/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "entrypoints/entrypoint_utils.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/mutex.h"
#include "class_linker-inl.h"
#include "dex_file-inl.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "entrypoints/quick/callee_save_frame.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/card_table-inl.h"
#include "mirror/class-inl.h"
#include "mirror/method.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "nth_caller_visitor.h"
#include "oat_quick_method_header.h"
#include "reflection.h"
#include "scoped_thread_state_change.h"
#include "well_known_classes.h"
namespace art {
static inline mirror::Class* CheckFilledNewArrayAlloc(uint32_t type_idx,
int32_t component_count,
ArtMethod* referrer,
Thread* self,
bool access_check)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
return nullptr; // Failure
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
size_t pointer_size = class_linker->GetImagePointerSize();
mirror::Class* klass = referrer->GetDexCacheResolvedType<false>(type_idx, pointer_size);
if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve
klass = class_linker->ResolveType(type_idx, referrer);
if (klass == nullptr) { // Error
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
}
}
if (UNLIKELY(klass->IsPrimitive() && !klass->IsPrimitiveInt())) {
if (klass->IsPrimitiveLong() || klass->IsPrimitiveDouble()) {
ThrowRuntimeException("Bad filled array request for type %s",
PrettyDescriptor(klass).c_str());
} else {
self->ThrowNewExceptionF(
"Ljava/lang/InternalError;",
"Found type %s; filled-new-array not implemented for anything but 'int'",
PrettyDescriptor(klass).c_str());
}
return nullptr; // Failure
}
if (access_check) {
mirror::Class* referrer_klass = referrer->GetDeclaringClass();
if (UNLIKELY(!referrer_klass->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer_klass, klass);
return nullptr; // Failure
}
}
DCHECK(klass->IsArrayClass()) << PrettyClass(klass);
return klass;
}
// Helper function to allocate array for FILLED_NEW_ARRAY.
mirror::Array* CheckAndAllocArrayFromCode(uint32_t type_idx, int32_t component_count,
ArtMethod* referrer, Thread* self,
bool access_check,
gc::AllocatorType /* allocator_type */) {
mirror::Class* klass = CheckFilledNewArrayAlloc(type_idx, component_count, referrer, self,
access_check);
if (UNLIKELY(klass == nullptr)) {
return nullptr;
}
// Always go slow path for now, filled new array is not common.
gc::Heap* heap = Runtime::Current()->GetHeap();
// Use the current allocator type in case CheckFilledNewArrayAlloc caused us to suspend and then
// the heap switched the allocator type while we were suspended.
return mirror::Array::Alloc<false>(self, klass, component_count,
klass->GetComponentSizeShift(),
heap->GetCurrentAllocator());
}
// Helper function to allocate array for FILLED_NEW_ARRAY.
mirror::Array* CheckAndAllocArrayFromCodeInstrumented(uint32_t type_idx,
int32_t component_count,
ArtMethod* referrer,
Thread* self,
bool access_check,
gc::AllocatorType /* allocator_type */) {
mirror::Class* klass = CheckFilledNewArrayAlloc(type_idx, component_count, referrer, self,
access_check);
if (UNLIKELY(klass == nullptr)) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
// Use the current allocator type in case CheckFilledNewArrayAlloc caused us to suspend and then
// the heap switched the allocator type while we were suspended.
return mirror::Array::Alloc<true>(self, klass, component_count,
klass->GetComponentSizeShift(),
heap->GetCurrentAllocator());
}
void CheckReferenceResult(mirror::Object* o, Thread* self) {
if (o == nullptr) {
return;
}
// Make sure that the result is an instance of the type this method was expected to return.
mirror::Class* return_type = self->GetCurrentMethod(nullptr)->GetReturnType(true /* resolve */,
sizeof(void*));
if (!o->InstanceOf(return_type)) {
Runtime::Current()->GetJavaVM()->JniAbortF(nullptr,
"attempt to return an instance of %s from %s",
PrettyTypeOf(o).c_str(),
PrettyMethod(self->GetCurrentMethod(nullptr)).c_str());
}
}
JValue InvokeProxyInvocationHandler(ScopedObjectAccessAlreadyRunnable& soa, const char* shorty,
jobject rcvr_jobj, jobject interface_method_jobj,
std::vector<jvalue>& args) {
DCHECK(soa.Env()->IsInstanceOf(rcvr_jobj, WellKnownClasses::java_lang_reflect_Proxy));
// Build argument array possibly triggering GC.
soa.Self()->AssertThreadSuspensionIsAllowable();
jobjectArray args_jobj = nullptr;
const JValue zero;
int32_t target_sdk_version = Runtime::Current()->GetTargetSdkVersion();
// Do not create empty arrays unless needed to maintain Dalvik bug compatibility.
if (args.size() > 0 || (target_sdk_version > 0 && target_sdk_version <= 21)) {
args_jobj = soa.Env()->NewObjectArray(args.size(), WellKnownClasses::java_lang_Object, nullptr);
if (args_jobj == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
return zero;
}
for (size_t i = 0; i < args.size(); ++i) {
if (shorty[i + 1] == 'L') {
jobject val = args.at(i).l;
soa.Env()->SetObjectArrayElement(args_jobj, i, val);
} else {
JValue jv;
jv.SetJ(args.at(i).j);
mirror::Object* val = BoxPrimitive(Primitive::GetType(shorty[i + 1]), jv);
if (val == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
return zero;
}
soa.Decode<mirror::ObjectArray<mirror::Object>* >(args_jobj)->Set<false>(i, val);
}
}
}
// Call Proxy.invoke(Proxy proxy, Method method, Object[] args).
jvalue invocation_args[3];
invocation_args[0].l = rcvr_jobj;
invocation_args[1].l = interface_method_jobj;
invocation_args[2].l = args_jobj;
jobject result =
soa.Env()->CallStaticObjectMethodA(WellKnownClasses::java_lang_reflect_Proxy,
WellKnownClasses::java_lang_reflect_Proxy_invoke,
invocation_args);
// Unbox result and handle error conditions.
if (LIKELY(!soa.Self()->IsExceptionPending())) {
if (shorty[0] == 'V' || (shorty[0] == 'L' && result == nullptr)) {
// Do nothing.
return zero;
} else {
StackHandleScope<1> hs(soa.Self());
auto h_interface_method(hs.NewHandle(soa.Decode<mirror::Method*>(interface_method_jobj)));
// This can cause thread suspension.
size_t pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
mirror::Class* result_type =
h_interface_method->GetArtMethod()->GetReturnType(true /* resolve */, pointer_size);
mirror::Object* result_ref = soa.Decode<mirror::Object*>(result);
JValue result_unboxed;
if (!UnboxPrimitiveForResult(result_ref, result_type, &result_unboxed)) {
DCHECK(soa.Self()->IsExceptionPending());
return zero;
}
return result_unboxed;
}
} else {
// In the case of checked exceptions that aren't declared, the exception must be wrapped by
// a UndeclaredThrowableException.
mirror::Throwable* exception = soa.Self()->GetException();
if (exception->IsCheckedException()) {
mirror::Object* rcvr = soa.Decode<mirror::Object*>(rcvr_jobj);
mirror::Class* proxy_class = rcvr->GetClass();
mirror::Method* interface_method = soa.Decode<mirror::Method*>(interface_method_jobj);
ArtMethod* proxy_method = rcvr->GetClass()->FindVirtualMethodForInterface(
interface_method->GetArtMethod(), sizeof(void*));
auto virtual_methods = proxy_class->GetVirtualMethodsSlice(sizeof(void*));
size_t num_virtuals = proxy_class->NumVirtualMethods();
size_t method_size = ArtMethod::Size(sizeof(void*));
// Rely on the fact that the methods are contiguous to determine the index of the method in
// the slice.
int throws_index = (reinterpret_cast<uintptr_t>(proxy_method) -
reinterpret_cast<uintptr_t>(&virtual_methods.At(0))) / method_size;
CHECK_LT(throws_index, static_cast<int>(num_virtuals));
mirror::ObjectArray<mirror::Class>* declared_exceptions =
proxy_class->GetThrows()->Get(throws_index);
mirror::Class* exception_class = exception->GetClass();
bool declares_exception = false;
for (int32_t i = 0; i < declared_exceptions->GetLength() && !declares_exception; i++) {
mirror::Class* declared_exception = declared_exceptions->Get(i);
declares_exception = declared_exception->IsAssignableFrom(exception_class);
}
if (!declares_exception) {
soa.Self()->ThrowNewWrappedException("Ljava/lang/reflect/UndeclaredThrowableException;",
nullptr);
}
}
return zero;
}
}
bool FillArrayData(mirror::Object* obj, const Instruction::ArrayDataPayload* payload) {
DCHECK_EQ(payload->ident, static_cast<uint16_t>(Instruction::kArrayDataSignature));
if (UNLIKELY(obj == nullptr)) {
ThrowNullPointerException("null array in FILL_ARRAY_DATA");
return false;
}
mirror::Array* array = obj->AsArray();
DCHECK(!array->IsObjectArray());
if (UNLIKELY(static_cast<int32_t>(payload->element_count) > array->GetLength())) {
Thread* self = Thread::Current();
self->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;",
"failed FILL_ARRAY_DATA; length=%d, index=%d",
array->GetLength(), payload->element_count);
return false;
}
// Copy data from dex file to memory assuming both are little endian.
uint32_t size_in_bytes = payload->element_count * payload->element_width;
memcpy(array->GetRawData(payload->element_width, 0), payload->data, size_in_bytes);
return true;
}
ArtMethod* GetCalleeSaveMethodCaller(ArtMethod** sp,
Runtime::CalleeSaveType type,
bool do_caller_check)
SHARED_REQUIRES(Locks::mutator_lock_) {
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, type);
auto** caller_sp = reinterpret_cast<ArtMethod**>(
reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
const size_t callee_return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, type);
uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
(reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
ArtMethod* outer_method = *caller_sp;
ArtMethod* caller = outer_method;
if (LIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
if (outer_method != nullptr) {
const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
DCHECK(current_code != nullptr);
DCHECK(current_code->IsOptimized());
uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
CodeInfo code_info = current_code->GetOptimizedCodeInfo();
CodeInfoEncoding encoding = code_info.ExtractEncoding();
StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
DCHECK(stack_map.IsValid());
if (stack_map.HasInlineInfo(encoding.stack_map_encoding)) {
InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
caller = GetResolvedMethod(outer_method,
inline_info,
encoding.inline_info_encoding,
inline_info.GetDepth(encoding.inline_info_encoding) - 1);
}
}
if (kIsDebugBuild && do_caller_check) {
// Note that do_caller_check is optional, as this method can be called by
// stubs, and tests without a proper call stack.
NthCallerVisitor visitor(Thread::Current(), 1, true);
visitor.WalkStack();
CHECK_EQ(caller, visitor.caller);
}
} else {
// We're instrumenting, just use the StackVisitor which knows how to
// handle instrumented frames.
NthCallerVisitor visitor(Thread::Current(), 1, true);
visitor.WalkStack();
caller = visitor.caller;
}
return caller;
}
} // namespace art