//===------------------------- chrono.cpp ---------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "chrono" #include <sys/time.h> //for gettimeofday and timeval #ifdef __APPLE__ #include <mach/mach_time.h> // mach_absolute_time, mach_timebase_info_data_t #else /* !__APPLE__ */ #include <cerrno> // errno #include <system_error> // __throw_system_error #include <time.h> // clock_gettime, CLOCK_MONOTONIC #endif // __APPLE__ _LIBCPP_BEGIN_NAMESPACE_STD namespace chrono { // system_clock const bool system_clock::is_steady; system_clock::time_point system_clock::now() _NOEXCEPT { timeval tv; gettimeofday(&tv, 0); return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec)); } time_t system_clock::to_time_t(const time_point& t) _NOEXCEPT { return time_t(duration_cast<seconds>(t.time_since_epoch()).count()); } system_clock::time_point system_clock::from_time_t(time_t t) _NOEXCEPT { return system_clock::time_point(seconds(t)); } // steady_clock const bool steady_clock::is_steady; #ifdef __APPLE__ // mach_absolute_time() * MachInfo.numer / MachInfo.denom is the number of // nanoseconds since the computer booted up. MachInfo.numer and MachInfo.denom // are run time constants supplied by the OS. This clock has no relationship // to the Gregorian calendar. It's main use is as a high resolution timer. // MachInfo.numer / MachInfo.denom is often 1 on the latest equipment. Specialize // for that case as an optimization. #pragma GCC visibility push(hidden) static steady_clock::rep steady_simplified() { return static_cast<steady_clock::rep>(mach_absolute_time()); } static double compute_steady_factor() { mach_timebase_info_data_t MachInfo; mach_timebase_info(&MachInfo); return static_cast<double>(MachInfo.numer) / MachInfo.denom; } static steady_clock::rep steady_full() { static const double factor = compute_steady_factor(); return static_cast<steady_clock::rep>(mach_absolute_time() * factor); } typedef steady_clock::rep (*FP)(); static FP init_steady_clock() { mach_timebase_info_data_t MachInfo; mach_timebase_info(&MachInfo); if (MachInfo.numer == MachInfo.denom) return &steady_simplified; return &steady_full; } #pragma GCC visibility pop steady_clock::time_point steady_clock::now() _NOEXCEPT { static FP fp = init_steady_clock(); return time_point(duration(fp())); } #else // __APPLE__ // Warning: If this is not truly steady, then it is non-conforming. It is // better for it to not exist and have the rest of libc++ use system_clock // instead. steady_clock::time_point steady_clock::now() _NOEXCEPT { #if (defined(_POSIX_TIMERS) && _POSIX_TIMERS > 0) && \ (defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK > 0) struct timespec tp; if (0 != clock_gettime(CLOCK_MONOTONIC, &tp)) __throw_system_error(errno, "clock_gettime(CLOCK_MONOTONIC) failed"); return time_point(seconds(tp.tv_sec) + nanoseconds(tp.tv_nsec)); #else #warning According to unistd.h, there is no monotonic clock on this system so \ we are falling back to std::system_clock (which may not be \ monotonic, and therefore may not be conforming). return time_point(system_clock::now().time_since_epoch()); #endif } #endif // __APPLE__ } _LIBCPP_END_NAMESPACE_STD