/*
* lib/route/tc.c Traffic Control
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation version 2.1
* of the License.
*
* Copyright (c) 2003-2008 Thomas Graf <tgraf@suug.ch>
*/
/**
* @ingroup rtnl
* @defgroup tc Traffic Control
* @brief
* @{
*/
#include <netlink-local.h>
#include <netlink-tc.h>
#include <netlink/netlink.h>
#include <netlink/utils.h>
#include <netlink/route/rtnl.h>
#include <netlink/route/link.h>
#include <netlink/route/tc.h>
/** @cond SKIP */
static struct nla_policy tc_policy[TCA_MAX+1] = {
[TCA_KIND] = { .type = NLA_STRING,
.maxlen = TCKINDSIZ },
[TCA_STATS] = { .minlen = sizeof(struct tc_stats) },
[TCA_STATS2] = { .type = NLA_NESTED },
};
int tca_parse(struct nlattr **tb, int maxattr, struct rtnl_tca *g,
struct nla_policy *policy)
{
if (g->ce_mask & TCA_ATTR_OPTS)
return nla_parse(tb, maxattr,
(struct nlattr *) g->tc_opts->d_data,
g->tc_opts->d_size, policy);
else {
/* Ugly but tb[] must be in a defined state even if no
* attributes can be found. */
memset(tb, 0, sizeof(struct nlattr *) * (maxattr + 1));
return 0;
}
}
static struct nla_policy tc_stats2_policy[TCA_STATS_MAX+1] = {
[TCA_STATS_BASIC] = { .minlen = sizeof(struct gnet_stats_basic) },
[TCA_STATS_RATE_EST] = { .minlen = sizeof(struct gnet_stats_rate_est) },
[TCA_STATS_QUEUE] = { .minlen = sizeof(struct gnet_stats_queue) },
};
int tca_msg_parser(struct nlmsghdr *n, struct rtnl_tca *g)
{
struct nlattr *tb[TCA_MAX + 1];
struct tcmsg *tm;
int err;
err = nlmsg_parse(n, sizeof(*tm), tb, TCA_MAX, tc_policy);
if (err < 0)
return err;
if (tb[TCA_KIND] == NULL)
return -NLE_MISSING_ATTR;
nla_strlcpy(g->tc_kind, tb[TCA_KIND], TCKINDSIZ);
tm = nlmsg_data(n);
g->tc_family = tm->tcm_family;
g->tc_ifindex = tm->tcm_ifindex;
g->tc_handle = tm->tcm_handle;
g->tc_parent = tm->tcm_parent;
g->tc_info = tm->tcm_info;
g->ce_mask = (TCA_ATTR_FAMILY | TCA_ATTR_IFINDEX | TCA_ATTR_HANDLE |
TCA_ATTR_PARENT | TCA_ATTR_INFO | TCA_ATTR_KIND);
if (tb[TCA_OPTIONS]) {
g->tc_opts = nl_data_alloc_attr(tb[TCA_OPTIONS]);
if (!g->tc_opts)
return -NLE_NOMEM;
g->ce_mask |= TCA_ATTR_OPTS;
}
if (tb[TCA_STATS2]) {
struct nlattr *tbs[TCA_STATS_MAX + 1];
err = nla_parse_nested(tbs, TCA_STATS_MAX, tb[TCA_STATS2],
tc_stats2_policy);
if (err < 0)
return err;
if (tbs[TCA_STATS_BASIC]) {
struct gnet_stats_basic *bs;
bs = nla_data(tbs[TCA_STATS_BASIC]);
g->tc_stats[RTNL_TC_BYTES] = bs->bytes;
g->tc_stats[RTNL_TC_PACKETS] = bs->packets;
}
if (tbs[TCA_STATS_RATE_EST]) {
struct gnet_stats_rate_est *re;
re = nla_data(tbs[TCA_STATS_RATE_EST]);
g->tc_stats[RTNL_TC_RATE_BPS] = re->bps;
g->tc_stats[RTNL_TC_RATE_PPS] = re->pps;
}
if (tbs[TCA_STATS_QUEUE]) {
struct gnet_stats_queue *q;
q = nla_data(tbs[TCA_STATS_QUEUE]);
g->tc_stats[RTNL_TC_QLEN] = q->qlen;
g->tc_stats[RTNL_TC_BACKLOG] = q->backlog;
g->tc_stats[RTNL_TC_DROPS] = q->drops;
g->tc_stats[RTNL_TC_REQUEUES] = q->requeues;
g->tc_stats[RTNL_TC_OVERLIMITS] = q->overlimits;
}
g->ce_mask |= TCA_ATTR_STATS;
if (tbs[TCA_STATS_APP]) {
g->tc_xstats = nl_data_alloc_attr(tbs[TCA_STATS_APP]);
if (g->tc_xstats == NULL)
return -NLE_NOMEM;
} else
goto compat_xstats;
} else {
if (tb[TCA_STATS]) {
struct tc_stats *st = nla_data(tb[TCA_STATS]);
g->tc_stats[RTNL_TC_BYTES] = st->bytes;
g->tc_stats[RTNL_TC_PACKETS] = st->packets;
g->tc_stats[RTNL_TC_RATE_BPS] = st->bps;
g->tc_stats[RTNL_TC_RATE_PPS] = st->pps;
g->tc_stats[RTNL_TC_QLEN] = st->qlen;
g->tc_stats[RTNL_TC_BACKLOG] = st->backlog;
g->tc_stats[RTNL_TC_DROPS] = st->drops;
g->tc_stats[RTNL_TC_OVERLIMITS] = st->overlimits;
g->ce_mask |= TCA_ATTR_STATS;
}
compat_xstats:
if (tb[TCA_XSTATS]) {
g->tc_xstats = nl_data_alloc_attr(tb[TCA_XSTATS]);
if (g->tc_xstats == NULL)
return -NLE_NOMEM;
g->ce_mask |= TCA_ATTR_XSTATS;
}
}
return 0;
}
void tca_free_data(struct rtnl_tca *tca)
{
nl_data_free(tca->tc_opts);
nl_data_free(tca->tc_xstats);
}
int tca_clone(struct rtnl_tca *dst, struct rtnl_tca *src)
{
if (src->tc_opts) {
dst->tc_opts = nl_data_clone(src->tc_opts);
if (!dst->tc_opts)
return -NLE_NOMEM;
}
if (src->tc_xstats) {
dst->tc_xstats = nl_data_clone(src->tc_xstats);
if (!dst->tc_xstats)
return -NLE_NOMEM;
}
return 0;
}
void tca_dump_line(struct rtnl_tca *g, const char *type,
struct nl_dump_params *p)
{
char handle[32], parent[32];
struct nl_cache *link_cache;
link_cache = nl_cache_mngt_require("route/link");
nl_dump_line(p, "%s %s ", g->tc_kind, type);
if (link_cache) {
char buf[32];
nl_dump(p, "dev %s ",
rtnl_link_i2name(link_cache, g->tc_ifindex,
buf, sizeof(buf)));
} else
nl_dump(p, "dev %u ", g->tc_ifindex);
nl_dump(p, "handle %s parent %s",
rtnl_tc_handle2str(g->tc_handle, handle, sizeof(handle)),
rtnl_tc_handle2str(g->tc_parent, parent, sizeof(parent)));
}
void tca_dump_details(struct rtnl_tca *g, struct nl_dump_params *p)
{
nl_dump_line(p, " ");
}
void tca_dump_stats(struct rtnl_tca *g, struct nl_dump_params *p)
{
char *unit, fmt[64];
float res;
strcpy(fmt, " %7.2f %s %10u %10u %10u %10u %10u\n");
nl_dump_line(p,
" Stats: bytes packets drops overlimits" \
" qlen backlog\n");
res = nl_cancel_down_bytes(g->tc_stats[RTNL_TC_BYTES], &unit);
if (*unit == 'B')
fmt[11] = '9';
nl_dump_line(p, fmt, res, unit,
g->tc_stats[RTNL_TC_PACKETS],
g->tc_stats[RTNL_TC_DROPS],
g->tc_stats[RTNL_TC_OVERLIMITS],
g->tc_stats[RTNL_TC_QLEN],
g->tc_stats[RTNL_TC_BACKLOG]);
res = nl_cancel_down_bytes(g->tc_stats[RTNL_TC_RATE_BPS], &unit);
strcpy(fmt, " %7.2f %s/s%9u pps");
if (*unit == 'B')
fmt[11] = '9';
nl_dump_line(p, fmt, res, unit, g->tc_stats[RTNL_TC_RATE_PPS]);
}
int tca_compare(struct nl_object *_a, struct nl_object *_b,
uint32_t attrs, int flags)
{
struct rtnl_tca *a = (struct rtnl_tca *) _a;
struct rtnl_tca *b = (struct rtnl_tca *) _b;
int diff = 0;
#define TC_DIFF(ATTR, EXPR) ATTR_DIFF(attrs, TCA_ATTR_##ATTR, a, b, EXPR)
diff |= TC_DIFF(HANDLE, a->tc_handle != b->tc_handle);
diff |= TC_DIFF(PARENT, a->tc_parent != b->tc_parent);
diff |= TC_DIFF(IFINDEX, a->tc_ifindex != b->tc_ifindex);
diff |= TC_DIFF(KIND, strcmp(a->tc_kind, b->tc_kind));
#undef TC_DIFF
return diff;
}
void tca_set_ifindex(struct rtnl_tca *t, int ifindex)
{
t->tc_ifindex = ifindex;
t->ce_mask |= TCA_ATTR_IFINDEX;
}
int tca_get_ifindex(struct rtnl_tca *t)
{
return t->tc_ifindex;
}
void tca_set_handle(struct rtnl_tca *t, uint32_t handle)
{
t->tc_handle = handle;
t->ce_mask |= TCA_ATTR_HANDLE;
}
uint32_t tca_get_handle(struct rtnl_tca *t)
{
if (t->ce_mask & TCA_ATTR_HANDLE)
return t->tc_handle;
else
return 0;
}
void tca_set_parent(struct rtnl_tca *t, uint32_t parent)
{
t->tc_parent = parent;
t->ce_mask |= TCA_ATTR_PARENT;
}
uint32_t tca_get_parent(struct rtnl_tca *t)
{
if (t->ce_mask & TCA_ATTR_PARENT)
return t->tc_parent;
else
return 0;
}
void tca_set_kind(struct rtnl_tca *t, const char *kind)
{
strncpy(t->tc_kind, kind, sizeof(t->tc_kind) - 1);
t->ce_mask |= TCA_ATTR_KIND;
}
char *tca_get_kind(struct rtnl_tca *t)
{
if (t->ce_mask & TCA_ATTR_KIND)
return t->tc_kind;
else
return NULL;
}
uint64_t tca_get_stat(struct rtnl_tca *t, int id)
{
if (id < 0 || id > RTNL_TC_STATS_MAX)
return 0;
return t->tc_stats[id];
}
int tca_build_msg(struct rtnl_tca *tca, int type, int flags,
struct nl_msg **result)
{
struct nl_msg *msg;
struct tcmsg tchdr = {
.tcm_family = AF_UNSPEC,
.tcm_ifindex = tca->tc_ifindex,
.tcm_handle = tca->tc_handle,
.tcm_parent = tca->tc_parent,
};
msg = nlmsg_alloc_simple(type, flags);
if (!msg)
return -NLE_NOMEM;
if (nlmsg_append(msg, &tchdr, sizeof(tchdr), NLMSG_ALIGNTO) < 0)
goto nla_put_failure;
if (tca->ce_mask & TCA_ATTR_KIND)
NLA_PUT_STRING(msg, TCA_KIND, tca->tc_kind);
*result = msg;
return 0;
nla_put_failure:
nlmsg_free(msg);
return -NLE_MSGSIZE;
}
/** @endcond */
/**
* @name Utilities
* @{
*/
/**
* Calculate time required to transmit buffer at a specific rate
* @arg bufsize Size of buffer to be transmited in bytes.
* @arg rate Transmit rate in bytes per second.
*
* Calculates the number of micro seconds required to transmit a
* specific buffer at a specific transmit rate.
*
* @f[
* txtime=\frac{bufsize}{rate}10^6
* @f]
*
* @return Required transmit time in micro seconds.
*/
int rtnl_tc_calc_txtime(int bufsize, int rate)
{
double tx_time_secs;
tx_time_secs = (double) bufsize / (double) rate;
return tx_time_secs * 1000000.;
}
/**
* Calculate buffer size able to transmit in a specific time and rate.
* @arg txtime Available transmit time in micro seconds.
* @arg rate Transmit rate in bytes per second.
*
* Calculates the size of the buffer that can be transmitted in a
* specific time period at a specific transmit rate.
*
* @f[
* bufsize=\frac{{txtime} \times {rate}}{10^6}
* @f]
*
* @return Size of buffer in bytes.
*/
int rtnl_tc_calc_bufsize(int txtime, int rate)
{
double bufsize;
bufsize = (double) txtime * (double) rate;
return bufsize / 1000000.;
}
/**
* Calculate the binary logarithm for a specific cell size
* @arg cell_size Size of cell, must be a power of two.
* @return Binary logirhtm of cell size or a negative error code.
*/
int rtnl_tc_calc_cell_log(int cell_size)
{
int i;
for (i = 0; i < 32; i++)
if ((1 << i) == cell_size)
return i;
return -NLE_INVAL;
}
/** @} */
/**
* @name Rate Tables
* @{
*/
/**
* Compute a transmission time lookup table
* @arg dst Destination buffer of RTNL_TC_RTABLE_SIZE uint32_t[].
* @arg mpu Minimal size of a packet at all times.
* @arg overhead Overhead to be added to each packet.
* @arg cell Size of cell, i.e. size of step between entries in bytes.
* @arg rate Rate in bytes per second.
*
* Computes a table of RTNL_TC_RTABLE_SIZE entries specyfing the
* transmission times for various packet sizes, e.g. the transmission
* time for a packet of size \c pktsize could be looked up:
* @code
* txtime = table[pktsize >> log2(cell)];
* @endcode
*/
int rtnl_tc_build_rate_table(uint32_t *dst, uint8_t mpu, uint8_t overhead,
int cell, int rate)
{
int i, size, cell_log;
cell_log = rtnl_tc_calc_cell_log(cell);
if (cell_log < 0)
return cell_log;
for (i = 0; i < RTNL_TC_RTABLE_SIZE; i++) {
size = (i << cell_log) + overhead;
if (size < mpu)
size = mpu;
dst[i] = rtnl_tc_calc_txtime(size, rate);
}
return 0;
}
/** @} */
/**
* @name Traffic Control Handle Translations
* @{
*/
/**
* Convert a traffic control handle to a character string (Reentrant).
* @arg handle traffic control handle
* @arg buf destination buffer
* @arg len buffer length
*
* Converts a tarffic control handle to a character string in the
* form of \c MAJ:MIN and stores it in the specified destination buffer.
*
* @return The destination buffer or the type encoded in hexidecimal
* form if no match was found.
*/
char * rtnl_tc_handle2str(uint32_t handle, char *buf, size_t len)
{
if (TC_H_ROOT == handle)
snprintf(buf, len, "root");
else if (TC_H_UNSPEC == handle)
snprintf(buf, len, "none");
else if (0 == TC_H_MAJ(handle))
snprintf(buf, len, ":%02x", TC_H_MIN(handle));
else if (0 == TC_H_MIN(handle))
snprintf(buf, len, "%02x:", TC_H_MAJ(handle) >> 16);
else
snprintf(buf, len, "%02x:%02x",
TC_H_MAJ(handle) >> 16, TC_H_MIN(handle));
return buf;
}
/**
* Convert a charactering strint to a traffic control handle
* @arg name traffic control handle as character string
* @arg res destination buffer
*
* Converts the provided character string specifying a traffic
* control handle to the corresponding numeric value.
*
* The handle must be provided in one of the following formats:
* - root
* - none
* - XXXX:
* - :YYYY
* - XXXX:YYYY
* - XXXXYYYY
*
* @return 0 on success or a negative error code
*/
int rtnl_tc_str2handle(const char *name, uint32_t *res)
{
char *colon, *end;
uint32_t h;
if (!strcasecmp(name, "root")) {
*res = TC_H_ROOT;
return 0;
}
if (!strcasecmp(name, "none")) {
*res = TC_H_UNSPEC;
return 0;
}
h = strtoul(name, &colon, 16);
if (colon == name) {
/* :YYYY */
h = 0;
if (':' != *colon)
return -NLE_INVAL;
}
if (':' == *colon) {
/* check if we would lose bits */
if (TC_H_MAJ(h))
return -NLE_RANGE;
h <<= 16;
if ('\0' == colon[1]) {
/* XXXX: */
*res = h;
} else {
/* XXXX:YYYY */
uint32_t l = strtoul(colon+1, &end, 16);
/* check if we overlap with major part */
if (TC_H_MAJ(l))
return -NLE_RANGE;
if ('\0' != *end)
return -NLE_INVAL;
*res = (h | l);
}
} else if ('\0' == *colon) {
/* XXXXYYYY */
*res = h;
} else
return -NLE_INVAL;
return 0;
}
/** @} */
/** @} */