//===-- ARMSelectionDAGInfo.cpp - ARM SelectionDAG Info -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMSelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "ARMTargetMachine.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
#define DEBUG_TYPE "arm-selectiondag-info"
// Emit, if possible, a specialized version of the given Libcall. Typically this
// means selecting the appropriately aligned version, but we also convert memset
// of 0 into memclr.
SDValue ARMSelectionDAGInfo::
EmitSpecializedLibcall(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
RTLIB::Libcall LC) const {
const ARMSubtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
const ARMTargetLowering *TLI = Subtarget.getTargetLowering();
// Only use a specialized AEABI function if the default version of this
// Libcall is an AEABI function.
if (std::strncmp(TLI->getLibcallName(LC), "__aeabi", 7) != 0)
return SDValue();
// Translate RTLIB::Libcall to AEABILibcall. We only do this in order to be
// able to translate memset to memclr and use the value to index the function
// name array.
enum {
AEABI_MEMCPY = 0,
AEABI_MEMMOVE,
AEABI_MEMSET,
AEABI_MEMCLR
} AEABILibcall;
switch (LC) {
case RTLIB::MEMCPY:
AEABILibcall = AEABI_MEMCPY;
break;
case RTLIB::MEMMOVE:
AEABILibcall = AEABI_MEMMOVE;
break;
case RTLIB::MEMSET:
AEABILibcall = AEABI_MEMSET;
if (ConstantSDNode *ConstantSrc = dyn_cast<ConstantSDNode>(Src))
if (ConstantSrc->getZExtValue() == 0)
AEABILibcall = AEABI_MEMCLR;
break;
default:
return SDValue();
}
// Choose the most-aligned libcall variant that we can
enum {
ALIGN1 = 0,
ALIGN4,
ALIGN8
} AlignVariant;
if ((Align & 7) == 0)
AlignVariant = ALIGN8;
else if ((Align & 3) == 0)
AlignVariant = ALIGN4;
else
AlignVariant = ALIGN1;
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
Entry.Node = Dst;
Args.push_back(Entry);
if (AEABILibcall == AEABI_MEMCLR) {
Entry.Node = Size;
Args.push_back(Entry);
} else if (AEABILibcall == AEABI_MEMSET) {
// Adjust parameters for memset, EABI uses format (ptr, size, value),
// GNU library uses (ptr, value, size)
// See RTABI section 4.3.4
Entry.Node = Size;
Args.push_back(Entry);
// Extend or truncate the argument to be an i32 value for the call.
if (Src.getValueType().bitsGT(MVT::i32))
Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
else if (Src.getValueType().bitsLT(MVT::i32))
Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
Entry.Node = Src;
Entry.Ty = Type::getInt32Ty(*DAG.getContext());
Entry.isSExt = false;
Args.push_back(Entry);
} else {
Entry.Node = Src;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
}
char const *FunctionNames[4][3] = {
{ "__aeabi_memcpy", "__aeabi_memcpy4", "__aeabi_memcpy8" },
{ "__aeabi_memmove", "__aeabi_memmove4", "__aeabi_memmove8" },
{ "__aeabi_memset", "__aeabi_memset4", "__aeabi_memset8" },
{ "__aeabi_memclr", "__aeabi_memclr4", "__aeabi_memclr8" }
};
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setCallee(
TLI->getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(FunctionNames[AEABILibcall][AlignVariant],
TLI->getPointerTy(DAG.getDataLayout())),
std::move(Args), 0)
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
return CallResult.second;
}
SDValue
ARMSelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) const {
const ARMSubtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
// Do repeated 4-byte loads and stores. To be improved.
// This requires 4-byte alignment.
if ((Align & 3) != 0)
return SDValue();
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMCPY);
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMCPY);
unsigned BytesLeft = SizeVal & 3;
unsigned NumMemOps = SizeVal >> 2;
unsigned EmittedNumMemOps = 0;
EVT VT = MVT::i32;
unsigned VTSize = 4;
unsigned i = 0;
// Emit a maximum of 4 loads in Thumb1 since we have fewer registers
const unsigned MaxLoadsInLDM = Subtarget.isThumb1Only() ? 4 : 6;
SDValue TFOps[6];
SDValue Loads[6];
uint64_t SrcOff = 0, DstOff = 0;
// FIXME: We should invent a VMEMCPY pseudo-instruction that lowers to
// VLDM/VSTM and make this code emit it when appropriate. This would reduce
// pressure on the general purpose registers. However this seems harder to map
// onto the register allocator's view of the world.
// The number of MEMCPY pseudo-instructions to emit. We use up to
// MaxLoadsInLDM registers per mcopy, which will get lowered into ldm/stm
// later on. This is a lower bound on the number of MEMCPY operations we must
// emit.
unsigned NumMEMCPYs = (NumMemOps + MaxLoadsInLDM - 1) / MaxLoadsInLDM;
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other, MVT::Glue);
for (unsigned I = 0; I != NumMEMCPYs; ++I) {
// Evenly distribute registers among MEMCPY operations to reduce register
// pressure.
unsigned NextEmittedNumMemOps = NumMemOps * (I + 1) / NumMEMCPYs;
unsigned NumRegs = NextEmittedNumMemOps - EmittedNumMemOps;
Dst = DAG.getNode(ARMISD::MEMCPY, dl, VTs, Chain, Dst, Src,
DAG.getConstant(NumRegs, dl, MVT::i32));
Src = Dst.getValue(1);
Chain = Dst.getValue(2);
DstPtrInfo = DstPtrInfo.getWithOffset(NumRegs * VTSize);
SrcPtrInfo = SrcPtrInfo.getWithOffset(NumRegs * VTSize);
EmittedNumMemOps = NextEmittedNumMemOps;
}
if (BytesLeft == 0)
return Chain;
// Issue loads / stores for the trailing (1 - 3) bytes.
unsigned BytesLeftSave = BytesLeft;
i = 0;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
Loads[i] = DAG.getLoad(VT, dl, Chain,
DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
DAG.getConstant(SrcOff, dl, MVT::i32)),
SrcPtrInfo.getWithOffset(SrcOff),
false, false, false, 0);
TFOps[i] = Loads[i].getValue(1);
++i;
SrcOff += VTSize;
BytesLeft -= VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
i = 0;
BytesLeft = BytesLeftSave;
while (BytesLeft) {
if (BytesLeft >= 2) {
VT = MVT::i16;
VTSize = 2;
} else {
VT = MVT::i8;
VTSize = 1;
}
TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
DAG.getConstant(DstOff, dl, MVT::i32)),
DstPtrInfo.getWithOffset(DstOff), false, false, 0);
++i;
DstOff += VTSize;
BytesLeft -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
makeArrayRef(TFOps, i));
}
SDValue ARMSelectionDAGInfo::
EmitTargetCodeForMemmove(SelectionDAG &DAG, SDLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) const {
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMMOVE);
}
SDValue ARMSelectionDAGInfo::
EmitTargetCodeForMemset(SelectionDAG &DAG, SDLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size, Align,
RTLIB::MEMSET);
}