/* libs/pixelflinger/codeflinger/MIPS64Assembler.h ** ** Copyright 2015, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #ifndef ANDROID_MIPS64ASSEMBLER_H #define ANDROID_MIPS64ASSEMBLER_H #include <stdint.h> #include <sys/types.h> #include "utils/KeyedVector.h" #include "utils/Vector.h" #include "tinyutils/smartpointer.h" #include "ARMAssemblerInterface.h" #include "MIPSAssembler.h" #include "CodeCache.h" namespace android { class MIPS64Assembler; // forward reference // this class mimics ARMAssembler interface // intent is to translate each ARM instruction to 1 or more MIPS instr // implementation calls MIPS64Assembler class to generate mips code class ArmToMips64Assembler : public ARMAssemblerInterface { public: ArmToMips64Assembler(const sp<Assembly>& assembly, char *abuf = 0, int linesz = 0, int instr_count = 0); ArmToMips64Assembler(void* assembly); virtual ~ArmToMips64Assembler(); uint32_t* base() const; uint32_t* pc() const; void disassemble(const char* name); virtual void reset(); virtual int generate(const char* name); virtual int getCodegenArch(); virtual void prolog(); virtual void epilog(uint32_t touched); virtual void comment(const char* string); // for testing purposes void fix_branches(); void set_condition(int mode, int R1, int R2); // ----------------------------------------------------------------------- // shifters and addressing modes // ----------------------------------------------------------------------- // shifters... virtual bool isValidImmediate(uint32_t immed); virtual int buildImmediate(uint32_t i, uint32_t& rot, uint32_t& imm); virtual uint32_t imm(uint32_t immediate); virtual uint32_t reg_imm(int Rm, int type, uint32_t shift); virtual uint32_t reg_rrx(int Rm); virtual uint32_t reg_reg(int Rm, int type, int Rs); // addressing modes... // LDR(B)/STR(B)/PLD // (immediate and Rm can be negative, which indicates U=0) virtual uint32_t immed12_pre(int32_t immed12, int W=0); virtual uint32_t immed12_post(int32_t immed12); virtual uint32_t reg_scale_pre(int Rm, int type=0, uint32_t shift=0, int W=0); virtual uint32_t reg_scale_post(int Rm, int type=0, uint32_t shift=0); // LDRH/LDRSB/LDRSH/STRH // (immediate and Rm can be negative, which indicates U=0) virtual uint32_t immed8_pre(int32_t immed8, int W=0); virtual uint32_t immed8_post(int32_t immed8); virtual uint32_t reg_pre(int Rm, int W=0); virtual uint32_t reg_post(int Rm); virtual void dataProcessing(int opcode, int cc, int s, int Rd, int Rn, uint32_t Op2); virtual void MLA(int cc, int s, int Rd, int Rm, int Rs, int Rn); virtual void MUL(int cc, int s, int Rd, int Rm, int Rs); virtual void UMULL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void UMUAL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void SMULL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void SMUAL(int cc, int s, int RdLo, int RdHi, int Rm, int Rs); virtual void B(int cc, uint32_t* pc); virtual void BL(int cc, uint32_t* pc); virtual void BX(int cc, int Rn); virtual void label(const char* theLabel); virtual void B(int cc, const char* label); virtual void BL(int cc, const char* label); virtual uint32_t* pcForLabel(const char* label); virtual void LDR (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRB(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void STR (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void STRB(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRH (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRSB(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDRSH(int cc, int Rd, int Rn, uint32_t offset = 0); virtual void STRH (int cc, int Rd, int Rn, uint32_t offset = 0); virtual void LDM(int cc, int dir, int Rn, int W, uint32_t reg_list); virtual void STM(int cc, int dir, int Rn, int W, uint32_t reg_list); virtual void SWP(int cc, int Rn, int Rd, int Rm); virtual void SWPB(int cc, int Rn, int Rd, int Rm); virtual void SWI(int cc, uint32_t comment); virtual void PLD(int Rn, uint32_t offset); virtual void CLZ(int cc, int Rd, int Rm); virtual void QADD(int cc, int Rd, int Rm, int Rn); virtual void QDADD(int cc, int Rd, int Rm, int Rn); virtual void QSUB(int cc, int Rd, int Rm, int Rn); virtual void QDSUB(int cc, int Rd, int Rm, int Rn); virtual void SMUL(int cc, int xy, int Rd, int Rm, int Rs); virtual void SMULW(int cc, int y, int Rd, int Rm, int Rs); virtual void SMLA(int cc, int xy, int Rd, int Rm, int Rs, int Rn); virtual void SMLAL(int cc, int xy, int RdHi, int RdLo, int Rs, int Rm); virtual void SMLAW(int cc, int y, int Rd, int Rm, int Rs, int Rn); // byte/half word extract... virtual void UXTB16(int cc, int Rd, int Rm, int rotate); // bit manipulation... virtual void UBFX(int cc, int Rd, int Rn, int lsb, int width); // Address loading/storing/manipulation virtual void ADDR_LDR(int cc, int Rd, int Rn, uint32_t offset = __immed12_pre(0)); virtual void ADDR_STR(int cc, int Rd, int Rn, uint32_t offset = __immed12_pre(0)); virtual void ADDR_ADD(int cc, int s, int Rd, int Rn, uint32_t Op2); virtual void ADDR_SUB(int cc, int s, int Rd, int Rn, uint32_t Op2); // this is some crap to share is MIPS64Assembler class for debug char * mArmDisassemblyBuffer; int mArmLineLength; int mArmInstrCount; int mInum; // current arm instuction number (0..n) uint32_t** mArmPC; // array: PC for 1st mips instr of // each translated ARM instr private: ArmToMips64Assembler(const ArmToMips64Assembler& rhs); ArmToMips64Assembler& operator = (const ArmToMips64Assembler& rhs); void init_conditional_labels(void); void protectConditionalOperands(int Rd); // reg__tmp set to MIPS AT, reg 1 int dataProcAdrModes(int op, int& source, bool sign = false, int reg_tmp = 1); sp<Assembly> mAssembly; MIPS64Assembler* mMips; enum misc_constants_t { ARM_MAX_INSTUCTIONS = 512 // based on ASSEMBLY_SCRATCH_SIZE }; enum { SRC_REG = 0, SRC_IMM, SRC_ERROR = -1 }; enum addr_modes { // start above the range of legal mips reg #'s (0-31) AMODE_REG = 0x20, AMODE_IMM, AMODE_REG_IMM, // for data processing AMODE_IMM_12_PRE, AMODE_IMM_12_POST, // for load/store AMODE_REG_SCALE_PRE, AMODE_IMM_8_PRE, AMODE_IMM_8_POST, AMODE_REG_PRE, AMODE_UNSUPPORTED }; struct addr_mode_t { // address modes for current ARM instruction int reg; int stype; uint32_t value; bool writeback; // writeback the adr reg after modification } amode; enum cond_types { CMP_COND = 1, SBIT_COND }; struct cond_mode_t { // conditional-execution info for current ARM instruction cond_types type; int r1; int r2; int labelnum; char label[100][10]; } cond; }; // ---------------------------------------------------------------------------- // ---------------------------------------------------------------------------- // ---------------------------------------------------------------------------- // This is the basic MIPS64 assembler, which just creates the opcodes in memory. // All the more complicated work is done in ArmToMips64Assember above. // Inherits MIPSAssembler class, and overrides only MIPS64r6 specific stuff class MIPS64Assembler : public MIPSAssembler { public: MIPS64Assembler(const sp<Assembly>& assembly, ArmToMips64Assembler *parent); MIPS64Assembler(void* assembly, ArmToMips64Assembler *parent); virtual ~MIPS64Assembler(); virtual void reset(); virtual void disassemble(const char* name); void fix_branches(); // ------------------------------------------------------------------------ // MIPS64AssemblerInterface... // ------------------------------------------------------------------------ #if 0 #pragma mark - #pragma mark Arithmetic... #endif void DADDU(int Rd, int Rs, int Rt); void DADDIU(int Rt, int Rs, int16_t imm); void DSUBU(int Rd, int Rs, int Rt); void DSUBIU(int Rt, int Rs, int16_t imm); virtual void MUL(int Rd, int Rs, int Rt); void MUH(int Rd, int Rs, int Rt); #if 0 #pragma mark - #pragma mark Logical... #endif virtual void CLO(int Rd, int Rs); virtual void CLZ(int Rd, int Rs); #if 0 #pragma mark - #pragma mark Load/store... #endif void LD(int Rt, int Rbase, int16_t offset); void SD(int Rt, int Rbase, int16_t offset); virtual void LUI(int Rt, int16_t offset); #if 0 #pragma mark - #pragma mark Branch... #endif void JR(int Rs); protected: ArmToMips64Assembler *mParent; // opcode field of all instructions enum opcode_field { spec_op, regimm_op, j_op, jal_op, // 0x00 - 0x03 beq_op, bne_op, pop06_op, pop07_op, // 0x04 - 0x07 pop10_op, addiu_op, slti_op, sltiu_op, // 0x08 - 0x0b andi_op, ori_op, xori_op, aui_op, // 0x0c - 0x0f cop0_op, cop1_op, cop2_op, rsrv_opc_0, // 0x10 - 0x13 rsrv_opc_1, rsrv_opc_2, pop26_op, pop27_op, // 0x14 - 0x17 pop30_op, daddiu_op, rsrv_opc_3, rsrv_opc_4, // 0x18 - 0x1b rsrv_opc_5, daui_op, msa_op, spec3_op, // 0x1c - 0x1f lb_op, lh_op, rsrv_opc_6, lw_op, // 0x20 - 0x23 lbu_op, lhu_op, rsrv_opc_7, lwu_op, // 0x24 - 0x27 sb_op, sh_op, rsrv_opc_8, sw_op, // 0x28 - 0x2b rsrv_opc_9, rsrv_opc_10, rsrv_opc_11, rsrv_opc_12, // 0x2c - 0x2f rsrv_opc_13, lwc1_op, bc_op, rsrv_opc_14, // 0x2c - 0x2f rsrv_opc_15, ldc1_op, pop66_op, ld_op, // 0x30 - 0x33 rsrv_opc_16, swc1_op, balc_op, pcrel_op, // 0x34 - 0x37 rsrv_opc_17, sdc1_op, pop76_op, sd_op // 0x38 - 0x3b }; // func field for special opcode enum func_spec_op { sll_fn, rsrv_spec_0, srl_fn, sra_fn, sllv_fn, lsa_fn, srlv_fn, srav_fn, rsrv_spec_1, jalr_fn, rsrv_spec_2, rsrv_spec_3, syscall_fn, break_fn, sdbbp_fn, sync_fn, clz_fn, clo_fn, dclz_fn, dclo_fn, dsllv_fn, dlsa_fn, dsrlv_fn, dsrav_fn, sop30_fn, sop31_fn, sop32_fn, sop33_fn, sop34_fn, sop35_fn, sop36_fn, sop37_fn, add_fn, addu_fn, sub_fn, subu_fn, and_fn, or_fn, xor_fn, nor_fn, rsrv_spec_4, rsrv_spec_5, slt_fn, sltu_fn, dadd_fn, daddu_fn, dsub_fn, dsubu_fn, tge_fn, tgeu_fn, tlt_fn, tltu_fn, teq_fn, seleqz_fn, tne_fn, selnez_fn, dsll_fn, rsrv_spec_6, dsrl_fn, dsra_fn, dsll32_fn, rsrv_spec_7, dsrl32_fn, dsra32_fn }; // func field for spec3 opcode enum func_spec3_op { ext_fn, dextm_fn, dextu_fn, dext_fn, ins_fn, dinsm_fn, dinsu_fn, dins_fn, cachee_fn = 0x1b, sbe_fn, she_fn, sce_fn, swe_fn, bshfl_fn, prefe_fn = 0x23, dbshfl_fn, cache_fn, sc_fn, scd_fn, lbue_fn, lhue_fn, lbe_fn = 0x2c, lhe_fn, lle_fn, lwe_fn, pref_fn = 0x35, ll_fn, lld_fn, rdhwr_fn = 0x3b }; // sa field for spec3 opcodes, with BSHFL function enum func_spec3_bshfl { bitswap_fn, wsbh_fn = 0x02, dshd_fn = 0x05, seb_fn = 0x10, seh_fn = 0x18 }; // rt field of regimm opcodes. enum regimm_fn { bltz_fn, bgez_fn, dahi_fn = 0x6, nal_fn = 0x10, bal_fn, bltzall_fn, bgezall_fn, sigrie_fn = 0x17, dati_fn = 0x1e, synci_fn }; enum muldiv_fn { mul_fn = 0x02, muh_fn }; enum mips_inst_shifts { OP_SHF = 26, JTARGET_SHF = 0, RS_SHF = 21, RT_SHF = 16, RD_SHF = 11, RE_SHF = 6, SA_SHF = RE_SHF, // synonym IMM_SHF = 0, FUNC_SHF = 0, // mask values MSK_16 = 0xffff, CACHEOP_SHF = 18, CACHESEL_SHF = 16, }; }; }; // namespace android #endif //ANDROID_MIPS64ASSEMBLER_H