/*****************************************************************************/
// Copyright 2006-2009 Adobe Systems Incorporated
// All Rights Reserved.
//
// NOTICE: Adobe permits you to use, modify, and distribute this file in
// accordance with the terms of the Adobe license agreement accompanying it.
/*****************************************************************************/
/* $Id: //mondo/dng_sdk_1_4/dng_sdk/source/dng_mosaic_info.cpp#1 $ */
/* $DateTime: 2012/05/30 13:28:51 $ */
/* $Change: 832332 $ */
/* $Author: tknoll $ */
/*****************************************************************************/
#include "dng_mosaic_info.h"
#include "dng_area_task.h"
#include "dng_assertions.h"
#include "dng_bottlenecks.h"
#include "dng_exceptions.h"
#include "dng_filter_task.h"
#include "dng_host.h"
#include "dng_ifd.h"
#include "dng_image.h"
#include "dng_info.h"
#include "dng_negative.h"
#include "dng_pixel_buffer.h"
#include "dng_tag_types.h"
#include "dng_tag_values.h"
#include "dng_tile_iterator.h"
#include "dng_utils.h"
/*****************************************************************************/
// A interpolation kernel for a single pixel of a single plane.
class dng_bilinear_kernel
{
public:
enum
{
kMaxCount = 8
};
uint32 fCount;
dng_point fDelta [kMaxCount];
real32 fWeight32 [kMaxCount];
uint16 fWeight16 [kMaxCount];
int32 fOffset [kMaxCount];
public:
dng_bilinear_kernel ()
: fCount (0)
{
}
void Add (const dng_point &delta,
real32 weight);
void Finalize (const dng_point &scale,
uint32 patRow,
uint32 patCol,
int32 rowStep,
int32 colStep);
};
/*****************************************************************************/
void dng_bilinear_kernel::Add (const dng_point &delta,
real32 weight)
{
// Don't add zero weight elements.
if (weight <= 0.0f)
{
return;
}
// If the delta already matches an existing element, just combine the
// weights.
for (uint32 j = 0; j < fCount; j++)
{
if (fDelta [j] == delta)
{
fWeight32 [j] += weight;
return;
}
}
// Add element to list.
DNG_ASSERT (fCount < kMaxCount, "Too many kernel entries")
fDelta [fCount] = delta;
fWeight32 [fCount] = weight;
fCount++;
}
/*****************************************************************************/
void dng_bilinear_kernel::Finalize (const dng_point &scale,
uint32 patRow,
uint32 patCol,
int32 rowStep,
int32 colStep)
{
uint32 j;
// Adjust deltas to compensate for interpolation upscaling.
for (j = 0; j < fCount; j++)
{
dng_point &delta = fDelta [j];
if (scale.v == 2)
{
delta.v = (delta.v + (int32) (patRow & 1)) >> 1;
}
if (scale.h == 2)
{
delta.h = (delta.h + (int32) (patCol & 1)) >> 1;
}
}
// Sort entries into row-column scan order.
while (true)
{
bool didSwap = false;
for (j = 1; j < fCount; j++)
{
dng_point &delta0 = fDelta [j - 1];
dng_point &delta1 = fDelta [j ];
if (delta0.v > delta1.v ||
(delta0.v == delta1.v &&
delta0.h > delta1.h))
{
didSwap = true;
dng_point tempDelta = delta0;
delta0 = delta1;
delta1 = tempDelta;
real32 tempWeight = fWeight32 [j - 1];
fWeight32 [j - 1] = fWeight32 [j];
fWeight32 [j ] = tempWeight;
}
}
if (!didSwap)
{
break;
}
}
// Calculate offsets.
for (j = 0; j < fCount; j++)
{
fOffset [j] = rowStep * fDelta [j].v +
colStep * fDelta [j].h;
}
// Calculate 16-bit weights.
uint16 total = 0;
uint32 biggest = 0;
for (j = 0; j < fCount; j++)
{
// Round weights to 8 fractional bits.
fWeight16 [j] = (uint16) Round_uint32 (fWeight32 [j] * 256.0);
// Keep track of total of weights.
total += fWeight16 [j];
// Keep track of which weight is biggest.
if (fWeight16 [biggest] < fWeight16 [j])
{
biggest = j;
}
}
// Adjust largest entry so total of weights is exactly 256.
fWeight16 [biggest] += (256 - total);
// Recompute the floating point weights from the rounded integer weights
// so results match more closely.
for (j = 0; j < fCount; j++)
{
fWeight32 [j] = fWeight16 [j] * (1.0f / 256.0f);
}
}
/*****************************************************************************/
class dng_bilinear_pattern
{
public:
enum
{
kMaxPattern = kMaxCFAPattern * 2
};
dng_point fScale;
uint32 fPatRows;
uint32 fPatCols;
dng_bilinear_kernel fKernel [kMaxPattern]
[kMaxPattern];
uint32 fCounts [kMaxPattern]
[kMaxPattern];
int32 *fOffsets [kMaxPattern]
[kMaxPattern];
uint16 *fWeights16 [kMaxPattern]
[kMaxPattern];
real32 *fWeights32 [kMaxPattern]
[kMaxPattern];
public:
dng_bilinear_pattern ()
: fScale ()
, fPatRows (0)
, fPatCols (0)
{
}
private:
#if defined(__clang__) && defined(__has_attribute)
#if __has_attribute(no_sanitize)
__attribute__((no_sanitize("unsigned-integer-overflow")))
#endif
#endif
uint32 DeltaRow (uint32 row, int32 delta)
{
// Potential overflow in the conversion from delta to a uint32 as
// well as in the subsequent addition is intentional.
return (SafeUint32Add(row, fPatRows) + (uint32) delta) % fPatRows;
}
#if defined(__clang__) && defined(__has_attribute)
#if __has_attribute(no_sanitize)
__attribute__((no_sanitize("unsigned-integer-overflow")))
#endif
#endif
uint32 DeltaCol (uint32 col, int32 delta)
{
// Potential overflow in the conversion from delta to a uint32 as
// well as in the subsequent addition is intentional.
return (SafeUint32Add(col, fPatCols) + (uint32) delta) % fPatCols;
}
real32 LinearWeight1 (int32 d1, int32 d2)
{
if (d1 == d2)
return 1.0f;
else
return d2 / (real32) (d2 - d1);
}
real32 LinearWeight2 (int32 d1, int32 d2)
{
if (d1 == d2)
return 0.0f;
else
return -d1 / (real32) (d2 - d1);
}
public:
void Calculate (const dng_mosaic_info &info,
uint32 dstPlane,
int32 rowStep,
int32 colStep);
};
/*****************************************************************************/
void dng_bilinear_pattern::Calculate (const dng_mosaic_info &info,
uint32 dstPlane,
int32 rowStep,
int32 colStep)
{
uint32 j;
uint32 k;
uint32 patRow;
uint32 patCol;
// Find destination pattern size.
fScale = info.FullScale ();
fPatRows = info.fCFAPatternSize.v * fScale.v;
fPatCols = info.fCFAPatternSize.h * fScale.h;
// See if we need to scale up just while computing the kernels.
dng_point tempScale (1, 1);
if (info.fCFALayout >= 6)
{
tempScale = dng_point (2, 2);
fPatRows *= tempScale.v;
fPatCols *= tempScale.h;
}
// Find a boolean map for this plane color and layout.
bool map [kMaxPattern]
[kMaxPattern];
uint8 planeColor = info.fCFAPlaneColor [dstPlane];
switch (info.fCFALayout)
{
case 1: // Rectangular (or square) layout
{
for (j = 0; j < fPatRows; j++)
{
for (k = 0; k < fPatCols; k++)
{
map [j] [k] = (info.fCFAPattern [j] [k] == planeColor);
}
}
break;
}
// Note that when the descriptions of the staggered patterns refer to even rows or
// columns, this mean the second, fourth, etc. (i.e. using one-based numbering).
// This needs to be clarified in the DNG specification.
case 2: // Staggered layout A: even (1-based) columns are offset down by 1/2 row
{
for (j = 0; j < fPatRows; j++)
{
for (k = 0; k < fPatCols; k++)
{
if ((j & 1) != (k & 1))
{
map [j] [k] = false;
}
else
{
map [j] [k] = (info.fCFAPattern [j >> 1] [k] == planeColor);
}
}
}
break;
}
case 3: // Staggered layout B: even (1-based) columns are offset up by 1/2 row
{
for (j = 0; j < fPatRows; j++)
{
for (k = 0; k < fPatCols; k++)
{
if ((j & 1) == (k & 1))
{
map [j] [k] = false;
}
else
{
map [j] [k] = (info.fCFAPattern [j >> 1] [k] == planeColor);
}
}
}
break;
}
case 4: // Staggered layout C: even (1-based) rows are offset right by 1/2 column
{
for (j = 0; j < fPatRows; j++)
{
for (k = 0; k < fPatCols; k++)
{
if ((j & 1) != (k & 1))
{
map [j] [k] = false;
}
else
{
map [j] [k] = (info.fCFAPattern [j] [k >> 1] == planeColor);
}
}
}
break;
}
case 5: // Staggered layout D: even (1-based) rows are offset left by 1/2 column
{
for (j = 0; j < fPatRows; j++)
{
for (k = 0; k < fPatCols; k++)
{
if ((j & 1) == (k & 1))
{
map [j] [k] = false;
}
else
{
map [j] [k] = (info.fCFAPattern [j] [k >> 1] == planeColor);
}
}
}
break;
}
case 6: // Staggered layout E: even rows are offset up by 1/2 row, even columns are offset left by 1/2 column
case 7: // Staggered layout F: even rows are offset up by 1/2 row, even columns are offset right by 1/2 column
case 8: // Staggered layout G: even rows are offset down by 1/2 row, even columns are offset left by 1/2 column
case 9: // Staggered layout H: even rows are offset down by 1/2 row, even columns are offset right by 1/2 column
{
uint32 eRow = (info.fCFALayout == 6 ||
info.fCFALayout == 7) ? 1 : 3;
uint32 eCol = (info.fCFALayout == 6 ||
info.fCFALayout == 8) ? 1 : 3;
for (j = 0; j < fPatRows; j++)
{
for (k = 0; k < fPatCols; k++)
{
uint32 jj = j & 3;
uint32 kk = k & 3;
if ((jj != 0 && jj != eRow) ||
(kk != 0 && kk != eCol))
{
map [j] [k] = false;
}
else
{
map [j] [k] = (info.fCFAPattern [((j >> 1) & ~1) + Min_uint32 (jj, 1)]
[((k >> 1) & ~1) + Min_uint32 (kk, 1)] == planeColor);
}
}
}
break;
}
default:
ThrowProgramError ();
}
// Find projections of maps.
bool mapH [kMaxPattern];
bool mapV [kMaxPattern];
for (j = 0; j < kMaxPattern; j++)
{
mapH [j] = false;
mapV [j] = false;
}
for (j = 0; j < fPatRows; j++)
{
for (k = 0; k < fPatCols; k++)
{
if (map [j] [k])
{
mapV [j] = true;
mapH [k] = true;
}
}
}
// Find kernel for each patten entry.
for (patRow = 0; patRow < fPatRows; patRow += tempScale.v)
{
for (patCol = 0; patCol < fPatCols; patCol += tempScale.h)
{
dng_bilinear_kernel &kernel = fKernel [patRow] [patCol];
// Special case no interpolation case.
if (map [patRow] [patCol])
{
kernel.Add (dng_point (0, 0), 1.0f);
continue;
}
// Special case common patterns in 3 by 3 neighborhood.
uint32 n = DeltaRow (patRow, -1);
uint32 s = DeltaRow (patRow, 1);
uint32 w = DeltaCol (patCol, -1);
uint32 e = DeltaCol (patCol, 1);
bool mapNW = map [n] [w];
bool mapN = map [n] [patCol];
bool mapNE = map [n] [e];
bool mapW = map [patRow] [w];
bool mapE = map [patRow] [e];
bool mapSW = map [s] [w];
bool mapS = map [s] [patCol];
bool mapSE = map [s] [e];
// All sides.
if (mapN && mapS && mapW && mapW)
{
kernel.Add (dng_point (-1, 0), 0.25f);
kernel.Add (dng_point ( 0, -1), 0.25f);
kernel.Add (dng_point ( 0, 1), 0.25f);
kernel.Add (dng_point ( 1, 0), 0.25f);
continue;
}
// N & S.
if (mapN && mapS)
{
kernel.Add (dng_point (-1, 0), 0.5f);
kernel.Add (dng_point ( 1, 0), 0.5f);
continue;
}
// E & W.
if (mapW && mapE)
{
kernel.Add (dng_point ( 0, -1), 0.5f);
kernel.Add (dng_point ( 0, 1), 0.5f);
continue;
}
// N & SW & SE.
if (mapN && mapSW && mapSE)
{
kernel.Add (dng_point (-1, 0), 0.50f);
kernel.Add (dng_point ( 1, -1), 0.25f);
kernel.Add (dng_point ( 1, 1), 0.25f);
continue;
}
// S & NW & NE.
if (mapS && mapNW && mapNE)
{
kernel.Add (dng_point (-1, -1), 0.25f);
kernel.Add (dng_point (-1, 1), 0.25f);
kernel.Add (dng_point ( 1, 0), 0.50f);
continue;
}
// W & NE & SE.
if (mapW && mapNE && mapSE)
{
kernel.Add (dng_point (-1, 1), 0.25f);
kernel.Add (dng_point ( 0, -1), 0.50f);
kernel.Add (dng_point ( 1, 1), 0.25f);
continue;
}
// E & NW & SW.
if (mapE && mapNW && mapSW)
{
kernel.Add (dng_point (-1, -1), 0.25f);
kernel.Add (dng_point ( 0, 1), 0.50f);
kernel.Add (dng_point ( 1, -1), 0.25f);
continue;
}
// Four corners.
if (mapNW && mapNE && mapSE && mapSW)
{
kernel.Add (dng_point (-1, -1), 0.25f);
kernel.Add (dng_point (-1, 1), 0.25f);
kernel.Add (dng_point ( 1, -1), 0.25f);
kernel.Add (dng_point ( 1, 1), 0.25f);
continue;
}
// NW & SE
if (mapNW && mapSE)
{
kernel.Add (dng_point (-1, -1), 0.50f);
kernel.Add (dng_point ( 1, 1), 0.50f);
continue;
}
// NE & SW
if (mapNE && mapSW)
{
kernel.Add (dng_point (-1, 1), 0.50f);
kernel.Add (dng_point ( 1, -1), 0.50f);
continue;
}
// Else use double-bilinear kernel.
int32 dv1 = 0;
int32 dv2 = 0;
while (!mapV [DeltaRow (patRow, dv1)])
{
dv1--;
}
while (!mapV [DeltaRow (patRow, dv2)])
{
dv2++;
}
real32 w1 = LinearWeight1 (dv1, dv2) * 0.5f;
real32 w2 = LinearWeight2 (dv1, dv2) * 0.5f;
int32 v1 = DeltaRow (patRow, dv1);
int32 v2 = DeltaRow (patRow, dv2);
int32 dh1 = 0;
int32 dh2 = 0;
while (!map [v1] [DeltaCol (patCol, dh1)])
{
dh1--;
}
while (!map [v1] [DeltaCol (patCol, dh2)])
{
dh2++;
}
kernel.Add (dng_point (dv1, dh1),
LinearWeight1 (dh1, dh2) * w1);
kernel.Add (dng_point (dv1, dh2),
LinearWeight2 (dh1, dh2) * w1);
dh1 = 0;
dh2 = 0;
while (!map [v2] [DeltaCol (patCol, dh1)])
{
dh1--;
}
while (!map [v2] [DeltaCol (patCol, dh2)])
{
dh2++;
}
kernel.Add (dng_point (dv2, dh1),
LinearWeight1 (dh1, dh2) * w2);
kernel.Add (dng_point (dv2, dh2),
LinearWeight2 (dh1, dh2) * w2);
dh1 = 0;
dh2 = 0;
while (!mapH [DeltaCol (patCol, dh1)])
{
dh1--;
}
while (!mapH [DeltaCol (patCol, dh2)])
{
dh2++;
}
w1 = LinearWeight1 (dh1, dh2) * 0.5f;
w2 = LinearWeight2 (dh1, dh2) * 0.5f;
int32 h1 = DeltaCol (patCol, dh1);
int32 h2 = DeltaCol (patCol, dh2);
dv1 = 0;
dv2 = 0;
while (!map [DeltaRow (patRow, dv1)] [h1])
{
dv1--;
}
while (!map [DeltaRow (patRow, dv2)] [h1])
{
dv2++;
}
kernel.Add (dng_point (dv1, dh1),
LinearWeight1 (dv1, dv2) * w1);
kernel.Add (dng_point (dv2, dh1),
LinearWeight2 (dv1, dv2) * w1);
dv1 = 0;
dv2 = 0;
while (!map [DeltaRow (patRow, dv1)] [h2])
{
dv1--;
}
while (!map [DeltaRow (patRow, dv2)] [h2])
{
dv2++;
}
kernel.Add (dng_point (dv1, dh2),
LinearWeight1 (dv1, dv2) * w2);
kernel.Add (dng_point (dv2, dh2),
LinearWeight2 (dv1, dv2) * w2);
}
}
// Deal with temp scale case.
if (tempScale == dng_point (2, 2))
{
fPatRows /= tempScale.v;
fPatCols /= tempScale.h;
for (patRow = 0; patRow < fPatRows; patRow++)
{
for (patCol = 0; patCol < fPatCols; patCol++)
{
int32 patRow2 = patRow << 1;
int32 patCol2 = patCol << 1;
dng_bilinear_kernel &kernel = fKernel [patRow2] [patCol2];
for (j = 0; j < kernel.fCount; j++)
{
int32 x = patRow2 + kernel.fDelta [j].v;
if ((x & 3) != 0)
{
x = (x & ~3) + 2;
}
kernel.fDelta [j].v = ((x - patRow2) >> 1);
x = patCol2 + kernel.fDelta [j].h;
if ((x & 3) != 0)
{
x = (x & ~3) + 2;
}
kernel.fDelta [j].h = ((x - patCol2) >> 1);
}
kernel.Finalize (fScale,
patRow,
patCol,
rowStep,
colStep);
fCounts [patRow] [patCol] = kernel.fCount;
fOffsets [patRow] [patCol] = kernel.fOffset;
fWeights16 [patRow] [patCol] = kernel.fWeight16;
fWeights32 [patRow] [patCol] = kernel.fWeight32;
}
}
}
// Non-temp scale case.
else
{
for (patRow = 0; patRow < fPatRows; patRow++)
{
for (patCol = 0; patCol < fPatCols; patCol++)
{
dng_bilinear_kernel &kernel = fKernel [patRow] [patCol];
kernel.Finalize (fScale,
patRow,
patCol,
rowStep,
colStep);
fCounts [patRow] [patCol] = kernel.fCount;
fOffsets [patRow] [patCol] = kernel.fOffset;
fWeights16 [patRow] [patCol] = kernel.fWeight16;
fWeights32 [patRow] [patCol] = kernel.fWeight32;
}
}
}
}
/*****************************************************************************/
class dng_bilinear_interpolator
{
private:
dng_bilinear_pattern fPattern [kMaxColorPlanes];
public:
dng_bilinear_interpolator (const dng_mosaic_info &info,
int32 rowStep,
int32 colStep);
void Interpolate (dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer);
};
/*****************************************************************************/
dng_bilinear_interpolator::dng_bilinear_interpolator (const dng_mosaic_info &info,
int32 rowStep,
int32 colStep)
{
for (uint32 dstPlane = 0; dstPlane < info.fColorPlanes; dstPlane++)
{
fPattern [dstPlane] . Calculate (info,
dstPlane,
rowStep,
colStep);
}
}
/*****************************************************************************/
void dng_bilinear_interpolator::Interpolate (dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer)
{
uint32 patCols = fPattern [0] . fPatCols;
uint32 patRows = fPattern [0] . fPatRows;
dng_point scale = fPattern [0] . fScale;
uint32 sRowShift = scale.v - 1;
uint32 sColShift = scale.h - 1;
int32 dstCol = dstBuffer.fArea.l;
int32 srcCol = dstCol >> sColShift;
uint32 patPhase = dstCol % patCols;
for (int32 dstRow = dstBuffer.fArea.t;
dstRow < dstBuffer.fArea.b;
dstRow++)
{
int32 srcRow = dstRow >> sRowShift;
uint32 patRow = dstRow % patRows;
for (uint32 dstPlane = 0;
dstPlane < dstBuffer.fPlanes;
dstPlane++)
{
const void *sPtr = srcBuffer.ConstPixel (srcRow,
srcCol,
srcBuffer.fPlane);
void *dPtr = dstBuffer.DirtyPixel (dstRow,
dstCol,
dstPlane);
if (dstBuffer.fPixelType == ttShort)
{
DoBilinearRow16 ((const uint16 *) sPtr,
(uint16 *) dPtr,
dstBuffer.fArea.W (),
patPhase,
patCols,
fPattern [dstPlane].fCounts [patRow],
fPattern [dstPlane].fOffsets [patRow],
fPattern [dstPlane].fWeights16 [patRow],
sColShift);
}
else
{
DoBilinearRow32 ((const real32 *) sPtr,
(real32 *) dPtr,
dstBuffer.fArea.W (),
patPhase,
patCols,
fPattern [dstPlane].fCounts [patRow],
fPattern [dstPlane].fOffsets [patRow],
fPattern [dstPlane].fWeights32 [patRow],
sColShift);
}
}
}
}
/*****************************************************************************/
class dng_fast_interpolator: public dng_filter_task
{
protected:
const dng_mosaic_info &fInfo;
dng_point fDownScale;
uint32 fFilterColor [kMaxCFAPattern] [kMaxCFAPattern];
public:
dng_fast_interpolator (const dng_mosaic_info &info,
const dng_image &srcImage,
dng_image &dstImage,
const dng_point &downScale,
uint32 srcPlane);
virtual dng_rect SrcArea (const dng_rect &dstArea);
virtual void ProcessArea (uint32 threadIndex,
dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer);
};
/*****************************************************************************/
dng_fast_interpolator::dng_fast_interpolator (const dng_mosaic_info &info,
const dng_image &srcImage,
dng_image &dstImage,
const dng_point &downScale,
uint32 srcPlane)
: dng_filter_task (srcImage,
dstImage)
, fInfo (info )
, fDownScale (downScale)
{
fSrcPlane = srcPlane;
fSrcPlanes = 1;
fSrcPixelType = ttShort;
fDstPixelType = ttShort;
fSrcRepeat = fInfo.fCFAPatternSize;
fUnitCell = fInfo.fCFAPatternSize;
fMaxTileSize = dng_point (256 / fDownScale.v,
256 / fDownScale.h);
fMaxTileSize.h = Max_int32 (fMaxTileSize.h, fUnitCell.h);
fMaxTileSize.v = Max_int32 (fMaxTileSize.v, fUnitCell.v);
// Find color map.
{
for (int32 r = 0; r < fInfo.fCFAPatternSize.v; r++)
{
for (int32 c = 0; c < fInfo.fCFAPatternSize.h; c++)
{
uint8 key = fInfo.fCFAPattern [r] [c];
for (uint32 index = 0; index < fInfo.fColorPlanes; index++)
{
if (key == fInfo.fCFAPlaneColor [index])
{
fFilterColor [r] [c] = index;
break;
}
}
}
}
}
}
/*****************************************************************************/
dng_rect dng_fast_interpolator::SrcArea (const dng_rect &dstArea)
{
return dng_rect (dstArea.t * fDownScale.v,
dstArea.l * fDownScale.h,
dstArea.b * fDownScale.v,
dstArea.r * fDownScale.h);
}
/*****************************************************************************/
void dng_fast_interpolator::ProcessArea (uint32 /* threadIndex */,
dng_pixel_buffer &srcBuffer,
dng_pixel_buffer &dstBuffer)
{
dng_rect srcArea = srcBuffer.fArea;
dng_rect dstArea = dstBuffer.fArea;
// Downsample buffer.
int32 srcRow = srcArea.t;
uint32 srcRowPhase1 = 0;
uint32 srcRowPhase2 = 0;
uint32 patRows = fInfo.fCFAPatternSize.v;
uint32 patCols = fInfo.fCFAPatternSize.h;
uint32 cellRows = fDownScale.v;
uint32 cellCols = fDownScale.h;
uint32 plane;
uint32 planes = fInfo.fColorPlanes;
int32 dstPlaneStep = dstBuffer.fPlaneStep;
uint32 total [kMaxColorPlanes];
uint32 count [kMaxColorPlanes];
for (plane = 0; plane < planes; plane++)
{
total [plane] = 0;
count [plane] = 0;
}
for (int32 dstRow = dstArea.t; dstRow < dstArea.b; dstRow++)
{
const uint16 *sPtr = srcBuffer.ConstPixel_uint16 (srcRow,
srcArea.l,
fSrcPlane);
uint16 *dPtr = dstBuffer.DirtyPixel_uint16 (dstRow,
dstArea.l,
0);
uint32 srcColPhase1 = 0;
uint32 srcColPhase2 = 0;
for (int32 dstCol = dstArea.l; dstCol < dstArea.r; dstCol++)
{
const uint16 *ssPtr = sPtr;
srcRowPhase2 = srcRowPhase1;
for (uint32 cellRow = 0; cellRow < cellRows; cellRow++)
{
const uint32 *filterRow = fFilterColor [srcRowPhase2];
if (++srcRowPhase2 == patRows)
{
srcRowPhase2 = 0;
}
srcColPhase2 = srcColPhase1;
for (uint32 cellCol = 0; cellCol < cellCols; cellCol++)
{
uint32 color = filterRow [srcColPhase2];
if (++srcColPhase2 == patCols)
{
srcColPhase2 = 0;
}
total [color] += (uint32) ssPtr [cellCol];
count [color] ++;
}
ssPtr += srcBuffer.fRowStep;
}
for (plane = 0; plane < planes; plane++)
{
uint32 t = total [plane];
uint32 c = count [plane];
dPtr [plane * dstPlaneStep] = (uint16) ((t + (c >> 1)) / c);
total [plane] = 0;
count [plane] = 0;
}
srcColPhase1 = srcColPhase2;
sPtr += cellCols;
dPtr ++;
}
srcRowPhase1 = srcRowPhase2;
srcRow += cellRows;
}
}
/*****************************************************************************/
dng_mosaic_info::dng_mosaic_info ()
: fCFAPatternSize ()
, fColorPlanes (0)
, fCFALayout (1)
, fBayerGreenSplit (0)
, fSrcSize ()
, fCroppedSize ()
, fAspectRatio (1.0)
{
}
/*****************************************************************************/
dng_mosaic_info::~dng_mosaic_info ()
{
}
/*****************************************************************************/
void dng_mosaic_info::Parse (dng_host & /* host */,
dng_stream & /* stream */,
dng_info &info)
{
// Find main image IFD.
dng_ifd &rawIFD = *info.fIFD [info.fMainIndex].Get ();
// This information only applies to CFA images.
if (rawIFD.fPhotometricInterpretation != piCFA)
{
return;
}
// Copy CFA pattern.
fCFAPatternSize.v = rawIFD.fCFARepeatPatternRows;
fCFAPatternSize.h = rawIFD.fCFARepeatPatternCols;
for (int32 j = 0; j < fCFAPatternSize.v; j++)
{
for (int32 k = 0; k < fCFAPatternSize.h; k++)
{
fCFAPattern [j] [k] = rawIFD.fCFAPattern [j] [k];
}
}
// Copy CFA plane information.
fColorPlanes = info.fShared->fCameraProfile.fColorPlanes;
for (uint32 n = 0; n < fColorPlanes; n++)
{
fCFAPlaneColor [n] = rawIFD.fCFAPlaneColor [n];
}
// Copy CFA layout information.
fCFALayout = rawIFD.fCFALayout;
// Green split value for Bayer patterns.
fBayerGreenSplit = rawIFD.fBayerGreenSplit;
}
/*****************************************************************************/
void dng_mosaic_info::PostParse (dng_host & /* host */,
dng_negative &negative)
{
// Keep track of source image size.
fSrcSize = negative.Stage2Image ()->Size ();
// Default cropped size.
fCroppedSize.v = Round_int32 (negative.DefaultCropSizeV ().As_real64 ());
fCroppedSize.h = Round_int32 (negative.DefaultCropSizeH ().As_real64 ());
// Pixel aspect ratio.
fAspectRatio = negative.DefaultScaleH ().As_real64 () /
negative.DefaultScaleV ().As_real64 ();
}
/*****************************************************************************/
bool dng_mosaic_info::SetFourColorBayer ()
{
if (fCFAPatternSize != dng_point (2, 2))
{
return false;
}
if (fColorPlanes != 3)
{
return false;
}
uint8 color0 = fCFAPlaneColor [0];
uint8 color1 = fCFAPlaneColor [1];
uint8 color2 = fCFAPlaneColor [2];
// Look for color 1 repeated twice in a diagonal.
if ((fCFAPattern [0] [0] == color1 && fCFAPattern [1] [1] == color1) ||
(fCFAPattern [0] [1] == color1 && fCFAPattern [1] [0] == color1))
{
// OK, this looks like a Bayer pattern.
// Find unused color code.
uint8 color3 = 0;
while (color3 == color0 ||
color3 == color1 ||
color3 == color2)
{
color3++;
}
// Switch the four color mosaic.
fColorPlanes = 4;
fCFAPlaneColor [3] = color3;
// Replace the "green" in the "blue" rows with the new color.
if (fCFAPattern [0] [0] == color0)
{
fCFAPattern [1] [0] = color3;
}
else if (fCFAPattern [0] [1] == color0)
{
fCFAPattern [1] [1] = color3;
}
else if (fCFAPattern [1] [0] == color0)
{
fCFAPattern [0] [0] = color3;
}
else
{
fCFAPattern [0] [1] = color3;
}
return true;
}
return false;
}
/*****************************************************************************/
dng_point dng_mosaic_info::FullScale () const
{
switch (fCFALayout)
{
// Staggered layouts with offset columns double the row count
// during interpolation.
case 2:
case 3:
return dng_point (2, 1);
// Staggered layouts with offset rows double the column count
// during interpolation.
case 4:
case 5:
return dng_point (1, 2);
// Otherwise there is no size change during interpolation.
default:
break;
}
return dng_point (1, 1);
}
/*****************************************************************************/
bool dng_mosaic_info::IsSafeDownScale (const dng_point &downScale) const
{
if (downScale.v >= fCFAPatternSize.v &&
downScale.h >= fCFAPatternSize.h)
{
return true;
}
dng_point test;
test.v = Min_int32 (downScale.v, fCFAPatternSize.v);
test.h = Min_int32 (downScale.h, fCFAPatternSize.h);
for (int32 phaseV = 0; phaseV <= fCFAPatternSize.v - test.v; phaseV++)
{
for (int32 phaseH = 0; phaseH <= fCFAPatternSize.h - test.h; phaseH++)
{
uint32 plane;
bool contains [kMaxColorPlanes];
for (plane = 0; plane < fColorPlanes; plane++)
{
contains [plane] = false;
}
for (int32 srcRow = 0; srcRow < test.v; srcRow++)
{
for (int32 srcCol = 0; srcCol < test.h; srcCol++)
{
uint8 srcKey = fCFAPattern [srcRow + phaseV]
[srcCol + phaseH];
for (plane = 0; plane < fColorPlanes; plane++)
{
if (srcKey == fCFAPlaneColor [plane])
{
contains [plane] = true;
}
}
}
}
for (plane = 0; plane < fColorPlanes; plane++)
{
if (!contains [plane])
{
return false;
}
}
}
}
return true;
}
/*****************************************************************************/
uint32 dng_mosaic_info::SizeForDownScale (const dng_point &downScale) const
{
uint32 sizeV = Max_uint32 (1, (fCroppedSize.v + (downScale.v >> 1)) / downScale.v);
uint32 sizeH = Max_uint32 (1, (fCroppedSize.h + (downScale.h >> 1)) / downScale.h);
return Max_int32 (sizeV, sizeH);
}
/*****************************************************************************/
bool dng_mosaic_info::ValidSizeDownScale (const dng_point &downScale,
uint32 minSize) const
{
const int32 kMaxDownScale = 64;
if (downScale.h > kMaxDownScale ||
downScale.v > kMaxDownScale)
{
return false;
}
return SizeForDownScale (downScale) >= minSize;
}
/*****************************************************************************/
dng_point dng_mosaic_info::DownScale (uint32 minSize,
uint32 prefSize,
real64 cropFactor) const
{
dng_point bestScale (1, 1);
if (prefSize && IsColorFilterArray ())
{
// Adjust sizes for crop factor.
minSize = Round_uint32 (minSize / cropFactor);
prefSize = Round_uint32 (prefSize / cropFactor);
prefSize = Max_uint32 (prefSize, minSize);
// Start by assuming we need the full size image.
int32 bestSize = SizeForDownScale (bestScale);
// Find size of nearly square cell.
dng_point squareCell (1, 1);
if (fAspectRatio < 1.0 / 1.8)
{
squareCell.h = Min_int32 (4, Round_int32 (1.0 / fAspectRatio));
}
if (fAspectRatio > 1.8)
{
squareCell.v = Min_int32 (4, Round_int32 (fAspectRatio));
}
// Find minimum safe cell size.
dng_point testScale = squareCell;
while (!IsSafeDownScale (testScale))
{
testScale.v += squareCell.v;
testScale.h += squareCell.h;
}
// See if this scale is usable.
if (!ValidSizeDownScale (testScale, minSize))
{
// We cannot downsample at all...
return bestScale;
}
// See if this is closer to the preferred size.
int32 testSize = SizeForDownScale (testScale);
if (Abs_int32 (testSize - (int32) prefSize) <=
Abs_int32 (bestSize - (int32) prefSize))
{
bestScale = testScale;
bestSize = testSize;
}
else
{
return bestScale;
}
// Now keep adding square cells as long as possible.
while (true)
{
testScale.v += squareCell.v;
testScale.h += squareCell.h;
if (IsSafeDownScale (testScale))
{
if (!ValidSizeDownScale (testScale, minSize))
{
return bestScale;
}
// See if this is closer to the preferred size.
testSize = SizeForDownScale (testScale);
if (Abs_int32 (testSize - (int32) prefSize) <=
Abs_int32 (bestSize - (int32) prefSize))
{
bestScale = testScale;
bestSize = testSize;
}
else
{
return bestScale;
}
}
}
}
return bestScale;
}
/*****************************************************************************/
dng_point dng_mosaic_info::DstSize (const dng_point &downScale) const
{
if (downScale == dng_point (1, 1))
{
dng_point scale = FullScale ();
return dng_point (fSrcSize.v * scale.v,
fSrcSize.h * scale.h);
}
const int32 kMaxDownScale = 64;
if (downScale.h > kMaxDownScale ||
downScale.v > kMaxDownScale)
{
return dng_point (0, 0);
}
dng_point size;
size.v = Max_int32 (1, (fSrcSize.v + (downScale.v >> 1)) / downScale.v);
size.h = Max_int32 (1, (fSrcSize.h + (downScale.h >> 1)) / downScale.h);
return size;
}
/*****************************************************************************/
void dng_mosaic_info::InterpolateGeneric (dng_host &host,
dng_negative & /* negative */,
const dng_image &srcImage,
dng_image &dstImage,
uint32 srcPlane) const
{
// Find destination to source bit shifts.
dng_point scale = FullScale ();
uint32 srcShiftV = scale.v - 1;
uint32 srcShiftH = scale.h - 1;
// Find tile sizes.
const uint32 kMaxDstTileRows = 128;
const uint32 kMaxDstTileCols = 128;
dng_point dstTileSize = dstImage.RepeatingTile ().Size ();
dstTileSize.v = Min_int32 (dstTileSize.v, kMaxDstTileRows);
dstTileSize.h = Min_int32 (dstTileSize.h, kMaxDstTileCols);
dng_point srcTileSize = dstTileSize;
srcTileSize.v >>= srcShiftV;
srcTileSize.h >>= srcShiftH;
srcTileSize.v += fCFAPatternSize.v * 2;
srcTileSize.h += fCFAPatternSize.h * 2;
// Allocate source buffer.
dng_pixel_buffer srcBuffer (dng_rect (srcTileSize), srcPlane, 1,
srcImage.PixelType (), pcInterleaved, NULL);
uint32 srcBufferSize = ComputeBufferSize (srcBuffer.fPixelType,
srcTileSize, srcBuffer.fPlanes,
padNone);
AutoPtr<dng_memory_block> srcData (host.Allocate (srcBufferSize));
srcBuffer.fData = srcData->Buffer ();
// Allocate destination buffer.
dng_pixel_buffer dstBuffer (dng_rect (dstTileSize), 0, fColorPlanes,
dstImage.PixelType (), pcRowInterleaved, NULL);
uint32 dstBufferSize = ComputeBufferSize (dstBuffer.fPixelType,
dstTileSize, dstBuffer.fPlanes,
padNone);
AutoPtr<dng_memory_block> dstData (host.Allocate (dstBufferSize));
dstBuffer.fData = dstData->Buffer ();
// Create interpolator.
AutoPtr<dng_bilinear_interpolator> interpolator (new dng_bilinear_interpolator (*this,
srcBuffer.fRowStep,
srcBuffer.fColStep));
// Iterate over destination tiles.
dng_rect dstArea;
dng_tile_iterator iter1 (dstImage, dstImage.Bounds ());
while (iter1.GetOneTile (dstArea))
{
// Break into buffer sized tiles.
dng_rect dstTile;
dng_tile_iterator iter2 (dstTileSize, dstArea);
while (iter2.GetOneTile (dstTile))
{
host.SniffForAbort ();
// Setup buffers for this tile.
dng_rect srcTile (dstTile);
srcTile.t >>= srcShiftV;
srcTile.b >>= srcShiftV;
srcTile.l >>= srcShiftH;
srcTile.r >>= srcShiftH;
srcTile.t -= fCFAPatternSize.v;
srcTile.b += fCFAPatternSize.v;
srcTile.l -= fCFAPatternSize.h;
srcTile.r += fCFAPatternSize.h;
srcBuffer.fArea = srcTile;
dstBuffer.fArea = dstTile;
// Get source data.
srcImage.Get (srcBuffer,
dng_image::edge_repeat,
fCFAPatternSize.v,
fCFAPatternSize.h);
// Process data.
interpolator->Interpolate (srcBuffer,
dstBuffer);
// Save results.
dstImage.Put (dstBuffer);
}
}
}
/*****************************************************************************/
void dng_mosaic_info::InterpolateFast (dng_host &host,
dng_negative & /* negative */,
const dng_image &srcImage,
dng_image &dstImage,
const dng_point &downScale,
uint32 srcPlane) const
{
// Create fast interpolator task.
dng_fast_interpolator interpolator (*this,
srcImage,
dstImage,
downScale,
srcPlane);
// Find area to process.
dng_rect bounds = dstImage.Bounds ();
// Do the interpolation.
host.PerformAreaTask (interpolator,
bounds);
}
/*****************************************************************************/
void dng_mosaic_info::Interpolate (dng_host &host,
dng_negative &negative,
const dng_image &srcImage,
dng_image &dstImage,
const dng_point &downScale,
uint32 srcPlane) const
{
if (downScale == dng_point (1, 1))
{
InterpolateGeneric (host,
negative,
srcImage,
dstImage,
srcPlane);
}
else
{
InterpolateFast (host,
negative,
srcImage,
dstImage,
downScale,
srcPlane);
}
}
/*****************************************************************************/