv, ipp_norm_flag))
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
}
else
{
if (src.channels() == 2 && !(inv && (flags & DFT_REAL_OUTPUT)))
{
ippiDFT_C_Func ippiFunc = inv ? (ippiDFT_C_Func)ippiDFTInv_CToC_32fc_C1R : (ippiDFT_C_Func)ippiDFTFwd_CToC_32fc_C1R;
if (Dft_C_IPPLoop(src, dst, IPPDFT_C_Functor(ippiFunc),ipp_norm_flag))
{
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
return;
}
setIppErrorStatus();
}
if (src.channels() == 1 && (inv || !(flags & DFT_COMPLEX_OUTPUT)))
{
ippiDFT_R_Func ippiFunc = inv ? (ippiDFT_R_Func)ippiDFTInv_PackToR_32f_C1R : (ippiDFT_R_Func)ippiDFTFwd_RToPack_32f_C1R;
if (Dft_R_IPPLoop(src, dst, IPPDFT_R_Functor(ippiFunc),ipp_norm_flag))
{
CV_IMPL_ADD(CV_IMPL_IPP|CV_IMPL_MT);
return;
}
setIppErrorStatus();
}
}
}
}
#endif
if( !real_transform )
elem_size = complex_elem_size;
if( src.cols == 1 && nonzero_rows > 0 )
CV_Error( CV_StsNotImplemented,
"This mode (using nonzero_rows with a single-column matrix) breaks the function's logic, so it is prohibited.\n"
"For fast convolution/correlation use 2-column matrix or single-row matrix instead" );
// determine, which transform to do first - row-wise
// (stage 0) or column-wise (stage 1) transform
if( !(flags & DFT_ROWS) && src.rows > 1 &&
((src.cols == 1 && (!src.isContinuous() || !dst.isContinuous())) ||
(src.cols > 1 && inv && real_transform)) )
stage = 1;
for(;;)
{
double scale = 1;
uchar* wave = 0;
int* itab = 0;
uchar* ptr;
int i, len, count, sz = 0;
int use_buf = 0, odd_real = 0;
DFTFunc dft_func;
if( stage == 0 ) // row-wise transform
{
len = !inv ? src.cols : dst.cols;
count = src.rows;
if( len == 1 && !(flags & DFT_ROWS) )
{
len = !inv ? src.rows : dst.rows;
count = 1;
}
odd_real = real_transform && (len & 1);
}
else
{
len = dst.rows;
count = !inv ? src0.cols : dst.cols;
sz = 2*len*complex_elem_size;
}
void *spec = 0;
#ifdef USE_IPP_DFT
if( CV_IPP_CHECK_COND && (len*count >= 64) ) // use IPP DFT if available
{
int specsize=0, initsize=0, worksize=0;
IppDFTGetSizeFunc getSizeFunc = 0;
IppDFTInitFunc initFunc = 0;
if( real_transform && stage == 0 )
{
if( depth == CV_32F )
{
getSizeFunc = ippsDFTGetSize_R_32f;
initFunc = (IppDFTInitFunc)ippsDFTInit_R_32f;
}
else
{
getSizeFunc = ippsDFTGetSize_R_64f;
initFunc = (IppDFTInitFunc)ippsDFTInit_R_64f;
}
}
else
{
if( depth == CV_32F )
{
getSizeFunc = ippsDFTGetSize_C_32fc;
initFunc = (IppDFTInitFunc)ippsDFTInit_C_32fc;
}
else
{
getSizeFunc = ippsDFTGetSize_C_64fc;
initFunc = (IppDFTInitFunc)ippsDFTInit_C_64fc;
}
}
if( getSizeFunc(len, ipp_norm_flag, ippAlgHintNone, &specsize, &initsize, &worksize) >= 0 )
{
ippbuf.allocate(specsize + initsize + 64);
spec = alignPtr(&ippbuf[0], 32);
uchar* initbuf = alignPtr((uchar*)spec + specsize, 32);
if( initFunc(len, ipp_norm_flag, ippAlgHintNone, spec, initbuf) < 0 )
spec = 0;
sz += worksize;
}
else
setIppErrorStatus();
}
else
#endif
{
if( len != prev_len )
nf = DFTFactorize( len, factors );
inplace_transform = factors[0] == factors[nf-1];
sz += len*(complex_elem_size + sizeof(int));
i = nf > 1 && (factors[0] & 1) == 0;
if( (factors[i] & 1) != 0 && factors[i] > 5 )
sz += (factors[i]+1)*complex_elem_size;
if( (stage == 0 && ((src.data == dst.data && !inplace_transform) || odd_real)) ||
(stage == 1 && !inplace_transform) )
{
use_buf = 1;
sz += len*complex_elem_size;
}
}
ptr = (uchar*)buf;
buf.allocate( sz + 32 );
if( ptr != (uchar*)buf )
prev_len = 0; // because we release the buffer,
// force recalculation of
// twiddle factors and permutation table
ptr = (uchar*)buf;
if( !spec )
{
wave = ptr;
ptr += len*complex_elem_size;
itab = (int*)ptr;
ptr = (uchar*)cvAlignPtr( ptr + len*sizeof(int), 16 );
if( len != prev_len || (!inplace_transform && inv && real_transform))
DFTInit( len, nf, factors, itab, complex_elem_size,
wave, stage == 0 && inv && real_transform );
// otherwise reuse the tables calculated on the previous stage
}
if( stage == 0 )
{
uchar* tmp_buf = 0;
int dptr_offset = 0;
int dst_full_len = len*elem_size;
int _flags = (int)inv + (src.channels() != dst.channels() ?
DFT_COMPLEX_INPUT_OR_OUTPUT : 0);
if( use_buf )
{
tmp_buf = ptr;
ptr += len*complex_elem_size;
if( odd_real && !inv && len > 1 &&
!(_flags & DFT_COMPLEX_INPUT_OR_OUTPUT))
dptr_offset = elem_size;
}
if( !inv && (_flags & DFT_COMPLEX_INPUT_OR_OUTPUT) )
dst_full_len += (len & 1) ? elem_size : complex_elem_size;
dft_func = dft_tbl[(!real_transform ? 0 : !inv ? 1 : 2) + (depth == CV_64F)*3];
if( count > 1 && !(flags & DFT_ROWS) && (!inv || !real_transform) )
stage = 1;
else if( flags & CV_DXT_SCALE )
scale = 1./(len * (flags & DFT_ROWS ? 1 : count));
if( nonzero_rows <= 0 || nonzero_rows > count )
nonzero_rows = count;
for( i = 0; i < nonzero_rows; i++ )
{
const uchar* sptr = src.ptr(i);
uchar* dptr0 = dst.ptr(i);
uchar* dptr = dptr0;
if( tmp_buf )
dptr = tmp_buf;
dft_func( sptr, dptr, len, nf, factors, itab, wave, len, spec, ptr, _flags, scale );
if( dptr != dptr0 )
memcpy( dptr0, dptr + dptr_offset, dst_full_len );
}
for( ; i < count; i++ )
{
uchar* dptr0 = dst.ptr(i);
memset( dptr0, 0, dst_full_len );
}
if( stage != 1 )
{
if( !inv && real_transform && dst.channels() == 2 )
complementComplexOutput(dst, nonzero_rows, 1);
break;
}
src = dst;
}
else
{
int a = 0, b = count;
uchar *buf0, *buf1, *dbuf0, *dbuf1;
const uchar* sptr0 = src.ptr();
uchar* dptr0 = dst.ptr();
buf0 = ptr;
ptr += len*complex_elem_size;
buf1 = ptr;
ptr += len*complex_elem_size;
dbuf0 = buf0, dbuf1 = buf1;
if( use_buf )
{
dbuf1 = ptr;
dbuf0 = buf1;
ptr += len*complex_elem_size;
}
dft_func = dft_tbl[(depth == CV_64F)*3];
if( real_transform && inv && src.cols > 1 )
stage = 0;
else if( flags & CV_DXT_SCALE )
scale = 1./(len * count);
if( real_transform )
{
int even;
a = 1;
even = (count & 1) == 0;
b = (count+1)/2;
if( !inv )
{
memset( buf0, 0, len*complex_elem_size );
CopyColumn( sptr0, src.step, buf0, complex_elem_size, len, elem_size );
sptr0 += dst.channels()*elem_size;
if( even )
{
memset( buf1, 0, len*complex_elem_size );
CopyColumn( sptr0 + (count-2)*elem_size, src.step,
buf1, complex_elem_size, len, elem_size );
}
}
else if( src.channels() == 1 )
{
CopyColumn( sptr0, src.step, buf0, elem_size, len, elem_size );
ExpandCCS( buf0, len, elem_size );
if( even )
{
CopyColumn( sptr0 + (count-1)*elem_size, src.step,
buf1, elem_size, len, elem_size );
ExpandCCS( buf1, len, elem_size );
}
sptr0 += elem_size;
}
else
{
CopyColumn( sptr0, src.step, buf0, complex_elem_size, len, complex_elem_size );
if( even )
{
CopyColumn( sptr0 + b*complex_elem_size, src.step,
buf1, complex_elem_size, len, complex_elem_size );
}
sptr0 += complex_elem_size;
}
if( even )
dft_func( buf1, dbuf1, len, nf, factors, itab,
wave, len, spec, ptr, inv, scale );
dft_func( buf0, dbuf0, len, nf, factors, itab,
wave, len, spec, ptr, inv, scale );
if( dst.channels() == 1 )
{
if( !inv )
{
// copy the half of output vector to the first/last column.
// before doing that, defgragment the vector
memcpy( dbuf0 + elem_size, dbuf0, elem_size );
CopyColumn( dbuf0 + elem_size, elem_size, dptr0,
dst.step, len, elem_size );
if( even )
{
memcpy( dbuf1 + elem_size, dbuf1, elem_size );
CopyColumn( dbuf1 + elem_size, elem_size,
dptr0 + (count-1)*elem_size,
dst.step, len, elem_size );
}
dptr0 += elem_size;
}
else
{
// copy the real part of the complex vector to the first/last column
CopyColumn( dbuf0, complex_elem_size, dptr0, dst.step, len, elem_size );
if( even )
CopyColumn( dbuf1, complex_elem_size, dptr0 + (count-1)*elem_size,
dst.step, len, elem_size );
dptr0 += elem_size;
}
}
else
{
assert( !inv );
CopyColumn( dbuf0, complex_elem_size, dptr0,
dst.step, len, complex_elem_size );
if( even )
CopyColumn( dbuf1, complex_elem_size,
dptr0 + b*complex_elem_size,
dst.step, len, complex_elem_size );
dptr0 += complex_elem_size;
}
}
for( i = a; i < b; i += 2 )
{
if( i+1 < b )
{
CopyFrom2Columns( sptr0, src.step, buf0, buf1, len, complex_elem_size );
dft_func( buf1, dbuf1, len, nf, factors, itab,
wave, len, spec, ptr, inv, scale );
}
else
CopyColumn( sptr0, src.step, buf0, complex_elem_size, len, complex_elem_size );
dft_func( buf0, dbuf0, len, nf, factors, itab,
wave, len, spec, ptr, inv, scale );
if( i+1 < b )
CopyTo2Columns( dbuf0, dbuf1, dptr0, dst.step, len, complex_elem_size );
else
CopyColumn( dbuf0, complex_elem_size, dptr0, dst.step, len, complex_elem_size );
sptr0 += 2*complex_elem_size;
dptr0 += 2*complex_elem_size;
}
if( stage != 0 )
{
if( !inv && real_transform && dst.channels() == 2 && len > 1 )
complementComplexOutput(dst, len, 2);
break;
}
src = dst;
}
}
}
void cv::idft( InputArray src, OutputArray dst, int flags, int nonzero_rows )
{
dft( src, dst, flags | DFT_INVERSE, nonzero_rows );
}
#ifdef HAVE_OPENCL
namespace cv {
static bool ocl_mulSpectrums( InputArray _srcA, InputArray _srcB,
OutputArray _dst, int flags, bool conjB )
{
int atype = _srcA.type(), btype = _srcB.type(),
rowsPerWI = ocl::Device::getDefault().isIntel() ? 4 : 1;
Size asize = _srcA.size(), bsize = _srcB.size();
CV_Assert(asize == bsize);
if ( !(atype == CV_32FC2 && btype == CV_32FC2) || flags != 0 )
return false;
UMat A = _srcA.getUMat(), B = _srcB.getUMat();
CV_Assert(A.size() == B.size());
_dst.create(A.size(), atype);
UMat dst = _dst.getUMat();
ocl::Kernel k("mulAndScaleSpectrums",
ocl::core::mulspectrums_oclsrc,
format("%s", conjB ? "-D CONJ" : ""));
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(A), ocl::KernelArg::ReadOnlyNoSize(B),
ocl::KernelArg::WriteOnly(dst), rowsPerWI);
size_t globalsize[2] = { asize.width, (asize.height + rowsPerWI - 1) / rowsPerWI };
return k.run(2, globalsize, NULL, false);
}
}
#endif
void cv::mulSpectrums( InputArray _srcA, InputArray _srcB,
OutputArray _dst, int flags, bool conjB )
{
CV_OCL_RUN(_dst.isUMat() && _srcA.dims() <= 2 && _srcB.dims() <= 2,
ocl_mulSpectrums(_srcA, _srcB, _dst, flags, conjB))
Mat srcA = _srcA.getMat(), srcB = _srcB.getMat();
int depth = srcA.depth(), cn = srcA.channels(), type = srcA.type();
int rows = srcA.rows, cols = srcA.cols;
int j, k;
CV_Assert( type == srcB.type() && srcA.size() == srcB.size() );
CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );
_dst.create( srcA.rows, srcA.cols, type );
Mat dst = _dst.getMat();
bool is_1d = (flags & DFT_ROWS) || (rows == 1 || (cols == 1 &&
srcA.isContinuous() && srcB.isContinuous() && dst.isContinuous()));
if( is_1d && !(flags & DFT_ROWS) )
cols = cols + rows - 1, rows = 1;
int ncols = cols*cn;
int j0 = cn == 1;
int j1 = ncols - (cols % 2 == 0 && cn == 1);
if( depth == CV_32F )
{
const float* dataA = srcA.ptr<float>();
const float* dataB = srcB.ptr<float>();
float* dataC = dst.ptr<float>();
size_t stepA = srcA.step/sizeof(dataA[0]);
size_t stepB = srcB.step/sizeof(dataB[0]);
size_t stepC = dst.step/sizeof(dataC[0]);
if( !is_1d && cn == 1 )
{
for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
{
if( k == 1 )
dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
dataC[0] = dataA[0]*dataB[0];
if( rows % 2 == 0 )
dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA]*dataB[(rows-1)*stepB];
if( !conjB )
for( j = 1; j <= rows - 2; j += 2 )
{
double re = (double)dataA[j*stepA]*dataB[j*stepB] -
(double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = (double)dataA[j*stepA]*dataB[(j+1)*stepB] +
(double)dataA[(j+1)*stepA]*dataB[j*stepB];
dataC[j*stepC] = (float)re; dataC[(j+1)*stepC] = (float)im;
}
else
for( j = 1; j <= rows - 2; j += 2 )
{
double re = (double)dataA[j*stepA]*dataB[j*stepB] +
(double)dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = (double)dataA[(j+1)*stepA]*dataB[j*stepB] -
(double)dataA[j*stepA]*dataB[(j+1)*stepB];
dataC[j*stepC] = (float)re; dataC[(j+1)*stepC] = (float)im;
}
if( k == 1 )
dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
}
}
for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
{
if( is_1d && cn == 1 )
{
dataC[0] = dataA[0]*dataB[0];
if( cols % 2 == 0 )
dataC[j1] = dataA[j1]*dataB[j1];
}
if( !conjB )
for( j = j0; j < j1; j += 2 )
{
double re = (double)dataA[j]*dataB[j] - (double)dataA[j+1]*dataB[j+1];
double im = (double)dataA[j+1]*dataB[j] + (double)dataA[j]*dataB[j+1];
dataC[j] = (float)re; dataC[j+1] = (float)im;
}
else
for( j = j0; j < j1; j += 2 )
{
double re = (double)dataA[j]*dataB[j] + (double)dataA[j+1]*dataB[j+1];
double im = (double)dataA[j+1]*dataB[j] - (double)dataA[j]*dataB[j+1];
dataC[j] = (float)re; dataC[j+1] = (float)im;
}
}
}
else
{
const double* dataA = srcA.ptr<double>();
const double* dataB = srcB.ptr<double>();
double* dataC = dst.ptr<double>();
size_t stepA = srcA.step/sizeof(dataA[0]);
size_t stepB = srcB.step/sizeof(dataB[0]);
size_t stepC = dst.step/sizeof(dataC[0]);
if( !is_1d && cn == 1 )
{
for( k = 0; k < (cols % 2 ? 1 : 2); k++ )
{
if( k == 1 )
dataA += cols - 1, dataB += cols - 1, dataC += cols - 1;
dataC[0] = dataA[0]*dataB[0];
if( rows % 2 == 0 )
dataC[(rows-1)*stepC] = dataA[(rows-1)*stepA]*dataB[(rows-1)*stepB];
if( !conjB )
for( j = 1; j <= rows - 2; j += 2 )
{
double re = dataA[j*stepA]*dataB[j*stepB] -
dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = dataA[j*stepA]*dataB[(j+1)*stepB] +
dataA[(j+1)*stepA]*dataB[j*stepB];
dataC[j*stepC] = re; dataC[(j+1)*stepC] = im;
}
else
for( j = 1; j <= rows - 2; j += 2 )
{
double re = dataA[j*stepA]*dataB[j*stepB] +
dataA[(j+1)*stepA]*dataB[(j+1)*stepB];
double im = dataA[(j+1)*stepA]*dataB[j*stepB] -
dataA[j*stepA]*dataB[(j+1)*stepB];
dataC[j*stepC] = re; dataC[(j+1)*stepC] = im;
}
if( k == 1 )
dataA -= cols - 1, dataB -= cols - 1, dataC -= cols - 1;
}
}
for( ; rows--; dataA += stepA, dataB += stepB, dataC += stepC )
{
if( is_1d && cn == 1 )
{
dataC[0] = dataA[0]*dataB[0];
if( cols % 2 == 0 )
dataC[j1] = dataA[j1]*dataB[j1];
}
if( !conjB )
for( j = j0; j < j1; j += 2 )
{
double re = dataA[j]*dataB[j] - dataA[j+1]*dataB[j+1];
double im = dataA[j+1]*dataB[j] + dataA[j]*dataB[j+1];
dataC[j] = re; dataC[j+1] = im;
}
else
for( j = j0; j < j1; j += 2 )
{
double re = dataA[j]*dataB[j] + dataA[j+1]*dataB[j+1];
double im = dataA[j+1]*dataB[j] - dataA[j]*dataB[j+1];
dataC[j] = re; dataC[j+1] = im;
}
}
}
}
/****************************************************************************************\
Discrete Cosine Transform
\****************************************************************************************/
namespace cv
{
/* DCT is calculated using DFT, as described here:
http://www.ece.utexas.edu/~bevans/courses/ee381k/lectures/09_DCT/lecture9/:
*/
template<typename T> static void
DCT( const T* src, int src_step, T* dft_src, T* dft_dst, T* dst, int dst_step,
int n, int nf, int* factors, const int* itab, const Complex<T>* dft_wave,
const Complex<T>* dct_wave, const void* spec, Complex<T>* buf )
{
static const T sin_45 = (T)0.70710678118654752440084436210485;
int j, n2 = n >> 1;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
T* dst1 = dst + (n-1)*dst_step;
if( n == 1 )
{
dst[0] = src[0];
return;
}
for( j = 0; j < n2; j++, src += src_step*2 )
{
dft_src[j] = src[0];
dft_src[n-j-1] = src[src_step];
}
RealDFT( dft_src, dft_dst, n, nf, factors,
itab, dft_wave, n, spec, buf, 0, 1.0 );
src = dft_dst;
dst[0] = (T)(src[0]*dct_wave->re*sin_45);
dst += dst_step;
for( j = 1, dct_wave++; j < n2; j++, dct_wave++,
dst += dst_step, dst1 -= dst_step )
{
T t0 = dct_wave->re*src[j*2-1] - dct_wave->im*src[j*2];
T t1 = -dct_wave->im*src[j*2-1] - dct_wave->re*src[j*2];
dst[0] = t0;
dst1[0] = t1;
}
dst[0] = src[n-1]*dct_wave->re;
}
template<typename T> static void
IDCT( const T* src, int src_step, T* dft_src, T* dft_dst, T* dst, int dst_step,
int n, int nf, int* factors, const int* itab, const Complex<T>* dft_wave,
const Complex<T>* dct_wave, const void* spec, Complex<T>* buf )
{
static const T sin_45 = (T)0.70710678118654752440084436210485;
int j, n2 = n >> 1;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
const T* src1 = src + (n-1)*src_step;
if( n == 1 )
{
dst[0] = src[0];
return;
}
dft_src[0] = (T)(src[0]*2*dct_wave->re*sin_45);
src += src_step;
for( j = 1, dct_wave++; j < n2; j++, dct_wave++,
src += src_step, src1 -= src_step )
{
T t0 = dct_wave->re*src[0] - dct_wave->im*src1[0];
T t1 = -dct_wave->im*src[0] - dct_wave->re*src1[0];
dft_src[j*2-1] = t0;
dft_src[j*2] = t1;
}
dft_src[n-1] = (T)(src[0]*2*dct_wave->re);
CCSIDFT( dft_src, dft_dst, n, nf, factors, itab,
dft_wave, n, spec, buf, 0, 1.0 );
for( j = 0; j < n2; j++, dst += dst_step*2 )
{
dst[0] = dft_dst[j];
dst[dst_step] = dft_dst[n-j-1];
}
}
static void
DCTInit( int n, int elem_size, void* _wave, int inv )
{
static const double DctScale[] =
{
0.707106781186547570, 0.500000000000000000, 0.353553390593273790,
0.250000000000000000, 0.176776695296636890, 0.125000000000000000,
0.088388347648318447, 0.062500000000000000, 0.044194173824159223,
0.031250000000000000, 0.022097086912079612, 0.015625000000000000,
0.011048543456039806, 0.007812500000000000, 0.005524271728019903,
0.003906250000000000, 0.002762135864009952, 0.001953125000000000,
0.001381067932004976, 0.000976562500000000, 0.000690533966002488,
0.000488281250000000, 0.000345266983001244, 0.000244140625000000,
0.000172633491500622, 0.000122070312500000, 0.000086316745750311,
0.000061035156250000, 0.000043158372875155, 0.000030517578125000
};
int i;
Complex<double> w, w1;
double t, scale;
if( n == 1 )
return;
assert( (n&1) == 0 );
if( (n & (n - 1)) == 0 )
{
int m;
for( m = 0; (unsigned)(1 << m) < (unsigned)n; m++ )
;
scale = (!inv ? 2 : 1)*DctScale[m];
w1.re = DFTTab[m+2][0];
w1.im = -DFTTab[m+2][1];
}
else
{
t = 1./(2*n);
scale = (!inv ? 2 : 1)*std::sqrt(t);
w1.im = sin(-CV_PI*t);
w1.re = std::sqrt(1. - w1.im*w1.im);
}
n >>= 1;
if( elem_size == sizeof(Complex<double>) )
{
Complex<double>* wave = (Complex<double>*)_wave;
w.re = scale;
w.im = 0.;
for( i = 0; i <= n; i++ )
{
wave[i] = w;
t = w.re*w1.re - w.im*w1.im;
w.im = w.re*w1.im + w.im*w1.re;
w.re = t;
}
}
else
{
Complex<float>* wave = (Complex<float>*)_wave;
assert( elem_size == sizeof(Complex<float>) );
w.re = (float)scale;
w.im = 0.f;
for( i = 0; i <= n; i++ )
{
wave[i].re = (float)w.re;
wave[i].im = (float)w.im;
t = w.re*w1.re - w.im*w1.im;
w.im = w.re*w1.im + w.im*w1.re;
w.re = t;
}
}
}
typedef void (*DCTFunc)(const void* src, int src_step, void* dft_src,
void* dft_dst, void* dst, int dst_step, int n,
int nf, int* factors, const int* itab, const void* dft_wave,
const void* dct_wave, const void* spec, void* buf );
static void DCT_32f(const float* src, int src_step, float* dft_src, float* dft_dst,
float* dst, int dst_step, int n, int nf, int* factors, const int* itab,
const Complexf* dft_wave, const Complexf* dct_wave, const void* spec, Complexf* buf )
{
DCT(src, src_step, dft_src, dft_dst, dst, dst_step,
n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
}
static void IDCT_32f(const float* src, int src_step, float* dft_src, float* dft_dst,
float* dst, int dst_step, int n, int nf, int* factors, const int* itab,
const Complexf* dft_wave, const Complexf* dct_wave, const void* spec, Complexf* buf )
{
IDCT(src, src_step, dft_src, dft_dst, dst, dst_step,
n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
}
static void DCT_64f(const double* src, int src_step, double* dft_src, double* dft_dst,
double* dst, int dst_step, int n, int nf, int* factors, const int* itab,
const Complexd* dft_wave, const Complexd* dct_wave, const void* spec, Complexd* buf )
{
DCT(src, src_step, dft_src, dft_dst, dst, dst_step,
n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
}
static void IDCT_64f(const double* src, int src_step, double* dft_src, double* dft_dst,
double* dst, int dst_step, int n, int nf, int* factors, const int* itab,
const Complexd* dft_wave, const Complexd* dct_wave, const void* spec, Complexd* buf )
{
IDCT(src, src_step, dft_src, dft_dst, dst, dst_step,
n, nf, factors, itab, dft_wave, dct_wave, spec, buf);
}
}
namespace cv
{
#if defined HAVE_IPP && IPP_VERSION_MAJOR >= 7
typedef IppStatus (CV_STDCALL * ippiDCTFunc)(const Ipp32f*, int, Ipp32f*, int, const void*, Ipp8u*);
typedef IppStatus (CV_STDCALL * ippiDCTInitAlloc)(void**, IppiSize, IppHintAlgorithm);
typedef IppStatus (CV_STDCALL * ippiDCTFree)(void* pDCTSpec);
typedef IppStatus (CV_STDCALL * ippiDCTGetBufSize)(const void*, int*);
template <typename Dct>
class DctIPPLoop_Invoker : public ParallelLoopBody
{
public:
DctIPPLoop_Invoker(const Mat& _src, Mat& _dst, const Dct* _ippidct, bool _inv, bool *_ok) :
ParallelLoopBody(), src(&_src), dst(&_dst), ippidct(_ippidct), inv(_inv), ok(_ok)
{
*ok = true;
}
virtual void operator()(const Range& range) const
{
void* pDCTSpec;
AutoBuffer<uchar> buf;
uchar* pBuffer = 0;
int bufSize=0;
IppiSize srcRoiSize = {src->cols, 1};
CV_SUPPRESS_DEPRECATED_START
ippiDCTInitAlloc ippInitAlloc = inv ? (ippiDCTInitAlloc)ippiDCTInvInitAlloc_32f : (ippiDCTInitAlloc)ippiDCTFwdInitAlloc_32f;
ippiDCTFree ippFree = inv ? (ippiDCTFree)ippiDCTInvFree_32f : (ippiDCTFree)ippiDCTFwdFree_32f;
ippiDCTGetBufSize ippGetBufSize = inv ? (ippiDCTGetBufSize)ippiDCTInvGetBufSize_32f : (ippiDCTGetBufSize)ippiDCTFwdGetBufSize_32f;
if (ippInitAlloc(&pDCTSpec, srcRoiSize, ippAlgHintNone)>=0 && ippGetBufSize(pDCTSpec, &bufSize)>=0)
{
buf.allocate( bufSize );
pBuffer = (uchar*)buf;
for( int i = range.start; i < range.end; ++i)
if(!(*ippidct)(src->ptr<float>(i), (int)src->step,dst->ptr<float>(i), (int)dst->step, pDCTSpec, (Ipp8u*)pBuffer))
*ok = false;
}
else
*ok = false;
if (pDCTSpec)
ippFree(pDCTSpec);
CV_SUPPRESS_DEPRECATED_END
}
private:
const Mat* src;
Mat* dst;
const Dct* ippidct;
bool inv;
bool *ok;
};
template <typename Dct>
bool DctIPPLoop(const Mat& src, Mat& dst, const Dct& ippidct, bool inv)
{
bool ok;
parallel_for_(Range(0, src.rows), DctIPPLoop_Invoker<Dct>(src, dst, &ippidct, inv, &ok), src.rows/(double)(1<<4) );
return ok;
}
struct IPPDCTFunctor
{
IPPDCTFunctor(ippiDCTFunc _func) : func(_func){}
bool operator()(const Ipp32f* src, int srcStep, Ipp32f* dst, int dstStep, const void* pDCTSpec, Ipp8u* pBuffer) const
{
return func ? func(src, srcStep, dst, dstStep, pDCTSpec, pBuffer) >= 0 : false;
}
private:
ippiDCTFunc func;
};
static bool ippi_DCT_32f(const Mat& src, Mat& dst, bool inv, bool row)
{
ippiDCTFunc ippFunc = inv ? (ippiDCTFunc)ippiDCTInv_32f_C1R : (ippiDCTFunc)ippiDCTFwd_32f_C1R ;
if (row)
return(DctIPPLoop(src,dst,IPPDCTFunctor(ippFunc),inv));
else
{
IppStatus status;
void* pDCTSpec;
AutoBuffer<uchar> buf;
uchar* pBuffer = 0;
int bufSize=0;
IppiSize srcRoiSize = {src.cols, src.rows};
CV_SUPPRESS_DEPRECATED_START
ippiDCTInitAlloc ippInitAlloc = inv ? (ippiDCTInitAlloc)ippiDCTInvInitAlloc_32f : (ippiDCTInitAlloc)ippiDCTFwdInitAlloc_32f;
ippiDCTFree ippFree = inv ? (ippiDCTFree)ippiDCTInvFree_32f : (ippiDCTFree)ippiDCTFwdFree_32f;
ippiDCTGetBufSize ippGetBufSize = inv ? (ippiDCTGetBufSize)ippiDCTInvGetBufSize_32f : (ippiDCTGetBufSize)ippiDCTFwdGetBufSize_32f;
status = ippStsErr;
if (ippInitAlloc(&pDCTSpec, srcRoiSize, ippAlgHintNone)>=0 && ippGetBufSize(pDCTSpec, &bufSize)>=0)
{
buf.allocate( bufSize );
pBuffer = (uchar*)buf;
status = ippFunc(src.ptr<float>(), (int)src.step, dst.ptr<float>(), (int)dst.step, pDCTSpec, (Ipp8u*)pBuffer);
}
if (pDCTSpec)
ippFree(pDCTSpec);
CV_SUPPRESS_DEPRECATED_END
return status >= 0;
}
}
#endif
}
void cv::dct( InputArray _src0, OutputArray _dst, int flags )
{
static DCTFunc dct_tbl[4] =
{
(DCTFunc)DCT_32f,
(DCTFunc)IDCT_32f,
(DCTFunc)DCT_64f,
(DCTFunc)IDCT_64f
};
bool inv = (flags & DCT_INVERSE) != 0;
Mat src0 = _src0.getMat(), src = src0;
int type = src.type(), depth = src.depth();
void *spec = 0;
double scale = 1.;
int prev_len = 0, nf = 0, stage, end_stage;
uchar *src_dft_buf = 0, *dst_dft_buf = 0;
uchar *dft_wave = 0, *dct_wave = 0;
int* itab = 0;
uchar* ptr = 0;
int elem_size = (int)src.elemSize(), complex_elem_size = elem_size*2;
int factors[34], inplace_transform;
int i, len, count;
AutoBuffer<uchar> buf;
CV_Assert( type == CV_32FC1 || type == CV_64FC1 );
_dst.create( src.rows, src.cols, type );
Mat dst = _dst.getMat();
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
CV_IPP_CHECK()
{
bool row = (flags & DCT_ROWS) != 0;
if (src.type() == CV_32F)
{
if(ippi_DCT_32f(src,dst,inv, row))
{
CV_IMPL_ADD(CV_IMPL_IPP);
return;
}
setIppErrorStatus();
}
}
#endif
DCTFunc dct_func = dct_tbl[(int)inv + (depth == CV_64F)*2];
if( (flags & DCT_ROWS) || src.rows == 1 ||
(src.cols == 1 && (src.isContinuous() && dst.isContinuous())))
{
stage = end_stage = 0;
}
else
{
stage = src.cols == 1;
end_stage = 1;
}
for( ; stage <= end_stage; stage++ )
{
const uchar* sptr = src.ptr();
uchar* dptr = dst.ptr();
size_t sstep0, sstep1, dstep0, dstep1;
if( stage == 0 )
{
len = src.cols;
count = src.rows;
if( len == 1 && !(flags & DCT_ROWS) )
{
len = src.rows;
count = 1;
}
sstep0 = src.step;
dstep0 = dst.step;
sstep1 = dstep1 = elem_size;
}
else
{
len = dst.rows;
count = dst.cols;
sstep1 = src.step;
dstep1 = dst.step;
sstep0 = dstep0 = elem_size;
}
if( len != prev_len )
{
int sz;
if( len > 1 && (len & 1) )
CV_Error( CV_StsNotImplemented, "Odd-size DCT\'s are not implemented" );
sz = len*elem_size;
sz += (len/2 + 1)*complex_elem_size;
spec = 0;
inplace_transform = 1;
{
sz += len*(complex_elem_size + sizeof(int)) + complex_elem_size;
nf = DFTFactorize( len, factors );
inplace_transform = factors[0] == factors[nf-1];
i = nf > 1 && (factors[0] & 1) == 0;
if( (factors[i] & 1) != 0 && factors[i] > 5 )
sz += (factors[i]+1)*complex_elem_size;
if( !inplace_transform )
sz += len*elem_size;
}
buf.allocate( sz + 32 );
ptr = (uchar*)buf;
if( !spec )
{
dft_wave = ptr;
ptr += len*complex_elem_size;
itab = (int*)ptr;
ptr = (uchar*)cvAlignPtr( ptr + len*sizeof(int), 16 );
DFTInit( len, nf, factors, itab, complex_elem_size, dft_wave, inv );
}
dct_wave = ptr;
ptr += (len/2 + 1)*complex_elem_size;
src_dft_buf = dst_dft_buf = ptr;
ptr += len*elem_size;
if( !inplace_transform )
{
dst_dft_buf = ptr;
ptr += len*elem_size;
}
DCTInit( len, complex_elem_size, dct_wave, inv );
if( !inv )
scale += scale;
prev_len = len;
}
// otherwise reuse the tables calculated on the previous stage
for( i = 0; i < count; i++ )
{
dct_func( sptr + i*sstep0, (int)sstep1, src_dft_buf, dst_dft_buf,
dptr + i*dstep0, (int)dstep1, len, nf, factors,
itab, dft_wave, dct_wave, spec, ptr );
}
src = dst;
}
}
void cv::idct( InputArray src, OutputArray dst, int flags )
{
dct( src, dst, flags | DCT_INVERSE );
}
namespace cv
{
static const int optimalDFTSizeTab[] = {
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48,
50, 54, 60, 64, 72, 75, 80, 81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160,
162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375,
384, 400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675, 720,
729, 750, 768, 800, 810, 864, 900, 960, 972, 1000, 1024, 1080, 1125, 1152, 1200,
1215, 1250, 1280, 1296, 1350, 1440, 1458, 1500, 1536, 1600, 1620, 1728, 1800, 1875,
1920, 1944, 2000, 2025, 2048, 2160, 2187, 2250, 2304, 2400, 2430, 2500, 2560, 2592,
2700, 2880, 2916, 3000, 3072, 3125, 3200, 3240, 3375, 3456, 3600, 3645, 3750, 3840,
3888, 4000, 4050, 4096, 4320, 4374, 4500, 4608, 4800, 4860, 5000, 5120, 5184, 5400,
5625, 5760, 5832, 6000, 6075, 6144, 6250, 6400, 6480, 6561, 6750, 6912, 7200, 7290,
7500, 7680, 7776, 8000, 8100, 8192, 8640, 8748, 9000, 9216, 9375, 9600, 9720, 10000,
10125, 10240, 10368, 10800, 10935, 11250, 11520, 11664, 12000, 12150, 12288, 12500,
12800, 12960, 13122, 13500, 13824, 14400, 14580, 15000, 15360, 15552, 15625, 16000,
16200, 16384, 16875, 17280, 17496, 18000, 18225, 18432, 18750, 19200, 19440, 19683,
20000, 20250, 20480, 20736, 21600, 21870, 22500, 23040, 23328, 24000, 24300, 24576,
25000, 25600, 25920, 26244, 27000, 27648, 28125, 28800, 29160, 30000, 30375, 30720,
31104, 31250, 32000, 32400, 32768, 32805, 33750, 34560, 34992, 36000, 36450, 36864,
37500, 38400, 38880, 39366, 40000, 40500, 40960, 41472, 43200, 43740, 45000, 46080,
46656, 46875, 48000, 48600, 49152, 50000, 50625, 51200, 51840, 52488, 54000, 54675,
55296, 56250, 57600, 58320, 59049, 60000, 60750, 61440, 62208, 62500, 64000, 64800,
65536, 65610, 67500, 69120, 69984, 72000, 72900, 73728, 75000, 76800, 77760, 78125,
78732, 80000, 81000, 81920, 82944, 84375, 86400, 87480, 90000, 91125, 92160, 93312,
93750, 96000, 97200, 98304, 98415, 100000, 101250, 102400, 103680, 104976, 108000,
109350, 110592, 112500, 115200, 116640, 118098, 120000, 121500, 122880, 124416, 125000,
128000, 129600, 131072, 131220, 135000, 138240, 139968, 140625, 144000, 145800, 147456,
150000, 151875, 153600, 155520, 156250, 157464, 160000, 162000, 163840, 164025, 165888,
168750, 172800, 174960, 177147, 180000, 182250, 184320, 186624, 187500, 192000, 194400,
196608, 196830, 200000, 202500, 204800, 207360, 209952, 216000, 218700, 221184, 225000,
230400, 233280, 234375, 236196, 240000, 243000, 245760, 248832, 250000, 253125, 256000,
259200, 262144, 262440, 270000, 273375, 276480, 279936, 281250, 288000, 291600, 294912,
295245, 300000, 303750, 307200, 311040, 312500, 314928, 320000, 324000, 327680, 328050,
331776, 337500, 345600, 349920, 354294, 360000, 364500, 368640, 373248, 375000, 384000,
388800, 390625, 393216, 393660, 400000, 405000, 409600, 414720, 419904, 421875, 432000,
437400, 442368, 450000, 455625, 460800, 466560, 468750, 472392, 480000, 486000, 491520,
492075, 497664, 500000, 506250, 512000, 518400, 524288, 524880, 531441, 540000, 546750,
552960, 559872, 562500, 576000, 583200, 589824, 590490, 600000, 607500, 614400, 622080,
625000, 629856, 640000, 648000, 655360, 656100, 663552, 675000, 691200, 699840, 703125,
708588, 720000, 729000, 737280, 746496, 750000, 759375, 768000, 777600, 781250, 786432,
787320, 800000, 810000, 819200, 820125, 829440, 839808, 843750, 864000, 874800, 884736,
885735, 900000, 911250, 921600, 933120, 937500, 944784, 960000, 972000, 983040, 984150,
995328, 1000000, 1012500, 1024000, 1036800, 1048576, 1049760, 1062882, 1080000, 1093500,
1105920, 1119744, 1125000, 1152000, 1166400, 1171875, 1179648, 1180980, 1200000,
1215000, 1228800, 1244160, 1250000, 1259712, 1265625, 1280000, 1296000, 1310720,
1312200, 1327104, 1350000, 1366875, 1382400, 1399680, 1406250, 1417176, 1440000,
1458000, 1474560, 1476225, 1492992, 1500000, 1518750, 1536000, 1555200, 1562500,
1572864, 1574640, 1594323, 1600000, 1620000, 1638400, 1640250, 1658880, 1679616,
1687500, 1728000, 1749600, 1769472, 1771470, 1800000, 1822500, 1843200, 1866240,
1875000, 1889568, 1920000, 1944000, 1953125, 1966080, 1968300, 1990656, 2000000,
2025000, 2048000, 2073600, 2097152, 2099520, 2109375, 2125764, 2160000, 2187000,
2211840, 2239488, 2250000, 2278125, 2304000, 2332800, 2343750, 2359296, 2361960,
2400000, 2430000, 2457600, 2460375, 2488320, 2500000, 2519424, 2531250, 2560000,
2592000, 2621440, 2624400, 2654208, 2657205, 2700000, 2733750, 2764800, 2799360,
2812500, 2834352, 2880000, 2916000, 2949120, 2952450, 2985984, 3000000, 3037500,
3072000, 3110400, 3125000, 3145728, 3149280, 3188646, 3200000, 3240000, 3276800,
3280500, 3317760, 3359232, 3375000, 3456000, 3499200, 3515625, 3538944, 3542940,
3600000, 3645000, 3686400, 3732480, 3750000, 3779136, 3796875, 3840000, 3888000,
3906250, 3932160, 3936600, 3981312, 4000000, 4050000, 4096000, 4100625, 4147200,
4194304, 4199040, 4218750, 4251528, 4320000, 4374000, 4423680, 4428675, 4478976,
4500000, 4556250, 4608000, 4665600, 4687500, 4718592, 4723920, 4782969, 4800000,
4860000, 4915200, 4920750, 4976640, 5000000, 5038848, 5062500, 5120000, 5184000,
5242880, 5248800, 5308416, 5314410, 5400000, 5467500, 5529600, 5598720, 5625000,
5668704, 5760000, 5832000, 5859375, 5898240, 5904900, 5971968, 6000000, 6075000,
6144000, 6220800, 6250000, 6291456, 6298560, 6328125, 6377292, 6400000, 6480000,
6553600, 6561000, 6635520, 6718464, 6750000, 6834375, 6912000, 6998400, 7031250,
7077888, 7085880, 7200000, 7290000, 7372800, 7381125, 7464960, 7500000, 7558272,
7593750, 7680000, 7776000, 7812500, 7864320, 7873200, 7962624, 7971615, 8000000,
8100000, 8192000, 8201250, 8294400, 8388608, 8398080, 8437500, 8503056, 8640000,
8748000, 8847360, 8857350, 8957952, 9000000, 9112500, 9216000, 9331200, 9375000,
9437184, 9447840, 9565938, 9600000, 9720000, 9765625, 9830400, 9841500, 9953280,
10000000, 10077696, 10125000, 10240000, 10368000, 10485760, 10497600, 10546875, 10616832,
10628820, 10800000, 10935000, 11059200, 11197440, 11250000, 11337408, 11390625, 11520000,
11664000, 11718750, 11796480, 11809800, 11943936, 12000000, 12150000, 12288000, 12301875,
12441600, 12500000, 12582912, 12597120, 12656250, 12754584, 12800000, 12960000, 13107200,
13122000, 13271040, 13286025, 13436928, 13500000, 13668750, 13824000, 13996800, 14062500,
14155776, 14171760, 14400000, 14580000, 14745600, 14762250, 14929920, 15000000, 15116544,
15187500, 15360000, 15552000, 15625000, 15728640, 15746400, 15925248, 15943230, 16000000,
16200000, 16384000, 16402500, 16588800, 16777216, 16796160, 16875000, 17006112, 17280000,
17496000, 17578125, 17694720, 17714700, 17915904, 18000000, 18225000, 18432000, 18662400,
18750000, 18874368, 18895680, 18984375, 19131876, 19200000, 19440000, 19531250, 19660800,
19683000, 19906560, 20000000, 20155392, 20250000, 20480000, 20503125, 20736000, 20971520,
20995200, 21093750, 21233664, 21257640, 21600000, 21870000, 22118400, 22143375, 22394880,
22500000, 22674816, 22781250, 23040000, 23328000, 23437500, 23592960, 23619600, 23887872,
23914845, 24000000, 24300000, 24576000, 24603750, 24883200, 25000000, 25165824, 25194240,
25312500, 25509168, 25600000, 25920000, 26214400, 26244000, 26542080, 26572050, 26873856,
27000000, 27337500, 27648000, 27993600, 28125000, 28311552, 28343520, 28800000, 29160000,
29296875, 29491200, 29524500, 29859840, 30000000, 30233088, 30375000, 30720000, 31104000,
31250000, 31457280, 31492800, 31640625, 31850496, 31886460, 32000000, 32400000, 32768000,
32805000, 33177600, 33554432, 33592320, 33750000, 34012224, 34171875, 34560000, 34992000,
35156250, 35389440, 35429400, 35831808, 36000000, 36450000, 36864000, 36905625, 37324800,
37500000, 37748736, 37791360, 37968750, 38263752, 38400000, 38880000, 39062500, 39321600,
39366000, 39813120, 39858075, 40000000, 40310784, 40500000, 40960000, 41006250, 41472000,
41943040, 41990400, 42187500, 42467328, 42515280, 43200000, 43740000, 44236800, 44286750,
44789760, 45000000, 45349632, 45562500, 46080000, 46656000, 46875000, 47185920, 47239200,
47775744, 47829690, 48000000, 48600000, 48828125, 49152000, 49207500, 49766400, 50000000,
50331648, 50388480, 50625000, 51018336, 51200000, 51840000, 52428800, 52488000, 52734375,
53084160, 53144100, 53747712, 54000000, 54675000, 55296000, 55987200, 56250000, 56623104,
56687040, 56953125, 57600000, 58320000, 58593750, 58982400, 59049000, 59719680, 60000000,
60466176, 60750000, 61440000, 61509375, 62208000, 62500000, 62914560, 62985600, 63281250,
63700992, 63772920, 64000000, 64800000, 65536000, 65610000, 66355200, 66430125, 67108864,
67184640, 67500000, 68024448, 68343750, 69120000, 69984000, 70312500, 70778880, 70858800,
71663616, 72000000, 72900000, 73728000, 73811250, 74649600, 75000000, 75497472, 75582720,
75937500, 76527504, 76800000, 77760000, 78125000, 78643200, 78732000, 79626240, 79716150,
80000000, 80621568, 81000000, 81920000, 82012500, 82944000, 83886080, 83980800, 84375000,
84934656, 85030560, 86400000, 87480000, 87890625, 88473600, 88573500, 89579520, 90000000,
90699264, 91125000, 92160000, 93312000, 93750000, 94371840, 94478400, 94921875, 95551488,
95659380, 96000000, 97200000, 97656250, 98304000, 98415000, 99532800, 100000000,
100663296, 100776960, 101250000, 102036672, 102400000, 102515625, 103680000, 104857600,
104976000, 105468750, 106168320, 106288200, 107495424, 108000000, 109350000, 110592000,
110716875, 111974400, 112500000, 113246208, 113374080, 113906250, 115200000, 116640000,
117187500, 117964800, 118098000, 119439360, 119574225, 120000000, 120932352, 121500000,
122880000, 123018750, 124416000, 125000000, 125829120, 125971200, 126562500, 127401984,
127545840, 128000000, 129600000, 131072000, 131220000, 132710400, 132860250, 134217728,
134369280, 135000000, 136048896, 136687500, 138240000, 139968000, 140625000, 141557760,
141717600, 143327232, 144000000, 145800000, 146484375, 147456000, 147622500, 149299200,
150000000, 150994944, 151165440, 151875000, 153055008, 153600000, 155520000, 156250000,
157286400, 157464000, 158203125, 159252480, 159432300, 160000000, 161243136, 162000000,
163840000, 164025000, 165888000, 167772160, 167961600, 168750000, 169869312, 170061120,
170859375, 172800000, 174960000, 175781250, 176947200, 177147000, 179159040, 180000000,
181398528, 182250000, 184320000, 184528125, 186624000, 187500000, 188743680, 188956800,
189843750, 191102976, 191318760, 192000000, 194400000, 195312500, 196608000, 196830000,
199065600, 199290375, 200000000, 201326592, 201553920, 202500000, 204073344, 204800000,
205031250, 207360000, 209715200, 209952000, 210937500, 212336640, 212576400, 214990848,
216000000, 218700000, 221184000, 221433750, 223948800, 225000000, 226492416, 226748160,
227812500, 230400000, 233280000, 234375000, 235929600, 236196000, 238878720, 239148450,
240000000, 241864704, 243000000, 244140625, 245760000, 246037500, 248832000, 250000000,
251658240, 251942400, 253125000, 254803968, 255091680, 256000000, 259200000, 262144000,
262440000, 263671875, 265420800, 265720500, 268435456, 268738560, 270000000, 272097792,
273375000, 276480000, 279936000, 281250000, 283115520, 283435200, 284765625, 286654464,
288000000, 291600000, 292968750, 294912000, 295245000, 298598400, 300000000, 301989888,
302330880, 303750000, 306110016, 307200000, 307546875, 311040000, 312500000, 314572800,
314928000, 316406250, 318504960, 318864600, 320000000, 322486272, 324000000, 327680000,
328050000, 331776000, 332150625, 335544320, 335923200, 337500000, 339738624, 340122240,
341718750, 345600000, 349920000, 351562500, 353894400, 354294000, 358318080, 360000000,
362797056, 364500000, 368640000, 369056250, 373248000, 375000000, 377487360, 377913600,
379687500, 382205952, 382637520, 384000000, 388800000, 390625000, 393216000, 393660000,
398131200, 398580750, 400000000, 402653184, 403107840, 405000000, 408146688, 409600000,
410062500, 414720000, 419430400, 419904000, 421875000, 424673280, 425152800, 429981696,
432000000, 437400000, 439453125, 442368000, 442867500, 447897600, 450000000, 452984832,
453496320, 455625000, 460800000, 466560000, 468750000, 471859200, 472392000, 474609375,
477757440, 478296900, 480000000, 483729408, 486000000, 488281250, 491520000, 492075000,
497664000, 500000000, 503316480, 503884800, 506250000, 509607936, 510183360, 512000000,
512578125, 518400000, 524288000, 524880000, 527343750, 530841600, 531441000, 536870912,
537477120, 540000000, 544195584, 546750000, 552960000, 553584375, 559872000, 562500000,
566231040, 566870400, 569531250, 573308928, 576000000, 583200000, 585937500, 589824000,
590490000, 597196800, 597871125, 600000000, 603979776, 604661760, 607500000, 612220032,
614400000, 615093750, 622080000, 625000000, 629145600, 629856000, 632812500, 637009920,
637729200, 640000000, 644972544, 648000000, 655360000, 656100000, 663552000, 664301250,
671088640, 671846400, 675000000, 679477248, 680244480, 683437500, 691200000, 699840000,
703125000, 707788800, 708588000, 716636160, 720000000, 725594112, 729000000, 732421875,
737280000, 738112500, 746496000, 750000000, 754974720, 755827200, 759375000, 764411904,
765275040, 768000000, 777600000, 781250000, 786432000, 787320000, 791015625, 796262400,
797161500, 800000000, 805306368, 806215680, 810000000, 816293376, 819200000, 820125000,
829440000, 838860800, 839808000, 843750000, 849346560, 850305600, 854296875, 859963392,
864000000, 874800000, 878906250, 884736000, 885735000, 895795200, 900000000, 905969664,
906992640, 911250000, 921600000, 922640625, 933120000, 937500000, 943718400, 944784000,
949218750, 955514880, 956593800, 960000000, 967458816, 972000000, 976562500, 983040000,
984150000, 995328000, 996451875, 1000000000, 1006632960, 1007769600, 1012500000,
1019215872, 1020366720, 1024000000, 1025156250, 1036800000, 1048576000, 1049760000,
1054687500, 1061683200, 1062882000, 1073741824, 1074954240, 1080000000, 1088391168,
1093500000, 1105920000, 1107168750, 1119744000, 1125000000, 1132462080, 1133740800,
1139062500, 1146617856, 1152000000, 1166400000, 1171875000, 1179648000, 1180980000,
1194393600, 1195742250, 1200000000, 1207959552, 1209323520, 1215000000, 1220703125,
1224440064, 1228800000, 1230187500, 1244160000, 1250000000, 1258291200, 1259712000,
1265625000, 1274019840, 1275458400, 1280000000, 1289945088, 1296000000, 1310720000,
1312200000, 1318359375, 1327104000, 1328602500, 1342177280, 1343692800, 1350000000,
1358954496, 1360488960, 1366875000, 1382400000, 1399680000, 1406250000, 1415577600,
1417176000, 1423828125, 1433272320, 1440000000, 1451188224, 1458000000, 1464843750,
1474560000, 1476225000, 1492992000, 1500000000, 1509949440, 1511654400, 1518750000,
1528823808, 1530550080, 1536000000, 1537734375, 1555200000, 1562500000, 1572864000,
1574640000, 1582031250, 1592524800, 1594323000, 1600000000, 1610612736, 1612431360,
1620000000, 1632586752, 1638400000, 1640250000, 1658880000, 1660753125, 1677721600,
1679616000, 1687500000, 1698693120, 1700611200, 1708593750, 1719926784, 1728000000,
1749600000, 1757812500, 1769472000, 1771470000, 1791590400, 1800000000, 1811939328,
1813985280, 1822500000, 1843200000, 1845281250, 1866240000, 1875000000, 1887436800,
1889568000, 1898437500, 1911029760, 1913187600, 1920000000, 1934917632, 1944000000,
1953125000, 1966080000, 1968300000, 1990656000, 1992903750, 2000000000, 2013265920,
2015539200, 2025000000, 2038431744, 2040733440, 2048000000, 2050312500, 2073600000,
2097152000, 2099520000, 2109375000, 2123366400, 2125764000
};
}
int cv::getOptimalDFTSize( int size0 )
{
int a = 0, b = sizeof(optimalDFTSizeTab)/sizeof(optimalDFTSizeTab[0]) - 1;
if( (unsigned)size0 >= (unsigned)optimalDFTSizeTab[b] )
return -1;
while( a < b )
{
int c = (a + b) >> 1;
if( size0 <= optimalDFTSizeTab[c] )
b = c;
else
a = c+1;
}
return optimalDFTSizeTab[b];
}
CV_IMPL void
cvDFT( const CvArr* srcarr, CvArr* dstarr, int flags, int nonzero_rows )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
int _flags = ((flags & CV_DXT_INVERSE) ? cv::DFT_INVERSE : 0) |
((flags & CV_DXT_SCALE) ? cv::DFT_SCALE : 0) |
((flags & CV_DXT_ROWS) ? cv::DFT_ROWS : 0);
CV_Assert( src.size == dst.size );
if( src.type() != dst.type() )
{
if( dst.channels() == 2 )
_flags |= cv::DFT_COMPLEX_OUTPUT;
else
_flags |= cv::DFT_REAL_OUTPUT;
}
cv::dft( src, dst, _flags, nonzero_rows );
CV_Assert( dst.data == dst0.data ); // otherwise it means that the destination size or type was incorrect
}
CV_IMPL void
cvMulSpectrums( const CvArr* srcAarr, const CvArr* srcBarr,
CvArr* dstarr, int flags )
{
cv::Mat srcA = cv::cvarrToMat(srcAarr),
srcB = cv::cvarrToMat(srcBarr),
dst = cv::cvarrToMat(dstarr);
CV_Assert( srcA.size == dst.size && srcA.type() == dst.type() );
cv::mulSpectrums(srcA, srcB, dst,
(flags & CV_DXT_ROWS) ? cv::DFT_ROWS : 0,
(flags & CV_DXT_MUL_CONJ) != 0 );
}
CV_IMPL void
cvDCT( const CvArr* srcarr, CvArr* dstarr, int flags )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size == dst.size && src.type() == dst.type() );
int _flags = ((flags & CV_DXT_INVERSE) ? cv::DCT_INVERSE : 0) |
((flags & CV_DXT_ROWS) ? cv::DCT_ROWS : 0);
cv::dct( src, dst, _flags );
}
CV_IMPL int
cvGetOptimalDFTSize( int size0 )
{
return cv::getOptimalDFTSize(size0);
}
/* End of file. */