// Copyright 2015 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef LIBBRILLO_BRILLO_MESSAGE_LOOPS_BASE_MESSAGE_LOOP_H_
#define LIBBRILLO_BRILLO_MESSAGE_LOOPS_BASE_MESSAGE_LOOP_H_
// BaseMessageLoop is a brillo::MessageLoop implementation based on
// base::MessageLoopForIO. This allows to mix new code using
// brillo::MessageLoop and legacy code using base::MessageLoopForIO in the
// same thread and share a single main loop. This disadvantage of using this
// class is a less efficient implementation of CancelTask() for delayed tasks
// since base::MessageLoopForIO doesn't provide a way to remove the event.
#include <map>
#include <memory>
#include <string>
#include <base/location.h>
#include <base/memory/weak_ptr.h>
#include <base/message_loop/message_loop.h>
#include <base/time/time.h>
#include <gtest/gtest_prod.h>
#include <brillo/brillo_export.h>
#include <brillo/message_loops/message_loop.h>
namespace brillo {
class BRILLO_EXPORT BaseMessageLoop : public MessageLoop {
public:
explicit BaseMessageLoop(base::MessageLoopForIO* base_loop);
~BaseMessageLoop() override;
// MessageLoop overrides.
TaskId PostDelayedTask(const tracked_objects::Location& from_here,
const base::Closure& task,
base::TimeDelta delay) override;
using MessageLoop::PostDelayedTask;
TaskId WatchFileDescriptor(const tracked_objects::Location& from_here,
int fd,
WatchMode mode,
bool persistent,
const base::Closure& task) override;
using MessageLoop::WatchFileDescriptor;
bool CancelTask(TaskId task_id) override;
bool RunOnce(bool may_block) override;
void Run() override;
void BreakLoop() override;
// Returns a callback that will quit the current message loop. If the message
// loop is not running, an empty (null) callback is returned.
base::Closure QuitClosure() const;
private:
FRIEND_TEST(BaseMessageLoopTest, ParseBinderMinor);
static const int kInvalidMinor;
static const int kUninitializedMinor;
// Parses the contents of the file /proc/misc passed in |file_contents| and
// returns the minor device number reported for binder. On error or if not
// found, returns kInvalidMinor.
static int ParseBinderMinor(const std::string& file_contents);
// Called by base::MessageLoopForIO when is time to call the callback
// scheduled with Post*Task() of id |task_id|, even if it was canceled.
void OnRanPostedTask(MessageLoop::TaskId task_id);
// Called from the message loop when the IOTask should run the scheduled
// callback. This is a simple wrapper of IOTask::OnFileReadyPostedTask()
// posted from the BaseMessageLoop so it is deleted when the BaseMessageLoop
// goes out of scope since we can't cancel the callback otherwise.
void OnFileReadyPostedTask(MessageLoop::TaskId task_id);
// Return a new unused task_id.
TaskId NextTaskId();
// Returns binder minor device number.
unsigned int GetBinderMinor();
struct DelayedTask {
tracked_objects::Location location;
MessageLoop::TaskId task_id;
base::Closure closure;
};
std::map<MessageLoop::TaskId, DelayedTask> delayed_tasks_;
class IOTask : public base::MessageLoopForIO::Watcher {
public:
IOTask(const tracked_objects::Location& location,
BaseMessageLoop* loop,
MessageLoop::TaskId task_id,
int fd,
base::MessageLoopForIO::Mode base_mode,
bool persistent,
const base::Closure& task);
const tracked_objects::Location& location() const { return location_; }
// Used to start/stop watching the file descriptor while keeping the
// IOTask entry available.
bool StartWatching();
void StopWatching();
// Called from the message loop as a PostTask() when the file descriptor is
// available, scheduled to run from OnFileReady().
void OnFileReadyPostedTask();
// Cancel the IOTask and returns whether it was actually canceled, with the
// same semantics as MessageLoop::CancelTask().
bool CancelTask();
// Sets the closure to be run immediately whenever the file descriptor
// becomes ready.
void RunImmediately() { immediate_run_= true; }
private:
tracked_objects::Location location_;
BaseMessageLoop* loop_;
// These are the arguments passed in the constructor, basically forwarding
// all the arguments passed to WatchFileDescriptor() plus the assigned
// TaskId for this task.
MessageLoop::TaskId task_id_;
int fd_;
base::MessageLoopForIO::Mode base_mode_;
bool persistent_;
base::Closure closure_;
base::MessageLoopForIO::FileDescriptorWatcher fd_watcher_;
// Tells whether there is a pending call to OnFileReadPostedTask().
bool posted_task_pending_{false};
// Whether the registered callback should be running immediately when the
// file descriptor is ready, as opposed to posting a task to the main loop
// to prevent starvation.
bool immediate_run_{false};
// base::MessageLoopForIO::Watcher overrides:
void OnFileCanReadWithoutBlocking(int fd) override;
void OnFileCanWriteWithoutBlocking(int fd) override;
// Common implementation for both the read and write case.
void OnFileReady();
DISALLOW_COPY_AND_ASSIGN(IOTask);
};
std::map<MessageLoop::TaskId, IOTask> io_tasks_;
// Flag to mark that we should run the message loop only one iteration.
bool run_once_{false};
// The last used TaskId. While base::MessageLoopForIO doesn't allow to cancel
// delayed tasks, we handle that functionality by not running the callback
// if it fires at a later point.
MessageLoop::TaskId last_id_{kTaskIdNull};
// The pointer to the libchrome base::MessageLoopForIO we are wrapping with
// this interface.
base::MessageLoopForIO* base_loop_;
// The RunLoop instance used to run the main loop from Run().
base::RunLoop* base_run_loop_{nullptr};
// The binder minor device number. Binder is a "misc" char device with a
// dynamically allocated minor number. When uninitialized, this value will
// be negative, otherwise, it will hold the minor part of the binder device
// number. This is populated by GetBinderMinor().
int binder_minor_{kUninitializedMinor};
// We use a WeakPtrFactory to schedule tasks with the base::MessageLoopForIO
// since we can't cancel the callbacks we have scheduled there once this
// instance is destroyed.
base::WeakPtrFactory<BaseMessageLoop> weak_ptr_factory_;
DISALLOW_COPY_AND_ASSIGN(BaseMessageLoop);
};
} // namespace brillo
#endif // LIBBRILLO_BRILLO_MESSAGE_LOOPS_BASE_MESSAGE_LOOP_H_