/*
**********************************************************************
* Copyright (C) 2000-2015, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: ucnvhz.c
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2000oct16
* created by: Ram Viswanadha
* 10/31/2000 Ram Implemented offsets logic function
*
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
#include "cmemory.h"
#include "unicode/ucnv.h"
#include "unicode/ucnv_cb.h"
#include "unicode/uset.h"
#include "unicode/utf16.h"
#include "ucnv_bld.h"
#include "ucnv_cnv.h"
#include "ucnv_imp.h"
#define UCNV_TILDE 0x7E /* ~ */
#define UCNV_OPEN_BRACE 0x7B /* { */
#define UCNV_CLOSE_BRACE 0x7D /* } */
#define SB_ESCAPE "\x7E\x7D"
#define DB_ESCAPE "\x7E\x7B"
#define TILDE_ESCAPE "\x7E\x7E"
#define ESC_LEN 2
#define CONCAT_ESCAPE_MACRO( args, targetIndex,targetLength,strToAppend, err, len,sourceIndex){ \
while(len-->0){ \
if(targetIndex < targetLength){ \
args->target[targetIndex] = (unsigned char) *strToAppend; \
if(args->offsets!=NULL){ \
*(offsets++) = sourceIndex-1; \
} \
targetIndex++; \
} \
else{ \
args->converter->charErrorBuffer[(int)args->converter->charErrorBufferLength++] = (unsigned char) *strToAppend; \
*err =U_BUFFER_OVERFLOW_ERROR; \
} \
strToAppend++; \
} \
}
typedef struct{
UConverter* gbConverter;
int32_t targetIndex;
int32_t sourceIndex;
UBool isEscapeAppended;
UBool isStateDBCS;
UBool isTargetUCharDBCS;
UBool isEmptySegment;
}UConverterDataHZ;
static void
_HZOpen(UConverter *cnv, UConverterLoadArgs *pArgs, UErrorCode *errorCode){
UConverter *gbConverter;
if(pArgs->onlyTestIsLoadable) {
ucnv_canCreateConverter("GBK", errorCode); /* errorCode carries result */
return;
}
gbConverter = ucnv_open("GBK", errorCode);
if(U_FAILURE(*errorCode)) {
return;
}
cnv->toUnicodeStatus = 0;
cnv->fromUnicodeStatus= 0;
cnv->mode=0;
cnv->fromUChar32=0x0000;
cnv->extraInfo = uprv_calloc(1, sizeof(UConverterDataHZ));
if(cnv->extraInfo != NULL){
((UConverterDataHZ*)cnv->extraInfo)->gbConverter = gbConverter;
}
else {
ucnv_close(gbConverter);
*errorCode = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
static void
_HZClose(UConverter *cnv){
if(cnv->extraInfo != NULL) {
ucnv_close (((UConverterDataHZ *) (cnv->extraInfo))->gbConverter);
if(!cnv->isExtraLocal) {
uprv_free(cnv->extraInfo);
}
cnv->extraInfo = NULL;
}
}
static void
_HZReset(UConverter *cnv, UConverterResetChoice choice){
if(choice<=UCNV_RESET_TO_UNICODE) {
cnv->toUnicodeStatus = 0;
cnv->mode=0;
if(cnv->extraInfo != NULL){
((UConverterDataHZ*)cnv->extraInfo)->isStateDBCS = FALSE;
((UConverterDataHZ*)cnv->extraInfo)->isEmptySegment = FALSE;
}
}
if(choice!=UCNV_RESET_TO_UNICODE) {
cnv->fromUnicodeStatus= 0;
cnv->fromUChar32=0x0000;
if(cnv->extraInfo != NULL){
((UConverterDataHZ*)cnv->extraInfo)->isEscapeAppended = FALSE;
((UConverterDataHZ*)cnv->extraInfo)->targetIndex = 0;
((UConverterDataHZ*)cnv->extraInfo)->sourceIndex = 0;
((UConverterDataHZ*)cnv->extraInfo)->isTargetUCharDBCS = FALSE;
}
}
}
/**************************************HZ Encoding*************************************************
* Rules for HZ encoding
*
* In ASCII mode, a byte is interpreted as an ASCII character, unless a
* '~' is encountered. The character '~' is an escape character. By
* convention, it must be immediately followed ONLY by '~', '{' or '\n'
* (<LF>), with the following special meaning.
* 1. The escape sequence '~~' is interpreted as a '~'.
* 2. The escape-to-GB sequence '~{' switches the mode from ASCII to GB.
* 3. The escape sequence '~\n' is a line-continuation marker to be
* consumed with no output produced.
* In GB mode, characters are interpreted two bytes at a time as (pure)
* GB codes until the escape-from-GB code '~}' is read. This code
* switches the mode from GB back to ASCII. (Note that the escape-
* from-GB code '~}' ($7E7D) is outside the defined GB range.)
*
* Source: RFC 1842
*
* Note that the formal syntax in RFC 1842 is invalid. I assume that the
* intended definition of single-byte-segment is as follows (pedberg):
* single-byte-segment = single-byte-seq 1*single-byte-char
*/
static void
UConverter_toUnicode_HZ_OFFSETS_LOGIC(UConverterToUnicodeArgs *args,
UErrorCode* err){
char tempBuf[2];
const char *mySource = ( char *) args->source;
UChar *myTarget = args->target;
const char *mySourceLimit = args->sourceLimit;
UChar32 targetUniChar = 0x0000;
int32_t mySourceChar = 0x0000;
UConverterDataHZ* myData=(UConverterDataHZ*)(args->converter->extraInfo);
tempBuf[0]=0;
tempBuf[1]=0;
/* Calling code already handles this situation. */
/*if ((args->converter == NULL) || (args->targetLimit < args->target) || (mySourceLimit < args->source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}*/
while(mySource< mySourceLimit){
if(myTarget < args->targetLimit){
mySourceChar= (unsigned char) *mySource++;
if(args->converter->mode == UCNV_TILDE) {
/* second byte after ~ */
args->converter->mode=0;
switch(mySourceChar) {
case 0x0A:
/* no output for ~\n (line-continuation marker) */
continue;
case UCNV_TILDE:
if(args->offsets) {
args->offsets[myTarget - args->target]=(int32_t)(mySource - args->source - 2);
}
*(myTarget++)=(UChar)mySourceChar;
myData->isEmptySegment = FALSE;
continue;
case UCNV_OPEN_BRACE:
case UCNV_CLOSE_BRACE:
myData->isStateDBCS = (mySourceChar == UCNV_OPEN_BRACE);
if (myData->isEmptySegment) {
myData->isEmptySegment = FALSE; /* we are handling it, reset to avoid future spurious errors */
*err = U_ILLEGAL_ESCAPE_SEQUENCE;
args->converter->toUCallbackReason = UCNV_IRREGULAR;
args->converter->toUBytes[0] = UCNV_TILDE;
args->converter->toUBytes[1] = mySourceChar;
args->converter->toULength = 2;
args->target = myTarget;
args->source = mySource;
return;
}
myData->isEmptySegment = TRUE;
continue;
default:
/* if the first byte is equal to TILDE and the trail byte
* is not a valid byte then it is an error condition
*/
/*
* Ticket 5691: consistent illegal sequences:
* - We include at least the first byte in the illegal sequence.
* - If any of the non-initial bytes could be the start of a character,
* we stop the illegal sequence before the first one of those.
*/
myData->isEmptySegment = FALSE; /* different error here, reset this to avoid spurious future error */
*err = U_ILLEGAL_ESCAPE_SEQUENCE;
args->converter->toUBytes[0] = UCNV_TILDE;
if( myData->isStateDBCS ?
(0x21 <= mySourceChar && mySourceChar <= 0x7e) :
mySourceChar <= 0x7f
) {
/* The current byte could be the start of a character: Back it out. */
args->converter->toULength = 1;
--mySource;
} else {
/* Include the current byte in the illegal sequence. */
args->converter->toUBytes[1] = mySourceChar;
args->converter->toULength = 2;
}
args->target = myTarget;
args->source = mySource;
return;
}
} else if(myData->isStateDBCS) {
if(args->converter->toUnicodeStatus == 0x00){
/* lead byte */
if(mySourceChar == UCNV_TILDE) {
args->converter->mode = UCNV_TILDE;
} else {
/* add another bit to distinguish a 0 byte from not having seen a lead byte */
args->converter->toUnicodeStatus = (uint32_t) (mySourceChar | 0x100);
myData->isEmptySegment = FALSE; /* the segment has something, either valid or will produce a different error, so reset this */
}
continue;
}
else{
/* trail byte */
int leadIsOk, trailIsOk;
uint32_t leadByte = args->converter->toUnicodeStatus & 0xff;
targetUniChar = 0xffff;
/*
* Ticket 5691: consistent illegal sequences:
* - We include at least the first byte in the illegal sequence.
* - If any of the non-initial bytes could be the start of a character,
* we stop the illegal sequence before the first one of those.
*
* In HZ DBCS, if the second byte is in the 21..7e range,
* we report only the first byte as the illegal sequence.
* Otherwise we convert or report the pair of bytes.
*/
leadIsOk = (uint8_t)(leadByte - 0x21) <= (0x7d - 0x21);
trailIsOk = (uint8_t)(mySourceChar - 0x21) <= (0x7e - 0x21);
if (leadIsOk && trailIsOk) {
tempBuf[0] = (char) (leadByte+0x80) ;
tempBuf[1] = (char) (mySourceChar+0x80);
targetUniChar = ucnv_MBCSSimpleGetNextUChar(myData->gbConverter->sharedData,
tempBuf, 2, args->converter->useFallback);
mySourceChar= (leadByte << 8) | mySourceChar;
} else if (trailIsOk) {
/* report a single illegal byte and continue with the following DBCS starter byte */
--mySource;
mySourceChar = (int32_t)leadByte;
} else {
/* report a pair of illegal bytes if the second byte is not a DBCS starter */
/* add another bit so that the code below writes 2 bytes in case of error */
mySourceChar= 0x10000 | (leadByte << 8) | mySourceChar;
}
args->converter->toUnicodeStatus =0x00;
}
}
else{
if(mySourceChar == UCNV_TILDE) {
args->converter->mode = UCNV_TILDE;
continue;
} else if(mySourceChar <= 0x7f) {
targetUniChar = (UChar)mySourceChar; /* ASCII */
myData->isEmptySegment = FALSE; /* the segment has something valid */
} else {
targetUniChar = 0xffff;
myData->isEmptySegment = FALSE; /* different error here, reset this to avoid spurious future error */
}
}
if(targetUniChar < 0xfffe){
if(args->offsets) {
args->offsets[myTarget - args->target]=(int32_t)(mySource - args->source - 1-(myData->isStateDBCS));
}
*(myTarget++)=(UChar)targetUniChar;
}
else /* targetUniChar>=0xfffe */ {
if(targetUniChar == 0xfffe){
*err = U_INVALID_CHAR_FOUND;
}
else{
*err = U_ILLEGAL_CHAR_FOUND;
}
if(mySourceChar > 0xff){
args->converter->toUBytes[0] = (uint8_t)(mySourceChar >> 8);
args->converter->toUBytes[1] = (uint8_t)mySourceChar;
args->converter->toULength=2;
}
else{
args->converter->toUBytes[0] = (uint8_t)mySourceChar;
args->converter->toULength=1;
}
break;
}
}
else{
*err =U_BUFFER_OVERFLOW_ERROR;
break;
}
}
args->target = myTarget;
args->source = mySource;
}
static void
UConverter_fromUnicode_HZ_OFFSETS_LOGIC (UConverterFromUnicodeArgs * args,
UErrorCode * err){
const UChar *mySource = args->source;
char *myTarget = args->target;
int32_t* offsets = args->offsets;
int32_t mySourceIndex = 0;
int32_t myTargetIndex = 0;
int32_t targetLength = (int32_t)(args->targetLimit - myTarget);
int32_t mySourceLength = (int32_t)(args->sourceLimit - args->source);
uint32_t targetUniChar = 0x0000;
UChar32 mySourceChar = 0x0000;
UConverterDataHZ *myConverterData=(UConverterDataHZ*)args->converter->extraInfo;
UBool isTargetUCharDBCS = (UBool) myConverterData->isTargetUCharDBCS;
UBool oldIsTargetUCharDBCS;
int len =0;
const char* escSeq=NULL;
/* Calling code already handles this situation. */
/*if ((args->converter == NULL) || (args->targetLimit < myTarget) || (args->sourceLimit < args->source)){
*err = U_ILLEGAL_ARGUMENT_ERROR;
return;
}*/
if(args->converter->fromUChar32!=0 && myTargetIndex < targetLength) {
goto getTrail;
}
/*writing the char to the output stream */
while (mySourceIndex < mySourceLength){
targetUniChar = missingCharMarker;
if (myTargetIndex < targetLength){
mySourceChar = (UChar) mySource[mySourceIndex++];
oldIsTargetUCharDBCS = isTargetUCharDBCS;
if(mySourceChar ==UCNV_TILDE){
/*concatEscape(args, &myTargetIndex, &targetLength,"\x7E\x7E",err,2,&mySourceIndex);*/
len = ESC_LEN;
escSeq = TILDE_ESCAPE;
CONCAT_ESCAPE_MACRO(args, myTargetIndex, targetLength, escSeq,err,len,mySourceIndex);
continue;
} else if(mySourceChar <= 0x7f) {
targetUniChar = mySourceChar;
} else {
int32_t length= ucnv_MBCSFromUChar32(myConverterData->gbConverter->sharedData,
mySourceChar,&targetUniChar,args->converter->useFallback);
/* we can only use lead bytes 21..7D and trail bytes 21..7E */
if( length == 2 &&
(uint16_t)(targetUniChar - 0xa1a1) <= (0xfdfe - 0xa1a1) &&
(uint8_t)(targetUniChar - 0xa1) <= (0xfe - 0xa1)
) {
targetUniChar -= 0x8080;
} else {
targetUniChar = missingCharMarker;
}
}
if (targetUniChar != missingCharMarker){
myConverterData->isTargetUCharDBCS = isTargetUCharDBCS = (UBool)(targetUniChar>0x00FF);
if(oldIsTargetUCharDBCS != isTargetUCharDBCS || !myConverterData->isEscapeAppended ){
/*Shifting from a double byte to single byte mode*/
if(!isTargetUCharDBCS){
len =ESC_LEN;
escSeq = SB_ESCAPE;
CONCAT_ESCAPE_MACRO(args, myTargetIndex, targetLength, escSeq,err,len,mySourceIndex);
myConverterData->isEscapeAppended = TRUE;
}
else{ /* Shifting from a single byte to double byte mode*/
len =ESC_LEN;
escSeq = DB_ESCAPE;
CONCAT_ESCAPE_MACRO(args, myTargetIndex, targetLength, escSeq,err,len,mySourceIndex);
myConverterData->isEscapeAppended = TRUE;
}
}
if(isTargetUCharDBCS){
if( myTargetIndex <targetLength){
myTarget[myTargetIndex++] =(char) (targetUniChar >> 8);
if(offsets){
*(offsets++) = mySourceIndex-1;
}
if(myTargetIndex < targetLength){
myTarget[myTargetIndex++] =(char) targetUniChar;
if(offsets){
*(offsets++) = mySourceIndex-1;
}
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (char) targetUniChar;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] =(char) (targetUniChar >> 8);
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (char) targetUniChar;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}else{
if( myTargetIndex <targetLength){
myTarget[myTargetIndex++] = (char) (targetUniChar );
if(offsets){
*(offsets++) = mySourceIndex-1;
}
}else{
args->converter->charErrorBuffer[args->converter->charErrorBufferLength++] = (char) targetUniChar;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
}
else{
/* oops.. the code point is unassigned */
/*Handle surrogates */
/*check if the char is a First surrogate*/
if(U16_IS_SURROGATE(mySourceChar)) {
if(U16_IS_SURROGATE_LEAD(mySourceChar)) {
args->converter->fromUChar32=mySourceChar;
getTrail:
/*look ahead to find the trail surrogate*/
if(mySourceIndex < mySourceLength) {
/* test the following code unit */
UChar trail=(UChar) args->source[mySourceIndex];
if(U16_IS_TRAIL(trail)) {
++mySourceIndex;
mySourceChar=U16_GET_SUPPLEMENTARY(args->converter->fromUChar32, trail);
args->converter->fromUChar32=0x00;
/* there are no surrogates in GB2312*/
*err = U_INVALID_CHAR_FOUND;
/* exit this condition tree */
} else {
/* this is an unmatched lead code unit (1st surrogate) */
/* callback(illegal) */
*err=U_ILLEGAL_CHAR_FOUND;
}
} else {
/* no more input */
*err = U_ZERO_ERROR;
}
} else {
/* this is an unmatched trail code unit (2nd surrogate) */
/* callback(illegal) */
*err=U_ILLEGAL_CHAR_FOUND;
}
} else {
/* callback(unassigned) for a BMP code point */
*err = U_INVALID_CHAR_FOUND;
}
args->converter->fromUChar32=mySourceChar;
break;
}
}
else{
*err = U_BUFFER_OVERFLOW_ERROR;
break;
}
targetUniChar=missingCharMarker;
}
args->target += myTargetIndex;
args->source += mySourceIndex;
myConverterData->isTargetUCharDBCS = isTargetUCharDBCS;
}
static void
_HZ_WriteSub(UConverterFromUnicodeArgs *args, int32_t offsetIndex, UErrorCode *err) {
UConverter *cnv = args->converter;
UConverterDataHZ *convData=(UConverterDataHZ *) cnv->extraInfo;
char *p;
char buffer[4];
p = buffer;
if( convData->isTargetUCharDBCS){
*p++= UCNV_TILDE;
*p++= UCNV_CLOSE_BRACE;
convData->isTargetUCharDBCS=FALSE;
}
*p++= (char)cnv->subChars[0];
ucnv_cbFromUWriteBytes(args,
buffer, (int32_t)(p - buffer),
offsetIndex, err);
}
/*
* Structure for cloning an HZ converter into a single memory block.
* ucnv_safeClone() of the HZ converter will align the entire cloneHZStruct,
* and then ucnv_safeClone() of the sub-converter may additionally align
* subCnv inside the cloneHZStruct, for which we need the deadSpace after
* subCnv. This is because UAlignedMemory may be larger than the actually
* necessary alignment size for the platform.
* The other cloneHZStruct fields will not be moved around,
* and are aligned properly with cloneHZStruct's alignment.
*/
struct cloneHZStruct
{
UConverter cnv;
UConverter subCnv;
UAlignedMemory deadSpace;
UConverterDataHZ mydata;
};
static UConverter *
_HZ_SafeClone(const UConverter *cnv,
void *stackBuffer,
int32_t *pBufferSize,
UErrorCode *status)
{
struct cloneHZStruct * localClone;
int32_t size, bufferSizeNeeded = sizeof(struct cloneHZStruct);
if (U_FAILURE(*status)){
return 0;
}
if (*pBufferSize == 0){ /* 'preflighting' request - set needed size into *pBufferSize */
*pBufferSize = bufferSizeNeeded;
return 0;
}
localClone = (struct cloneHZStruct *)stackBuffer;
/* ucnv.c/ucnv_safeClone() copied the main UConverter already */
uprv_memcpy(&localClone->mydata, cnv->extraInfo, sizeof(UConverterDataHZ));
localClone->cnv.extraInfo = &localClone->mydata;
localClone->cnv.isExtraLocal = TRUE;
/* deep-clone the sub-converter */
size = (int32_t)(sizeof(UConverter) + sizeof(UAlignedMemory)); /* include size of padding */
((UConverterDataHZ*)localClone->cnv.extraInfo)->gbConverter =
ucnv_safeClone(((UConverterDataHZ*)cnv->extraInfo)->gbConverter, &localClone->subCnv, &size, status);
return &localClone->cnv;
}
static void
_HZ_GetUnicodeSet(const UConverter *cnv,
const USetAdder *sa,
UConverterUnicodeSet which,
UErrorCode *pErrorCode) {
/* HZ converts all of ASCII */
sa->addRange(sa->set, 0, 0x7f);
/* add all of the code points that the sub-converter handles */
ucnv_MBCSGetFilteredUnicodeSetForUnicode(
((UConverterDataHZ*)cnv->extraInfo)->gbConverter->sharedData,
sa, which, UCNV_SET_FILTER_HZ,
pErrorCode);
}
static const UConverterImpl _HZImpl={
UCNV_HZ,
NULL,
NULL,
_HZOpen,
_HZClose,
_HZReset,
UConverter_toUnicode_HZ_OFFSETS_LOGIC,
UConverter_toUnicode_HZ_OFFSETS_LOGIC,
UConverter_fromUnicode_HZ_OFFSETS_LOGIC,
UConverter_fromUnicode_HZ_OFFSETS_LOGIC,
NULL,
NULL,
NULL,
_HZ_WriteSub,
_HZ_SafeClone,
_HZ_GetUnicodeSet
};
static const UConverterStaticData _HZStaticData={
sizeof(UConverterStaticData),
"HZ",
0,
UCNV_IBM,
UCNV_HZ,
1,
4,
{ 0x1a, 0, 0, 0 },
1,
FALSE,
FALSE,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }, /* reserved */
};
const UConverterSharedData _HZData=
UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_HZStaticData, &_HZImpl);
#endif /* #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION */