/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __ML_H__
#define __ML_H__
// disable deprecation warning which appears in VisualStudio 8.0
#if _MSC_VER >= 1400
#pragma warning( disable : 4996 )
#endif
#ifndef SKIP_INCLUDES
#include "cxcore.h"
#include <limits.h>
#if defined WIN32 || defined WIN64
#include <windows.h>
#endif
#else // SKIP_INCLUDES
#if defined WIN32 || defined WIN64
#define CV_CDECL __cdecl
#define CV_STDCALL __stdcall
#else
#define CV_CDECL
#define CV_STDCALL
#endif
#ifndef CV_EXTERN_C
#ifdef __cplusplus
#define CV_EXTERN_C extern "C"
#define CV_DEFAULT(val) = val
#else
#define CV_EXTERN_C
#define CV_DEFAULT(val)
#endif
#endif
#ifndef CV_EXTERN_C_FUNCPTR
#ifdef __cplusplus
#define CV_EXTERN_C_FUNCPTR(x) extern "C" { typedef x; }
#else
#define CV_EXTERN_C_FUNCPTR(x) typedef x
#endif
#endif
#ifndef CV_INLINE
#if defined __cplusplus
#define CV_INLINE inline
#elif (defined WIN32 || defined WIN64) && !defined __GNUC__
#define CV_INLINE __inline
#else
#define CV_INLINE static
#endif
#endif /* CV_INLINE */
#if (defined WIN32 || defined WIN64) && defined CVAPI_EXPORTS
#define CV_EXPORTS __declspec(dllexport)
#else
#define CV_EXPORTS
#endif
#ifndef CVAPI
#define CVAPI(rettype) CV_EXTERN_C CV_EXPORTS rettype CV_CDECL
#endif
#endif // SKIP_INCLUDES
#ifdef __cplusplus
// Apple defines a check() macro somewhere in the debug headers
// that interferes with a method definiton in this header
#undef check
/****************************************************************************************\
* Main struct definitions *
\****************************************************************************************/
/* log(2*PI) */
#define CV_LOG2PI (1.8378770664093454835606594728112)
/* columns of <trainData> matrix are training samples */
#define CV_COL_SAMPLE 0
/* rows of <trainData> matrix are training samples */
#define CV_ROW_SAMPLE 1
#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)
struct CvVectors
{
int type;
int dims, count;
CvVectors* next;
union
{
uchar** ptr;
float** fl;
double** db;
} data;
};
#if 0
/* A structure, representing the lattice range of statmodel parameters.
It is used for optimizing statmodel parameters by cross-validation method.
The lattice is logarithmic, so <step> must be greater then 1. */
typedef struct CvParamLattice
{
double min_val;
double max_val;
double step;
}
CvParamLattice;
CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
double log_step )
{
CvParamLattice pl;
pl.min_val = MIN( min_val, max_val );
pl.max_val = MAX( min_val, max_val );
pl.step = MAX( log_step, 1. );
return pl;
}
CV_INLINE CvParamLattice cvDefaultParamLattice( void )
{
CvParamLattice pl = {0,0,0};
return pl;
}
#endif
/* Variable type */
#define CV_VAR_NUMERICAL 0
#define CV_VAR_ORDERED 0
#define CV_VAR_CATEGORICAL 1
#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm"
#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn"
#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian"
#define CV_TYPE_NAME_ML_EM "opencv-ml-em"
#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree"
#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree"
#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp"
#define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn"
#define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees"
class CV_EXPORTS CvStatModel
{
public:
CvStatModel();
virtual ~CvStatModel();
virtual void clear();
virtual void save( const char* filename, const char* name=0 );
virtual void load( const char* filename, const char* name=0 );
virtual void write( CvFileStorage* storage, const char* name );
virtual void read( CvFileStorage* storage, CvFileNode* node );
protected:
const char* default_model_name;
};
/****************************************************************************************\
* Normal Bayes Classifier *
\****************************************************************************************/
/* The structure, representing the grid range of statmodel parameters.
It is used for optimizing statmodel accuracy by varying model parameters,
the accuracy estimate being computed by cross-validation.
The grid is logarithmic, so <step> must be greater then 1. */
struct CV_EXPORTS CvParamGrid
{
// SVM params type
enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };
CvParamGrid()
{
min_val = max_val = step = 0;
}
CvParamGrid( double _min_val, double _max_val, double log_step )
{
min_val = _min_val;
max_val = _max_val;
step = log_step;
}
//CvParamGrid( int param_id );
bool check() const;
double min_val;
double max_val;
double step;
};
class CV_EXPORTS CvNormalBayesClassifier : public CvStatModel
{
public:
CvNormalBayesClassifier();
virtual ~CvNormalBayesClassifier();
CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx=0, const CvMat* _sample_idx=0 );
virtual bool train( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx = 0, const CvMat* _sample_idx=0, bool update=false );
virtual float predict( const CvMat* _samples, CvMat* results=0 ) const;
virtual void clear();
virtual void write( CvFileStorage* storage, const char* name );
virtual void read( CvFileStorage* storage, CvFileNode* node );
protected:
int var_count, var_all;
CvMat* var_idx;
CvMat* cls_labels;
CvMat** count;
CvMat** sum;
CvMat** productsum;
CvMat** avg;
CvMat** inv_eigen_values;
CvMat** cov_rotate_mats;
CvMat* c;
};
/****************************************************************************************\
* K-Nearest Neighbour Classifier *
\****************************************************************************************/
// k Nearest Neighbors
class CV_EXPORTS CvKNearest : public CvStatModel
{
public:
CvKNearest();
virtual ~CvKNearest();
CvKNearest( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _sample_idx=0, bool _is_regression=false, int max_k=32 );
virtual bool train( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _sample_idx=0, bool is_regression=false,
int _max_k=32, bool _update_base=false );
virtual float find_nearest( const CvMat* _samples, int k, CvMat* results=0,
const float** neighbors=0, CvMat* neighbor_responses=0, CvMat* dist=0 ) const;
virtual void clear();
int get_max_k() const;
int get_var_count() const;
int get_sample_count() const;
bool is_regression() const;
protected:
virtual float write_results( int k, int k1, int start, int end,
const float* neighbor_responses, const float* dist, CvMat* _results,
CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;
virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
float* neighbor_responses, const float** neighbors, float* dist ) const;
int max_k, var_count;
int total;
bool regression;
CvVectors* samples;
};
/****************************************************************************************\
* Support Vector Machines *
\****************************************************************************************/
// SVM training parameters
struct CV_EXPORTS CvSVMParams
{
CvSVMParams();
CvSVMParams( int _svm_type, int _kernel_type,
double _degree, double _gamma, double _coef0,
double _C, double _nu, double _p,
CvMat* _class_weights, CvTermCriteria _term_crit );
int svm_type;
int kernel_type;
double degree; // for poly
double gamma; // for poly/rbf/sigmoid
double coef0; // for poly/sigmoid
double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
double p; // for CV_SVM_EPS_SVR
CvMat* class_weights; // for CV_SVM_C_SVC
CvTermCriteria term_crit; // termination criteria
};
struct CV_EXPORTS CvSVMKernel
{
typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
const float* another, float* results );
CvSVMKernel();
CvSVMKernel( const CvSVMParams* _params, Calc _calc_func );
virtual bool create( const CvSVMParams* _params, Calc _calc_func );
virtual ~CvSVMKernel();
virtual void clear();
virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );
const CvSVMParams* params;
Calc calc_func;
virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
const float* another, float* results,
double alpha, double beta );
virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
const float* another, float* results );
virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
const float* another, float* results );
virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
const float* another, float* results );
virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
const float* another, float* results );
};
struct CvSVMKernelRow
{
CvSVMKernelRow* prev;
CvSVMKernelRow* next;
float* data;
};
struct CvSVMSolutionInfo
{
double obj;
double rho;
double upper_bound_p;
double upper_bound_n;
double r; // for Solver_NU
};
class CV_EXPORTS CvSVMSolver
{
public:
typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );
CvSVMSolver();
CvSVMSolver( int count, int var_count, const float** samples, schar* y,
int alpha_count, double* alpha, double Cp, double Cn,
CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
SelectWorkingSet select_working_set, CalcRho calc_rho );
virtual bool create( int count, int var_count, const float** samples, schar* y,
int alpha_count, double* alpha, double Cp, double Cn,
CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
SelectWorkingSet select_working_set, CalcRho calc_rho );
virtual ~CvSVMSolver();
virtual void clear();
virtual bool solve_generic( CvSVMSolutionInfo& si );
virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
double Cp, double Cn, CvMemStorage* storage,
CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
CvMemStorage* storage, CvSVMKernel* kernel,
double* alpha, CvSVMSolutionInfo& si );
virtual bool solve_one_class( int count, int var_count, const float** samples,
CvMemStorage* storage, CvSVMKernel* kernel,
double* alpha, CvSVMSolutionInfo& si );
virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
CvMemStorage* storage, CvSVMKernel* kernel,
double* alpha, CvSVMSolutionInfo& si );
virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
CvMemStorage* storage, CvSVMKernel* kernel,
double* alpha, CvSVMSolutionInfo& si );
virtual float* get_row_base( int i, bool* _existed );
virtual float* get_row( int i, float* dst );
int sample_count;
int var_count;
int cache_size;
int cache_line_size;
const float** samples;
const CvSVMParams* params;
CvMemStorage* storage;
CvSVMKernelRow lru_list;
CvSVMKernelRow* rows;
int alpha_count;
double* G;
double* alpha;
// -1 - lower bound, 0 - free, 1 - upper bound
schar* alpha_status;
schar* y;
double* b;
float* buf[2];
double eps;
int max_iter;
double C[2]; // C[0] == Cn, C[1] == Cp
CvSVMKernel* kernel;
SelectWorkingSet select_working_set_func;
CalcRho calc_rho_func;
GetRow get_row_func;
virtual bool select_working_set( int& i, int& j );
virtual bool select_working_set_nu_svm( int& i, int& j );
virtual void calc_rho( double& rho, double& r );
virtual void calc_rho_nu_svm( double& rho, double& r );
virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
};
struct CvSVMDecisionFunc
{
double rho;
int sv_count;
double* alpha;
int* sv_index;
};
// SVM model
class CV_EXPORTS CvSVM : public CvStatModel
{
public:
// SVM type
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
// SVM kernel type
enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 };
// SVM params type
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
CvSVM();
virtual ~CvSVM();
CvSVM( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx=0, const CvMat* _sample_idx=0,
CvSVMParams _params=CvSVMParams() );
virtual bool train( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx=0, const CvMat* _sample_idx=0,
CvSVMParams _params=CvSVMParams() );
virtual bool train_auto( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params,
int k_fold = 10,
CvParamGrid C_grid = get_default_grid(CvSVM::C),
CvParamGrid gamma_grid = get_default_grid(CvSVM::GAMMA),
CvParamGrid p_grid = get_default_grid(CvSVM::P),
CvParamGrid nu_grid = get_default_grid(CvSVM::NU),
CvParamGrid coef_grid = get_default_grid(CvSVM::COEF),
CvParamGrid degree_grid = get_default_grid(CvSVM::DEGREE) );
virtual float predict( const CvMat* _sample ) const;
virtual int get_support_vector_count() const;
virtual const float* get_support_vector(int i) const;
virtual CvSVMParams get_params() const { return params; };
virtual void clear();
static CvParamGrid get_default_grid( int param_id );
virtual void write( CvFileStorage* storage, const char* name );
virtual void read( CvFileStorage* storage, CvFileNode* node );
int get_var_count() const { return var_idx ? var_idx->cols : var_all; }
protected:
virtual bool set_params( const CvSVMParams& _params );
virtual bool train1( int sample_count, int var_count, const float** samples,
const void* _responses, double Cp, double Cn,
CvMemStorage* _storage, double* alpha, double& rho );
virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
const CvMat* _responses, CvMemStorage* _storage, double* alpha );
virtual void create_kernel();
virtual void create_solver();
virtual void write_params( CvFileStorage* fs );
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
CvSVMParams params;
CvMat* class_labels;
int var_all;
float** sv;
int sv_total;
CvMat* var_idx;
CvMat* class_weights;
CvSVMDecisionFunc* decision_func;
CvMemStorage* storage;
CvSVMSolver* solver;
CvSVMKernel* kernel;
};
/****************************************************************************************\
* Expectation - Maximization *
\****************************************************************************************/
struct CV_EXPORTS CvEMParams
{
CvEMParams() : nclusters(10), cov_mat_type(1/*CvEM::COV_MAT_DIAGONAL*/),
start_step(0/*CvEM::START_AUTO_STEP*/), probs(0), weights(0), means(0), covs(0)
{
term_crit=cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON );
}
CvEMParams( int _nclusters, int _cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/,
int _start_step=0/*CvEM::START_AUTO_STEP*/,
CvTermCriteria _term_crit=cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, FLT_EPSILON),
const CvMat* _probs=0, const CvMat* _weights=0, const CvMat* _means=0, const CvMat** _covs=0 ) :
nclusters(_nclusters), cov_mat_type(_cov_mat_type), start_step(_start_step),
probs(_probs), weights(_weights), means(_means), covs(_covs), term_crit(_term_crit)
{}
int nclusters;
int cov_mat_type;
int start_step;
const CvMat* probs;
const CvMat* weights;
const CvMat* means;
const CvMat** covs;
CvTermCriteria term_crit;
};
class CV_EXPORTS CvEM : public CvStatModel
{
public:
// Type of covariation matrices
enum { COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2 };
// The initial step
enum { START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0 };
CvEM();
CvEM( const CvMat* samples, const CvMat* sample_idx=0,
CvEMParams params=CvEMParams(), CvMat* labels=0 );
virtual ~CvEM();
virtual bool train( const CvMat* samples, const CvMat* sample_idx=0,
CvEMParams params=CvEMParams(), CvMat* labels=0 );
virtual float predict( const CvMat* sample, CvMat* probs ) const;
virtual void clear();
int get_nclusters() const;
const CvMat* get_means() const;
const CvMat** get_covs() const;
const CvMat* get_weights() const;
const CvMat* get_probs() const;
inline double get_log_likelihood () const { return log_likelihood; };
protected:
virtual void set_params( const CvEMParams& params,
const CvVectors& train_data );
virtual void init_em( const CvVectors& train_data );
virtual double run_em( const CvVectors& train_data );
virtual void init_auto( const CvVectors& samples );
virtual void kmeans( const CvVectors& train_data, int nclusters,
CvMat* labels, CvTermCriteria criteria,
const CvMat* means );
CvEMParams params;
double log_likelihood;
CvMat* means;
CvMat** covs;
CvMat* weights;
CvMat* probs;
CvMat* log_weight_div_det;
CvMat* inv_eigen_values;
CvMat** cov_rotate_mats;
};
/****************************************************************************************\
* Decision Tree *
\****************************************************************************************/
struct CvPair32s32f
{
int i;
float val;
};
#define CV_DTREE_CAT_DIR(idx,subset) \
(2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)
struct CvDTreeSplit
{
int var_idx;
int inversed;
float quality;
CvDTreeSplit* next;
union
{
int subset[2];
struct
{
float c;
int split_point;
}
ord;
};
};
struct CvDTreeNode
{
int class_idx;
int Tn;
double value;
CvDTreeNode* parent;
CvDTreeNode* left;
CvDTreeNode* right;
CvDTreeSplit* split;
int sample_count;
int depth;
int* num_valid;
int offset;
int buf_idx;
double maxlr;
// global pruning data
int complexity;
double alpha;
double node_risk, tree_risk, tree_error;
// cross-validation pruning data
int* cv_Tn;
double* cv_node_risk;
double* cv_node_error;
int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
};
struct CV_EXPORTS CvDTreeParams
{
int max_categories;
int max_depth;
int min_sample_count;
int cv_folds;
bool use_surrogates;
bool use_1se_rule;
bool truncate_pruned_tree;
float regression_accuracy;
const float* priors;
CvDTreeParams() : max_categories(10), max_depth(INT_MAX), min_sample_count(10),
cv_folds(10), use_surrogates(true), use_1se_rule(true),
truncate_pruned_tree(true), regression_accuracy(0.01f), priors(0)
{}
CvDTreeParams( int _max_depth, int _min_sample_count,
float _regression_accuracy, bool _use_surrogates,
int _max_categories, int _cv_folds,
bool _use_1se_rule, bool _truncate_pruned_tree,
const float* _priors ) :
max_categories(_max_categories), max_depth(_max_depth),
min_sample_count(_min_sample_count), cv_folds (_cv_folds),
use_surrogates(_use_surrogates), use_1se_rule(_use_1se_rule),
truncate_pruned_tree(_truncate_pruned_tree),
regression_accuracy(_regression_accuracy),
priors(_priors)
{}
};
struct CV_EXPORTS CvDTreeTrainData
{
CvDTreeTrainData();
CvDTreeTrainData( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
const CvDTreeParams& _params=CvDTreeParams(),
bool _shared=false, bool _add_labels=false );
virtual ~CvDTreeTrainData();
virtual void set_data( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
const CvDTreeParams& _params=CvDTreeParams(),
bool _shared=false, bool _add_labels=false,
bool _update_data=false );
virtual void get_vectors( const CvMat* _subsample_idx,
float* values, uchar* missing, float* responses, bool get_class_idx=false );
virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
virtual void write_params( CvFileStorage* fs );
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
// release all the data
virtual void clear();
int get_num_classes() const;
int get_var_type(int vi) const;
int get_work_var_count() const;
virtual int* get_class_labels( CvDTreeNode* n );
virtual float* get_ord_responses( CvDTreeNode* n );
virtual int* get_labels( CvDTreeNode* n );
virtual int* get_cat_var_data( CvDTreeNode* n, int vi );
virtual CvPair32s32f* get_ord_var_data( CvDTreeNode* n, int vi );
virtual int get_child_buf_idx( CvDTreeNode* n );
////////////////////////////////////
virtual bool set_params( const CvDTreeParams& params );
virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
int storage_idx, int offset );
virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
int split_point, int inversed, float quality );
virtual CvDTreeSplit* new_split_cat( int vi, float quality );
virtual void free_node_data( CvDTreeNode* node );
virtual void free_train_data();
virtual void free_node( CvDTreeNode* node );
int sample_count, var_all, var_count, max_c_count;
int ord_var_count, cat_var_count;
bool have_labels, have_priors;
bool is_classifier;
int buf_count, buf_size;
bool shared;
CvMat* cat_count;
CvMat* cat_ofs;
CvMat* cat_map;
CvMat* counts;
CvMat* buf;
CvMat* direction;
CvMat* split_buf;
CvMat* var_idx;
CvMat* var_type; // i-th element =
// k<0 - ordered
// k>=0 - categorical, see k-th element of cat_* arrays
CvMat* priors;
CvMat* priors_mult;
CvDTreeParams params;
CvMemStorage* tree_storage;
CvMemStorage* temp_storage;
CvDTreeNode* data_root;
CvSet* node_heap;
CvSet* split_heap;
CvSet* cv_heap;
CvSet* nv_heap;
CvRNG rng;
};
class CV_EXPORTS CvDTree : public CvStatModel
{
public:
CvDTree();
virtual ~CvDTree();
virtual bool train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
CvDTreeParams params=CvDTreeParams() );
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx );
virtual CvDTreeNode* predict( const CvMat* _sample, const CvMat* _missing_data_mask=0,
bool preprocessed_input=false ) const;
virtual const CvMat* get_var_importance();
virtual void clear();
virtual void read( CvFileStorage* fs, CvFileNode* node );
virtual void write( CvFileStorage* fs, const char* name );
// special read & write methods for trees in the tree ensembles
virtual void read( CvFileStorage* fs, CvFileNode* node,
CvDTreeTrainData* data );
virtual void write( CvFileStorage* fs );
const CvDTreeNode* get_root() const;
int get_pruned_tree_idx() const;
CvDTreeTrainData* get_data();
protected:
virtual bool do_train( const CvMat* _subsample_idx );
virtual void try_split_node( CvDTreeNode* n );
virtual void split_node_data( CvDTreeNode* n );
virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi );
virtual double calc_node_dir( CvDTreeNode* node );
virtual void complete_node_dir( CvDTreeNode* node );
virtual void cluster_categories( const int* vectors, int vector_count,
int var_count, int* sums, int k, int* cluster_labels );
virtual void calc_node_value( CvDTreeNode* node );
virtual void prune_cv();
virtual double update_tree_rnc( int T, int fold );
virtual int cut_tree( int T, int fold, double min_alpha );
virtual void free_prune_data(bool cut_tree);
virtual void free_tree();
virtual void write_node( CvFileStorage* fs, CvDTreeNode* node );
virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split );
virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
virtual void write_tree_nodes( CvFileStorage* fs );
virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );
CvDTreeNode* root;
int pruned_tree_idx;
CvMat* var_importance;
CvDTreeTrainData* data;
};
/****************************************************************************************\
* Random Trees Classifier *
\****************************************************************************************/
class CvRTrees;
class CV_EXPORTS CvForestTree: public CvDTree
{
public:
CvForestTree();
virtual ~CvForestTree();
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx, CvRTrees* forest );
virtual int get_var_count() const {return data ? data->var_count : 0;}
virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );
/* dummy methods to avoid warnings: BEGIN */
virtual bool train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
CvDTreeParams params=CvDTreeParams() );
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx );
virtual void read( CvFileStorage* fs, CvFileNode* node );
virtual void read( CvFileStorage* fs, CvFileNode* node,
CvDTreeTrainData* data );
/* dummy methods to avoid warnings: END */
protected:
virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
CvRTrees* forest;
};
struct CV_EXPORTS CvRTParams : public CvDTreeParams
{
//Parameters for the forest
bool calc_var_importance; // true <=> RF processes variable importance
int nactive_vars;
CvTermCriteria term_crit;
CvRTParams() : CvDTreeParams( 5, 10, 0, false, 10, 0, false, false, 0 ),
calc_var_importance(false), nactive_vars(0)
{
term_crit = cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 50, 0.1 );
}
CvRTParams( int _max_depth, int _min_sample_count,
float _regression_accuracy, bool _use_surrogates,
int _max_categories, const float* _priors, bool _calc_var_importance,
int _nactive_vars, int max_num_of_trees_in_the_forest,
float forest_accuracy, int termcrit_type ) :
CvDTreeParams( _max_depth, _min_sample_count, _regression_accuracy,
_use_surrogates, _max_categories, 0,
false, false, _priors ),
calc_var_importance(_calc_var_importance),
nactive_vars(_nactive_vars)
{
term_crit = cvTermCriteria(termcrit_type,
max_num_of_trees_in_the_forest, forest_accuracy);
}
};
class CV_EXPORTS CvRTrees : public CvStatModel
{
public:
CvRTrees();
virtual ~CvRTrees();
virtual bool train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
CvRTParams params=CvRTParams() );
virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
virtual void clear();
virtual const CvMat* get_var_importance();
virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;
virtual void read( CvFileStorage* fs, CvFileNode* node );
virtual void write( CvFileStorage* fs, const char* name );
CvMat* get_active_var_mask();
CvRNG* get_rng();
int get_tree_count() const;
CvForestTree* get_tree(int i) const;
protected:
bool grow_forest( const CvTermCriteria term_crit );
// array of the trees of the forest
CvForestTree** trees;
CvDTreeTrainData* data;
int ntrees;
int nclasses;
double oob_error;
CvMat* var_importance;
int nsamples;
CvRNG rng;
CvMat* active_var_mask;
};
/****************************************************************************************\
* Boosted tree classifier *
\****************************************************************************************/
struct CV_EXPORTS CvBoostParams : public CvDTreeParams
{
int boost_type;
int weak_count;
int split_criteria;
double weight_trim_rate;
CvBoostParams();
CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
int max_depth, bool use_surrogates, const float* priors );
};
class CvBoost;
class CV_EXPORTS CvBoostTree: public CvDTree
{
public:
CvBoostTree();
virtual ~CvBoostTree();
virtual bool train( CvDTreeTrainData* _train_data,
const CvMat* subsample_idx, CvBoost* ensemble );
virtual void scale( double s );
virtual void read( CvFileStorage* fs, CvFileNode* node,
CvBoost* ensemble, CvDTreeTrainData* _data );
virtual void clear();
/* dummy methods to avoid warnings: BEGIN */
virtual bool train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
CvDTreeParams params=CvDTreeParams() );
virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx );
virtual void read( CvFileStorage* fs, CvFileNode* node );
virtual void read( CvFileStorage* fs, CvFileNode* node,
CvDTreeTrainData* data );
/* dummy methods to avoid warnings: END */
protected:
virtual void try_split_node( CvDTreeNode* n );
virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi );
virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi );
virtual void calc_node_value( CvDTreeNode* n );
virtual double calc_node_dir( CvDTreeNode* n );
CvBoost* ensemble;
};
class CV_EXPORTS CvBoost : public CvStatModel
{
public:
// Boosting type
enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
// Splitting criteria
enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };
CvBoost();
virtual ~CvBoost();
CvBoost( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
CvBoostParams params=CvBoostParams() );
virtual bool train( const CvMat* _train_data, int _tflag,
const CvMat* _responses, const CvMat* _var_idx=0,
const CvMat* _sample_idx=0, const CvMat* _var_type=0,
const CvMat* _missing_mask=0,
CvBoostParams params=CvBoostParams(),
bool update=false );
virtual float predict( const CvMat* _sample, const CvMat* _missing=0,
CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
bool raw_mode=false ) const;
virtual void prune( CvSlice slice );
virtual void clear();
virtual void write( CvFileStorage* storage, const char* name );
virtual void read( CvFileStorage* storage, CvFileNode* node );
CvSeq* get_weak_predictors();
CvMat* get_weights();
CvMat* get_subtree_weights();
CvMat* get_weak_response();
const CvBoostParams& get_params() const;
protected:
virtual bool set_params( const CvBoostParams& _params );
virtual void update_weights( CvBoostTree* tree );
virtual void trim_weights();
virtual void write_params( CvFileStorage* fs );
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
CvDTreeTrainData* data;
CvBoostParams params;
CvSeq* weak;
CvMat* orig_response;
CvMat* sum_response;
CvMat* weak_eval;
CvMat* subsample_mask;
CvMat* weights;
CvMat* subtree_weights;
bool have_subsample;
};
/****************************************************************************************\
* Artificial Neural Networks (ANN) *
\****************************************************************************************/
/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
struct CV_EXPORTS CvANN_MLP_TrainParams
{
CvANN_MLP_TrainParams();
CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
double param1, double param2=0 );
~CvANN_MLP_TrainParams();
enum { BACKPROP=0, RPROP=1 };
CvTermCriteria term_crit;
int train_method;
// backpropagation parameters
double bp_dw_scale, bp_moment_scale;
// rprop parameters
double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
};
class CV_EXPORTS CvANN_MLP : public CvStatModel
{
public:
CvANN_MLP();
CvANN_MLP( const CvMat* _layer_sizes,
int _activ_func=SIGMOID_SYM,
double _f_param1=0, double _f_param2=0 );
virtual ~CvANN_MLP();
virtual void create( const CvMat* _layer_sizes,
int _activ_func=SIGMOID_SYM,
double _f_param1=0, double _f_param2=0 );
virtual int train( const CvMat* _inputs, const CvMat* _outputs,
const CvMat* _sample_weights, const CvMat* _sample_idx=0,
CvANN_MLP_TrainParams _params = CvANN_MLP_TrainParams(),
int flags=0 );
virtual float predict( const CvMat* _inputs,
CvMat* _outputs ) const;
virtual void clear();
// possible activation functions
enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
// available training flags
enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
virtual void read( CvFileStorage* fs, CvFileNode* node );
virtual void write( CvFileStorage* storage, const char* name );
int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
const CvMat* get_layer_sizes() { return layer_sizes; }
double* get_weights(int layer)
{
return layer_sizes && weights &&
(unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
}
protected:
virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
const CvMat* _sample_weights, const CvMat* _sample_idx,
CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );
// sequential random backpropagation
virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
// RPROP algorithm
virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;
virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
double _f_param1=0, double _f_param2=0 );
virtual void init_weights();
virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
virtual void calc_input_scale( const CvVectors* vecs, int flags );
virtual void calc_output_scale( const CvVectors* vecs, int flags );
virtual void write_params( CvFileStorage* fs );
virtual void read_params( CvFileStorage* fs, CvFileNode* node );
CvMat* layer_sizes;
CvMat* wbuf;
CvMat* sample_weights;
double** weights;
double f_param1, f_param2;
double min_val, max_val, min_val1, max_val1;
int activ_func;
int max_count, max_buf_sz;
CvANN_MLP_TrainParams params;
CvRNG rng;
};
#if 0
/****************************************************************************************\
* Convolutional Neural Network *
\****************************************************************************************/
typedef struct CvCNNLayer CvCNNLayer;
typedef struct CvCNNetwork CvCNNetwork;
#define CV_CNN_LEARN_RATE_DECREASE_HYPERBOLICALLY 1
#define CV_CNN_LEARN_RATE_DECREASE_SQRT_INV 2
#define CV_CNN_LEARN_RATE_DECREASE_LOG_INV 3
#define CV_CNN_GRAD_ESTIM_RANDOM 0
#define CV_CNN_GRAD_ESTIM_BY_WORST_IMG 1
#define ICV_CNN_LAYER 0x55550000
#define ICV_CNN_CONVOLUTION_LAYER 0x00001111
#define ICV_CNN_SUBSAMPLING_LAYER 0x00002222
#define ICV_CNN_FULLCONNECT_LAYER 0x00003333
#define ICV_IS_CNN_LAYER( layer ) \
( ((layer) != NULL) && ((((CvCNNLayer*)(layer))->flags & CV_MAGIC_MASK)\
== ICV_CNN_LAYER ))
#define ICV_IS_CNN_CONVOLUTION_LAYER( layer ) \
( (ICV_IS_CNN_LAYER( layer )) && (((CvCNNLayer*) (layer))->flags \
& ~CV_MAGIC_MASK) == ICV_CNN_CONVOLUTION_LAYER )
#define ICV_IS_CNN_SUBSAMPLING_LAYER( layer ) \
( (ICV_IS_CNN_LAYER( layer )) && (((CvCNNLayer*) (layer))->flags \
& ~CV_MAGIC_MASK) == ICV_CNN_SUBSAMPLING_LAYER )
#define ICV_IS_CNN_FULLCONNECT_LAYER( layer ) \
( (ICV_IS_CNN_LAYER( layer )) && (((CvCNNLayer*) (layer))->flags \
& ~CV_MAGIC_MASK) == ICV_CNN_FULLCONNECT_LAYER )
typedef void (CV_CDECL *CvCNNLayerForward)
( CvCNNLayer* layer, const CvMat* input, CvMat* output );
typedef void (CV_CDECL *CvCNNLayerBackward)
( CvCNNLayer* layer, int t, const CvMat* X, const CvMat* dE_dY, CvMat* dE_dX );
typedef void (CV_CDECL *CvCNNLayerRelease)
(CvCNNLayer** layer);
typedef void (CV_CDECL *CvCNNetworkAddLayer)
(CvCNNetwork* network, CvCNNLayer* layer);
typedef void (CV_CDECL *CvCNNetworkRelease)
(CvCNNetwork** network);
#define CV_CNN_LAYER_FIELDS() \
/* Indicator of the layer's type */ \
int flags; \
\
/* Number of input images */ \
int n_input_planes; \
/* Height of each input image */ \
int input_height; \
/* Width of each input image */ \
int input_width; \
\
/* Number of output images */ \
int n_output_planes; \
/* Height of each output image */ \
int output_height; \
/* Width of each output image */ \
int output_width; \
\
/* Learning rate at the first iteration */ \
float init_learn_rate; \
/* Dynamics of learning rate decreasing */ \
int learn_rate_decrease_type; \
/* Trainable weights of the layer (including bias) */ \
/* i-th row is a set of weights of the i-th output plane */ \
CvMat* weights; \
\
CvCNNLayerForward forward; \
CvCNNLayerBackward backward; \
CvCNNLayerRelease release; \
/* Pointers to the previous and next layers in the network */ \
CvCNNLayer* prev_layer; \
CvCNNLayer* next_layer
typedef struct CvCNNLayer
{
CV_CNN_LAYER_FIELDS();
}CvCNNLayer;
typedef struct CvCNNConvolutionLayer
{
CV_CNN_LAYER_FIELDS();
// Kernel size (height and width) for convolution.
int K;
// connections matrix, (i,j)-th element is 1 iff there is a connection between
// i-th plane of the current layer and j-th plane of the previous layer;
// (i,j)-th element is equal to 0 otherwise
CvMat *connect_mask;
// value of the learning rate for updating weights at the first iteration
}CvCNNConvolutionLayer;
typedef struct CvCNNSubSamplingLayer
{
CV_CNN_LAYER_FIELDS();
// ratio between the heights (or widths - ratios are supposed to be equal)
// of the input and output planes
int sub_samp_scale;
// amplitude of sigmoid activation function
float a;
// scale parameter of sigmoid activation function
float s;
// exp2ssumWX = exp(2<s>*(bias+w*(x1+...+x4))), where x1,...x4 are some elements of X
// - is the vector used in computing of the activation function in backward
CvMat* exp2ssumWX;
// (x1+x2+x3+x4), where x1,...x4 are some elements of X
// - is the vector used in computing of the activation function in backward
CvMat* sumX;
}CvCNNSubSamplingLayer;
// Structure of the last layer.
typedef struct CvCNNFullConnectLayer
{
CV_CNN_LAYER_FIELDS();
// amplitude of sigmoid activation function
float a;
// scale parameter of sigmoid activation function
float s;
// exp2ssumWX = exp(2*<s>*(W*X)) - is the vector used in computing of the
// activation function and it's derivative by the formulae
// activ.func. = <a>(exp(2<s>WX)-1)/(exp(2<s>WX)+1) == <a> - 2<a>/(<exp2ssumWX> + 1)
// (activ.func.)' = 4<a><s>exp(2<s>WX)/(exp(2<s>WX)+1)^2
CvMat* exp2ssumWX;
}CvCNNFullConnectLayer;
typedef struct CvCNNetwork
{
int n_layers;
CvCNNLayer* layers;
CvCNNetworkAddLayer add_layer;
CvCNNetworkRelease release;
}CvCNNetwork;
typedef struct CvCNNStatModel
{
CV_STAT_MODEL_FIELDS();
CvCNNetwork* network;
// etalons are allocated as rows, the i-th etalon has label cls_labeles[i]
CvMat* etalons;
// classes labels
CvMat* cls_labels;
}CvCNNStatModel;
typedef struct CvCNNStatModelParams
{
CV_STAT_MODEL_PARAM_FIELDS();
// network must be created by the functions cvCreateCNNetwork and <add_layer>
CvCNNetwork* network;
CvMat* etalons;
// termination criteria
int max_iter;
int start_iter;
int grad_estim_type;
}CvCNNStatModelParams;
CVAPI(CvCNNLayer*) cvCreateCNNConvolutionLayer(
int n_input_planes, int input_height, int input_width,
int n_output_planes, int K,
float init_learn_rate, int learn_rate_decrease_type,
CvMat* connect_mask CV_DEFAULT(0), CvMat* weights CV_DEFAULT(0) );
CVAPI(CvCNNLayer*) cvCreateCNNSubSamplingLayer(
int n_input_planes, int input_height, int input_width,
int sub_samp_scale, float a, float s,
float init_learn_rate, int learn_rate_decrease_type, CvMat* weights CV_DEFAULT(0) );
CVAPI(CvCNNLayer*) cvCreateCNNFullConnectLayer(
int n_inputs, int n_outputs, float a, float s,
float init_learn_rate, int learning_type, CvMat* weights CV_DEFAULT(0) );
CVAPI(CvCNNetwork*) cvCreateCNNetwork( CvCNNLayer* first_layer );
CVAPI(CvStatModel*) cvTrainCNNClassifier(
const CvMat* train_data, int tflag,
const CvMat* responses,
const CvStatModelParams* params,
const CvMat* CV_DEFAULT(0),
const CvMat* sample_idx CV_DEFAULT(0),
const CvMat* CV_DEFAULT(0), const CvMat* CV_DEFAULT(0) );
/****************************************************************************************\
* Estimate classifiers algorithms *
\****************************************************************************************/
typedef const CvMat* (CV_CDECL *CvStatModelEstimateGetMat)
( const CvStatModel* estimateModel );
typedef int (CV_CDECL *CvStatModelEstimateNextStep)
( CvStatModel* estimateModel );
typedef void (CV_CDECL *CvStatModelEstimateCheckClassifier)
( CvStatModel* estimateModel,
const CvStatModel* model,
const CvMat* features,
int sample_t_flag,
const CvMat* responses );
typedef void (CV_CDECL *CvStatModelEstimateCheckClassifierEasy)
( CvStatModel* estimateModel,
const CvStatModel* model );
typedef float (CV_CDECL *CvStatModelEstimateGetCurrentResult)
( const CvStatModel* estimateModel,
float* correlation );
typedef void (CV_CDECL *CvStatModelEstimateReset)
( CvStatModel* estimateModel );
//-------------------------------- Cross-validation --------------------------------------
#define CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_PARAM_FIELDS() \
CV_STAT_MODEL_PARAM_FIELDS(); \
int k_fold; \
int is_regression; \
CvRNG* rng
typedef struct CvCrossValidationParams
{
CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_PARAM_FIELDS();
} CvCrossValidationParams;
#define CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_FIELDS() \
CvStatModelEstimateGetMat getTrainIdxMat; \
CvStatModelEstimateGetMat getCheckIdxMat; \
CvStatModelEstimateNextStep nextStep; \
CvStatModelEstimateCheckClassifier check; \
CvStatModelEstimateGetCurrentResult getResult; \
CvStatModelEstimateReset reset; \
int is_regression; \
int folds_all; \
int samples_all; \
int* sampleIdxAll; \
int* folds; \
int max_fold_size; \
int current_fold; \
int is_checked; \
CvMat* sampleIdxTrain; \
CvMat* sampleIdxEval; \
CvMat* predict_results; \
int correct_results; \
int all_results; \
double sq_error; \
double sum_correct; \
double sum_predict; \
double sum_cc; \
double sum_pp; \
double sum_cp
typedef struct CvCrossValidationModel
{
CV_STAT_MODEL_FIELDS();
CV_CROSS_VALIDATION_ESTIMATE_CLASSIFIER_FIELDS();
} CvCrossValidationModel;
CVAPI(CvStatModel*)
cvCreateCrossValidationEstimateModel
( int samples_all,
const CvStatModelParams* estimateParams CV_DEFAULT(0),
const CvMat* sampleIdx CV_DEFAULT(0) );
CVAPI(float)
cvCrossValidation( const CvMat* trueData,
int tflag,
const CvMat* trueClasses,
CvStatModel* (*createClassifier)( const CvMat*,
int,
const CvMat*,
const CvStatModelParams*,
const CvMat*,
const CvMat*,
const CvMat*,
const CvMat* ),
const CvStatModelParams* estimateParams CV_DEFAULT(0),
const CvStatModelParams* trainParams CV_DEFAULT(0),
const CvMat* compIdx CV_DEFAULT(0),
const CvMat* sampleIdx CV_DEFAULT(0),
CvStatModel** pCrValModel CV_DEFAULT(0),
const CvMat* typeMask CV_DEFAULT(0),
const CvMat* missedMeasurementMask CV_DEFAULT(0) );
#endif
/****************************************************************************************\
* Auxilary functions declarations *
\****************************************************************************************/
/* Generates <sample> from multivariate normal distribution, where <mean> - is an
average row vector, <cov> - symmetric covariation matrix */
CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
CvRNG* rng CV_DEFAULT(0) );
/* Generates sample from gaussian mixture distribution */
CVAPI(void) cvRandGaussMixture( CvMat* means[],
CvMat* covs[],
float weights[],
int clsnum,
CvMat* sample,
CvMat* sampClasses CV_DEFAULT(0) );
#define CV_TS_CONCENTRIC_SPHERES 0
/* creates test set */
CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
int num_samples,
int num_features,
CvMat** responses,
int num_classes, ... );
/* Aij <- Aji for i > j if lower_to_upper != 0
for i < j if lower_to_upper = 0 */
CVAPI(void) cvCompleteSymm( CvMat* matrix, int lower_to_upper );
#endif
#endif /*__ML_H__*/
/* End of file. */