/* * Author: Jon Trulson <jtrulson@ics.com> * Copyright (c) 2015 Intel Corporation. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #pragma once #include <string> #include <mraa/common.hpp> #include <mraa/i2c.hpp> #include <mraa/gpio.hpp> #if defined(SWIGJAVA) || defined(JAVACALLBACK) #include "../IsrCallback.h" #endif #define LSM9DS0_I2C_BUS 1 #define LSM9DS0_DEFAULT_XM_ADDR 0x1d #define LSM9DS0_DEFAULT_GYRO_ADDR 0x6b namespace upm { /** * @brief LSM9DS0 accelerometer library * @defgroup lsm9ds0 libupm-lsm9ds0 * @ingroup i2c gpio accelerometer compass */ /** * @library lsm9ds0 * @sensor lsm9ds0 * @comname LSM9DS0 3-axis Gyroscope, Accelerometer, and Magnetometer * @type accelerometer compass * @man sparkfun * @con i2c gpio * @web https://www.sparkfun.com/products/13033 * * @brief API for the LSM9DS0 3-axis Gyroscope, Accelerometer, * and Magnetometer * * The LSM9DS0 is a system-in-package featuring a 3D digital linear * acceleration sensor, a 3D digital angular rate sensor, and a 3D * digital magnetic sensor. * * The LSM9DS0 has a linear acceleration full scale of * 2g/4g/6g/8g/16g, a magnetic field full scale of 2/4/8/12 * gauss and an angular rate of 245/500/2000 dps. * * While not all of the functionality of this device is supported * initially, methods and register definitions are provided that * should allow an end user to implement whatever features are * required. * * This driver was developed on a Sparkfun 9DOF edison block. * * @snippet lsm9ds0.cxx Interesting */ class LSM9DS0 { public: // NOTE: reserved registers must not be written into or permanent // damage to the device can result. Reserved bitfields must // always be 0. // There are two sub-devices within this device - the // Accelerometer and Magnetometer (XM) and the Gyroscope (G), each // with their own I2C address. /** * LSM9DS0 Gyroscope (G) registers */ typedef enum { // 0x00-0x0e reserved REG_WHO_AM_I_G = 0x0f, // should be 0xd4 // 0x10-0x1f reserved REG_CTRL_REG1_G = 0x20, REG_CTRL_REG2_G = 0x21, REG_CTRL_REG3_G = 0x22, REG_CTRL_REG4_G = 0x23, REG_CTRL_REG5_G = 0x24, REG_REFERENCE_G = 0x25, // 0x26 reserved REG_STATUS_REG_G = 0x27, REG_OUT_X_L_G = 0x28, // gyro output, X axis, LSB REG_OUT_X_H_G = 0x29, // gyro output, X axis, MSB REG_OUT_Y_L_G = 0x2a, REG_OUT_Y_H_G = 0x2b, REG_OUT_Z_L_G = 0x2c, REG_OUT_Z_H_G = 0x2d, REG_FIFO_CTRL_REG_G = 0x2e, REG_FIFO_SRC_REG_G = 0x2f, REG_INT1_CFG_G = 0x30, REG_INT1_SRC_G = 0x31, REG_INT1_TSH_XH_G = 0x32, // interrupt threshold registers REG_INT1_TSH_XL_G = 0x33, REG_INT1_TSH_YH_G = 0x34, REG_INT1_TSH_YL_G = 0x35, REG_INT1_TSH_ZH_G = 0x36, REG_INT1_TSH_ZL_G = 0x37, // See fig 19 & 20 and preceeding description in the datasheet // on how to use this register REG_INT1_DURATION_G = 0x38 } REG_G_T; /** * Gyro CTRL_REG1_G bits */ typedef enum { CTRL_REG1_G_YEN = 0x01, // Y enable, odd ordering... CTRL_REG1_G_XEN = 0x02, CTRL_REG1_G_ZEN = 0x04, CTRL_REG1_G_PD = 0x08, // power down (0) CTRL_REG1_G_BW0 = 0x10, // bandwidth CTRL_REG1_G_BW1 = 0x20, _CTRL_REG1_G_BW_MASK = 3, _CTRL_REG1_G_BW_SHIFT = 4, CTRL_REG1_G_DR0 = 0x40, // data rate CTRL_REG1_G_DR1 = 0x80, _CTRL_REG1_G_DR_MASK = 3, _CTRL_REG1_G_DR_SHIFT = 6, // The following are synthetic register and shift/mask // definitions. Together both BW and DR setup the device for a // specific output data rate (ODR) and cutoff frequency. These // definitions allow us to use a more informative configuration // for these 4 bits, rather than having the user go to the // datasheet to figure out what to put for those values in order // to get the desired ODR/cutoff. These are the values we will // use in this driver. CTRL_REG1_G_ODR0 = 0x10, // BW0 CTRL_REG1_G_ODR1 = 0x20, // BW1 CTRL_REG1_G_ODR2 = 0x40, // DR0 CTRL_REG1_G_ODR3 = 0x80, // DR1 _CTRL_REG1_G_ODR_MASK = 15, _CTRL_REG1_G_ODR_SHIFT = 4 } CTRL_REG1_G_BITS_T; /** * CRTL_REG1_G_ODR values */ typedef enum { G_ODR_95_12_5 = 0, // ODR = 95Hz, cutoff = 12.5 G_ODR_95_25 = 1, // ODR = 95Hz, cutoff = 25 // Other two (2 and 3) are the same (95_25) G_ODR_190_12_5 = 4, G_ODR_190_25 = 5, G_ODR_190_50 = 6, G_ODR_190_70 = 7, G_ODR_380_20 = 8, G_ODR_380_25 = 9, G_ODR_380_50 = 10, G_ODR_380_100 = 11, G_ODR_760_30 = 12, G_ODR_760_35 = 13, G_ODR_760_50 = 14, G_ODR_760_100 = 15 } G_ODR_T; /** * Gyro CTRL_REG2_G bits */ typedef enum { CTRL_REG2_G_HPCF0 = 0x01, // high-pass cutoff freq CTRL_REG2_G_HPCF1 = 0x02, CTRL_REG2_G_HPCF2 = 0x04, CTRL_REG2_G_HPCF3 = 0x08, _CTRL_REG2_G_HPCF_MASK = 15, _CTRL_REG2_G_HPCF_SHIFT = 0, CTRL_REG2_G_HPM0 = 0x10, // high-pass filter mode CTRL_REG2_G_HPM1 = 0x20, _CTRL_REG2_G_HPM_MASK = 3, _CTRL_REG2_G_HPM_SHIFT = 4, // 0x40, 0x80 reserved } CTRL_REG2_G_BITS_T; /** * CRTL_REG2_G_HPCF values * * See table 26 in the datasheet, as these depend on your data * rate (ODR). We will label these according to the 95Hz column, * but of course the actual cutoff frequency depends on ODR. */ typedef enum { G_HPCF_7_2 = 0, // 7.2 Hz (if ODR is 95Hz) G_HPCF_3_5 = 1, G_HPCF_1_8 = 2, G_HPCF_0_9 = 3, // 0.9Hz G_HPCF_0_45 = 4, G_HPCF_0_18 = 5, G_HPCF_0_09 = 6, G_HPCF_0_045 = 7, G_HPCF_0_018 = 8, G_HPCF_0_009 = 9 // 10-15 unused } G_HPCF_T; /** * CRTL_REG2_G_HPM values * */ typedef enum { G_HPM_NORMAL_RESET_HPF = 0, // reset reading (HP_RESET_FILTER) G_HPM_REFERENCE = 1, // REF signal for filtering G_HPM_NORMAL = 2, // normal mode G_HPM_AUTORESET_ON_INTR = 3 // autoreset in interrupt event } G_HPM_T; /** * Gyro CTRL_REG3_G bits (interrupt G config) */ typedef enum { CTRL_REG3_G_I2_EMPTY = 0x01, // FIFO empty on DRDY_G CTRL_REG3_G_I2_ORUN = 0x02, // FIFO Overrun intr CTRL_REG3_G_I2_WTM = 0x04, // FIFO watermark intr CTRL_REG3_G_I2_DRDY = 0x08, // data ready on DRDY_G CTRL_REG3_G_PP_OD = 0x10, // push-pull/open drain CTRL_REG3_G_H_LACTIVE = 0x20, CTRL_REG3_G_I1_BOOT = 0x40, CTRL_REG3_G_I1_INT1 = 0x80, // intr enable on INT_G pin } CTRL_REG3_G_BITS_T; /** * Gyro CTRL_REG4_G bits */ typedef enum { CTRL_REG4_G_SIM = 0x01, // SPI mode selection CTRL_REG4_G_ST0 = 0x02, // self test enables CTRL_REG4_G_ST1 = 0x04, _CTRL_REG4_G_ST_MASK = 3, _CTRL_REG4_G_ST_SHIFT = 1, // 0x08 reserved CTRL_REG4_G_FS0 = 0x10, // full scale selection CTRL_REG4_G_FS1 = 0x20, _CTRL_REG4_G_FS_MASK = 3, _CTRL_REG4_G_FS_SHIFT = 4, CTRL_REG4_G_BLE = 0x40, // big/little endian data selection CTRL_REG4_G_BDU = 0x80 // block data updates } CTRL_REG4_G_BITS_T; /** * CRTL_REG4_G_ST values * */ typedef enum { G_ST_NORMAL = 0, // normal mode G_ST_SELFTEST0 = 1, // x+, y-, z- // 2, reserved G_ST_SELFTEST1 = 3 // x-, y+, z+ } G_ST_T; /** * CRTL_REG4_G_FS values * */ typedef enum { G_FS_245 = 0, // 245 deg/sec G_FS_500 = 1, G_FS_2000 = 2 // 3 is also 2000 } G_FS_T; /** * Gyro CTRL_REG5_G bits */ typedef enum { CTRL_REG5_G_OUTSEL0 = 0x01, // see fig. 18 in the datasheet CTRL_REG5_G_OUTSEL1 = 0x02, _CTRL_REG5_G_OUTSEL_MASK = 3, _CTRL_REG5_G_OUTSEL_SHIFT = 0, CTRL_REG5_G_INT1SEL0 = 0x04, // see fig. 18 in the datasheet CTRL_REG5_G_INT1SEL1 = 0x08, _CTRL_REG5_G_INT1SEL_MASK = 3, _CTRL_REG5_G_INT1SEL_SHIFT = 2, CTRL_REG5_G_HPEN = 0x10, // HPF enable // 0x20 reserved CTRL_REG5_G_FIFO_EN = 0x40, CTRL_REG5_G_BOOT = 0x80 // reboot memory content } CTRL_REG5_G_BITS_T; /** * CRTL_REG5_G_OUTSEL and INT1SEL values. See Figure 18 in the * datasheet. */ typedef enum { G_INT1OUTSEL_0 = 0, G_INT1OUTSEL_1 = 1, G_INT1OUTSEL_2 = 2, G_INT1OUTSEL_3 = 3 } G_INT1OUTSEL_T; /** * Gyro STATUS_REG_G bits */ typedef enum { STATUS_REG_G_XDA = 0x01, // X axis data available STATUS_REG_G_YDA = 0x02, STATUS_REG_G_ZDA = 0x04, STATUS_REG_G_ZYXDA = 0x08, // X, Y, and Z data available STATUS_REG_G_XOR = 0x10, // X data overrun STATUS_REG_G_YOR = 0x20, STATUS_REG_G_ZOR = 0x40, STATUS_REG_G_ZYXOR = 0x80 } STATUS_REG_G_BITS_T; /** * Gyro FIFO_CTRL_REG_G bits */ typedef enum { FIFO_CTRL_REG_G_WTM0 = 0x01, // FIFO watermark FIFO_CTRL_REG_G_WTM1 = 0x02, FIFO_CTRL_REG_G_WTM2 = 0x04, FIFO_CTRL_REG_G_WTM3 = 0x08, FIFO_CTRL_REG_G_WTM4 = 0x10, _FIFO_CTRL_REG_G_WTM_MASK = 31, _FIFO_CTRL_REG_G_WTM_SHIFT = 0, FIFO_CTRL_REG_G_FM0 = 0x20, // FIFO mode config FIFO_CTRL_REG_G_FM1 = 0x40, FIFO_CTRL_REG_G_FM2 = 0x80, _FIFO_CTRL_REG_G_FM_MASK = 7, _FIFO_CTRL_REG_G_FM_SHIFT = 5, } FIFO_CTRL_REG_G_T; // FIFO_CTRL_REG_G_WTM (FIFO watermark) is just a numeric value // between 0-31, so we won't enumerate those values. /** * FIFO_CTRL_REG_G_FM values (FIFO Modes) * */ typedef enum { G_FM_BYPASS = 0, G_FM_FIFO = 1, G_FM_STREAM = 2, G_FM_STREAM2FIFO = 3, G_FM_BYPASS2STREAM = 4 // 5-7 unused } G_FM_T; /** * FIFO_SRC_REG_G bits * */ typedef enum { FIFO_CTRL_REG_G_FSS0 = 0x01, // FIFO stored data level FIFO_CTRL_REG_G_FSS1 = 0x02, FIFO_CTRL_REG_G_FSS2 = 0x04, FIFO_CTRL_REG_G_FSS3 = 0x08, FIFO_CTRL_REG_G_FSS4 = 0x10, _FIFO_CTRL_REG_G_FSS_MASK = 31, _FIFO_CTRL_REG_G_FSS_SHIFT = 0, FIFO_CTRL_REG_G_EMPTY = 0x20, // FIFO empty FIFO_CTRL_REG_G_OVRN = 0x40, // FIFO overrun FIFO_CTRL_REG_G_WTM = 0x80 // watermark status } FIFO_SRC_REG_G_BITS_T; /** * INT1_CFG_G bits * */ typedef enum { INT1_CFG_G_XLIE = 0x01, // X Low event interrupt enable INT1_CFG_G_XHIE = 0x02, // X High event interrupt enable INT1_CFG_G_YLIE = 0x04, INT1_CFG_G_YHIE = 0x08, INT1_CFG_G_ZLIE = 0x10, INT1_CFG_G_ZHIE = 0x20, INT1_CFG_G_LIR = 0x40, // latch interrupt request INT1_CFG_G_ANDOR = 0x80 // OR or AND interrupt events } INT1_CFG_G_BITS_T; /** * INT1_SRC_G bits * */ typedef enum { INT1_SRC_G_XL = 0x01, // X low interrupt INT1_SRC_G_XH = 0x02, // X high interrupt INT1_SRC_G_YL = 0x04, INT1_SRC_G_YH = 0x08, INT1_SRC_G_ZL = 0x10, INT1_SRC_G_ZH = 0x20, INT1_SRC_G_IA = 0x40 // interrupt active // 0x80 reserved } INT1_SRC_G_BITS_T; // The following registers are for the Accelerometer (A/X), // Magnetometer (M), and Temperature device. /** * LSM9DS0 Accelerometer (X) and Magnetometer (M) registers */ typedef enum { // 0x00-0x04 reserved REG_OUT_TEMP_L_XM = 0x05, // temperature REG_OUT_TEMP_H_XM = 0x06, REG_STATUS_REG_M = 0x07, REG_OUT_X_L_M = 0x08, // magnetometer outputs REG_OUT_X_H_M = 0x09, REG_OUT_Y_L_M = 0x0a, REG_OUT_Y_H_M = 0x0b, REG_OUT_Z_L_M = 0x0c, REG_OUT_Z_H_M = 0x0d, // 0x0e reserved REG_WHO_AM_I_XM = 0x0f, // 0x10, 0x11 reserved REG_INT_CTRL_REG_M = 0x12, REG_INT_SRC_REG_M = 0x13, REG_INT_THS_L_M = 0x14, // magnetometer threshold REG_INT_THS_H_M = 0x15, REG_OFFSET_X_L_M = 0x16, REG_OFFSET_X_H_M = 0x17, REG_OFFSET_Y_L_M = 0x18, REG_OFFSET_Y_H_M = 0x19, REG_OFFSET_Z_L_M = 0x1a, REG_OFFSET_Z_H_M = 0x1b, REG_REFERENCE_X = 0x1c, REG_REFERENCE_Y = 0x1d, REG_REFERENCE_Z = 0x1e, REG_CTRL_REG0_XM = 0x1f, REG_CTRL_REG1_XM = 0x20, REG_CTRL_REG2_XM = 0x21, REG_CTRL_REG3_XM = 0x22, REG_CTRL_REG4_XM = 0x23, REG_CTRL_REG5_XM = 0x24, REG_CTRL_REG6_XM = 0x25, REG_CTRL_REG7_XM = 0x26, REG_STATUS_REG_A = 0x27, REG_OUT_X_L_A = 0x28, // accelerometer outputs REG_OUT_X_H_A = 0x29, REG_OUT_Y_L_A = 0x2a, REG_OUT_Y_H_A = 0x2b, REG_OUT_Z_L_A = 0x2c, REG_OUT_Z_H_A = 0x2d, REG_FIFO_CTRL_REG = 0x2e, REG_FIFO_SRC_REG = 0x2f, REG_INT_GEN_1_REG = 0x30, REG_INT_GEN_1_SRC = 0x31, REG_INT_GEN_1_THS = 0x32, REG_INT_GEN_1_DURATION = 0x33, REG_INT_GEN_2_REG = 0x34, REG_INT_GEN_2_SRC = 0x35, REG_INT_GEN_2_THS = 0x36, REG_INT_GEN_2_DURATION = 0x37, REG_CLICK_CFG = 0x38, REG_CLICK_SRC = 0x39, REG_CLICK_THS = 0x3a, REG_TIME_LIMIT = 0x3b, REG_TIME_LATENCY = 0x3c, REG_TIME_WINDOW = 0x3d, REG_ACT_THS = 0x3e, REG_ACT_DUR = 0x3f } REG_XM_T; /** * XM STATUS_REG_M bits */ typedef enum { STATUS_REG_M_XMDA = 0x01, // X mag axis data available STATUS_REG_M_YMDA = 0x02, STATUS_REG_M_ZMDA = 0x04, STATUS_REG_M_ZYXMDA = 0x08, // X, Y, and Z mag data available STATUS_REG_M_XMOR = 0x10, // X mag data overrun STATUS_REG_M_YMOR = 0x20, STATUS_REG_M_ZMOR = 0x40, STATUS_REG_M_ZYXMOR = 0x80 } STATUS_REG_M_BITS_T; /** * INT_CTRL_REG_M bits */ typedef enum { INT_CTRL_REG_M_MIEN = 0x01, // mag interrupt enable INT_CTRL_REG_M_4D = 0x02, INT_CTRL_REG_M_IEL = 0x04, // latch intr request INT_CTRL_REG_M_IEA = 0x08, INT_CTRL_REG_M_PP_OD = 0x10, // push-pull/open drian INT_CTRL_REG_M_ZMIEN = 0x20, // Z mag axis interrupt recognition INT_CTRL_REG_M_YMIEN = 0x40, INT_CTRL_REG_M_XMIEN = 0x80 } INT_CTRL_REG_M_BITS_T; /** * INT_SRC_REG_M bits */ typedef enum { INT_SRC_REG_M_MINT = 0x01, INT_SRC_REG_M_MROI = 0x02, INT_SRC_REG_M_NTH_Z = 0x04, INT_SRC_REG_M_NTH_Y = 0x08, INT_SRC_REG_M_NTH_X = 0x10, INT_SRC_REG_M_PTH_Z = 0x20, INT_SRC_REG_M_PTH_Y = 0x40, INT_SRC_REG_M_PTH_X = 0x80 } INT_SRC_REG_M_BITS_T; /** * CTRL_REG0_XM bits */ typedef enum { CTRL_REG0_XM_HPIS2 = 0x01, // HPF enable for int generator 2 CTRL_REG0_XM_HPIS1 = 0x02, CTRL_REG0_XM_HP_CLICK = 0x04, // HPF enable for click // 0x08,0x10 reserved CTRL_REG0_XM_WTM_LEN = 0x20, // watermark enable CTRL_REG0_XM_FIFO_EN = 0x40, // FIFO enable CTRL_REG0_XM_BOOT = 0x80 // reboot memory content } CTRL_REG0_XM_BITS_T; /** * CTRL_REG1_XM bits */ typedef enum { CTRL_REG1_XM_AXEN = 0x01, // accelerometer x axis enable CTRL_REG1_XM_AYEN = 0x02, CTRL_REG1_XM_AZEN = 0x03, CTRL_REG1_XM_BDU = 0x04, // block data update CTRL_REG1_XM_AODR0 = 0x10, // accelerometer output data rate CTRL_REG1_XM_AODR1 = 0x20, CTRL_REG1_XM_AODR2 = 0x40, CTRL_REG1_XM_AODR3 = 0x80, _CTRL_REG1_XM_AODR_MASK = 15, _CTRL_REG1_XM_AODR_SHIFT = 4 } CTRL_REG1_XM_BITS_T; /** * CTRL_REG1_XM_AODR values */ typedef enum { XM_AODR_PWRDWN = 0, // power down mode XM_AODR_3_125 = 1, // 3.125 Hz XM_AODR_6_25 = 2, XM_AODR_12_5 = 3, XM_AODR_25 = 4, // 25Hz XM_AODR_50 = 5, XM_AODR_100 = 6, XM_AODR_200 = 7, XM_AODR_400 = 8, XM_AODR_800 = 9, XM_AODR_1000 = 10 // 11-15 unused } XM_AODR_T; /** * CTRL_REG2_XM bits */ typedef enum { CTRL_REG2_XM_SIM = 0x01, CTRL_REG2_XM_AST0 = 0x02, // accel self-test enable CTRL_REG2_XM_AST1 = 0x04, _CTRL_REG2_XM_AST_MASK = 3, _CTRL_REG2_XM_AST_SHIFT = 1, CTRL_REG2_XM_AFS0 = 0x08, // accel full scale CTRL_REG2_XM_AFS1 = 0x10, CTRL_REG2_XM_AFS2 = 0x20, _CTRL_REG2_XM_AFS_MASK = 7, _CTRL_REG2_XM_AFS_SHIFT = 3, CTRL_REG2_XM_ABW0 = 0x40, // accel anti-alias filter bandwidth CTRL_REG2_XM_ABW1 = 0x80, _CTRL_REG2_XM_ABW_MASK = 3, _CTRL_REG2_XM_ABW_SHIFT = 6 } CTRL_REG2_XM_BITS_T; /** * CTRL_REG2_XM_AST values */ typedef enum { XM_AST_NORMAL = 0, XM_AST_POS_SIGN = 1, XM_AST_NEG_SIGN = 2 // 3 not allowed } XM_AST_T; /** * CTRL_REG2_XM_AFS (accel full scale) values */ typedef enum { XM_AFS_2 = 0, // 2g XM_AFS_4 = 1, XM_AFS_6 = 2, XM_AFS_8 = 3, XM_AFS_16 = 4 // 5-7 not used } XM_AFS_T; /** * CTRL_REG2_XM_ABW (accel anti-alias filter bandwidth) values */ typedef enum { XM_ABW_773 = 0, // 773Hz XM_ABW_194 = 1, // these two might be inverted (typo in ds) XM_ABW_362 = 2, XM_ABW_50 = 3 } XM_ABW_T; /** * CTRL_REG3_XM bits */ typedef enum { CTRL_REG3_XM_P1_EMPTY = 0x01, // INT1_XM pin enables CTRL_REG3_XM_P1_DRDYM = 0x02, CTRL_REG3_XM_P1_DRDYA = 0x04, CTRL_REG3_XM_P1_INTM = 0x08, CTRL_REG3_XM_P1_INT2 = 0x10, CTRL_REG3_XM_P1_INT1 = 0x20, CTRL_REG3_XM_P1_TAP = 0x40, CTRL_REG3_XM_P1_BOOT = 0x80 } CTRL_REG3_XM_BITS_T; /** * CTRL_REG4_XM bits */ typedef enum { CTRL_REG4_XM_P2_WTM = 0x01, // INT2_XM pin enables CTRL_REG4_XM_P2_OVERRUN = 0x02, CTRL_REG4_XM_P2_DRDYM = 0x04, CTRL_REG4_XM_P2_DRDYA = 0x08, CTRL_REG4_XM_P2_INTM = 0x10, CTRL_REG4_XM_P2_INT2 = 0x20, CTRL_REG4_XM_P2_INT1 = 0x40, CTRL_REG4_XM_P2_TAP = 0x80 } CTRL_REG4_XM_BITS_T; /** * CTRL_REG5_XM bits */ typedef enum { CTRL_REG5_XM_LIR1 = 0x01, // latch intr 1 CTRL_REG5_XM_LIR2 = 0x02, // latch intr 2 CTRL_REG5_XM_ODR0 = 0x04, // mag output data rate CTRL_REG5_XM_ODR1 = 0x08, CTRL_REG5_XM_ODR2 = 0x10, _CTRL_REG5_XM_ODR_MASK = 7, _CTRL_REG5_XM_ODR_SHIFT = 2, CTRL_REG5_XM_RES0 = 0x20, // mag resolution CTRL_REG5_XM_RES1 = 0x40, _CTRL_REG5_XM_RES_MASK = 3, _CTRL_REG5_XM_RES_SHIFT = 5, CTRL_REG5_XM_TEMP_EN = 0x80 // temp sensor enable } CTRL_REG5_XM_BITS_T; /** * CTRL_REG5_XM_ODR (magnetometer output data rate) values */ typedef enum { XM_ODR_3_125 = 0, // 3.125Hz XM_ODR_6_25 = 1, XM_ODR_12_5 = 2, XM_ODR_25 = 3, XM_ODR_50 = 4, XM_ODR_100 = 5 // 6, 7 reserved } XM_ODR_T; /** * CTRL_REG5_XM_RES (magnetometer resolution) values */ typedef enum { XM_RES_LOW = 0, // low resolution // 1, 2 reserved XM_RES_HIGH = 3, } XM_RES_T; /** * CTRL_REG6_XM bits */ typedef enum { // 0x01-0x10 reserved CTRL_REG6_XM_MFS0 = 0x20, CTRL_REG6_XM_MFS1 = 0x40, _CTRL_REG6_XM_MFS_MASK = 3, _CTRL_REG6_XM_MFS_SHIFT = 5 // 0x80 reserved } CTRL_REG6_XM_BITS_T; /** * CTRL_REG6_XM_MFS (magnetometer full scale) values */ typedef enum { XM_MFS_2 = 0, // +/- 2 gauss XM_MFS_4 = 1, XM_MFS_8 = 2, XM_MFS_12 = 3 } XM_MFS_T; /** * CTRL_REG7_XM bits */ typedef enum { CTRL_REG7_XM_MD0 = 0x01, // mag sensor mode CTRL_REG7_XM_MD1 = 0x02, _CTRL_REG7_XM_MD_MASK = 3, _CTRL_REG7_XM_MD_SHIFT = 0, CTRL_REG7_XM_MLP = 0x04, // mag low power mode // 0x08, 0x10 reserved CTRL_REG7_XM_AFDS = 0x20, // filtered acceleration data CTRL_REG7_XM_AHPM0 = 0x40, // accel HPF selection CTRL_REG7_XM_AHPM1 = 0x80, _CTRL_REG7_XM_AHPM_MASK = 3, _CTRL_REG7_XM_AHPM_SHIFT = 6 } CTRL_REG7_XM_BITS_T; /** * CTRL_REG7_XM_MD (magnetometer sensor mode) values */ typedef enum { XM_MD_CONTINUOUS = 0, // continuous conversion XM_MD_SINGLE = 1, // single conversion XM_MD_POWERDOWN = 2 // power down mode // 3 is also power down mode, for some odd reason } XM_MD_T; /** * CTRL_REG7_AHPM_MD (accel high-pass filter mode) values */ typedef enum { // XM_AHPM_NORMAL_REF: Normal mode (resets x, y and z-axis // reading REFERENCE_X (1Ch), REFERENCE_Y (1Dh) and REFERENCE_Y // (1Dh) registers respectively) XM_AHPM_NORMAL_REF = 0, XM_AHPM_REFERENCE = 1, XM_AHPM_NORMAL = 2, XM_AHPM_AUTORESET = 3 // autoreset on interrupt } XM_AHPM_T; /** * XM STATUS_REG_A bits */ typedef enum { STATUS_REG_A_XADA = 0x01, // X accel axis data available STATUS_REG_A_YADA = 0x02, STATUS_REG_A_ZADA = 0x04, STATUS_REG_A_ZYXADA = 0x08, // X, Y, and Z accel data available STATUS_REG_A_XAOR = 0x10, // X accel data overrun STATUS_REG_A_YAOR = 0x20, STATUS_REG_A_ZAOR = 0x40, STATUS_REG_A_ZYXAOR = 0x80 } STATUS_REG_A_BITS_T; /** * XM FIFO_CTRL_REG bits */ typedef enum { FIFO_CTRL_REG_FTH0 = 0x01, // FIFO watermark/threshold FIFO_CTRL_REG_FTH1 = 0x02, FIFO_CTRL_REG_FTH2 = 0x04, FIFO_CTRL_REG_FTH3 = 0x08, FIFO_CTRL_REG_FTH4 = 0x10, _FIFO_CTRL_REG_FTH_MASK = 31, _FIFO_CTRL_REG_FTH_SHIFT = 0, FIFO_CTRL_REG_FM0 = 0x20, // FIFO mode config FIFO_CTRL_REG_FM1 = 0x40, FIFO_CTRL_REG_FM2 = 0x80, _FIFO_CTRL_REG_FM_MASK = 7, _FIFO_CTRL_REG_FM_SHIFT = 5, } FIFO_CTRL_REG_T; // FIFO_CTRL_REG_FTH (FIFO watermark/threshold) is just a numeric // value between 0-31, so we won't enumerate those values. /** * XM FIFO_CTRL_REG_FM values (FIFO Modes) * */ typedef enum { FM_BYPASS = 0, FM_FIFO = 1, FM_STREAM = 2, FM_STREAM2FIFO = 3, FM_BYPASS2STREAM = 4 // 5-7 unused } FM_T; /** * FIFO_SRC_REG bits * */ typedef enum { FIFO_CTRL_REG_FSS0 = 0x01, // FIFO stored data level FIFO_CTRL_REG_FSS1 = 0x02, FIFO_CTRL_REG_FSS2 = 0x04, FIFO_CTRL_REG_FSS3 = 0x08, FIFO_CTRL_REG_FSS4 = 0x10, _FIFO_CTRL_REG_FSS_MASK = 31, _FIFO_CTRL_REG_FSS_SHIFT = 0, FIFO_CTRL_REG_EMPTY = 0x20, // FIFO empty FIFO_CTRL_REG_OVRN = 0x40, // FIFO overrun FIFO_CTRL_REG_WTM = 0x80 // watermark status } FIFO_SRC_REG_BITS_T; /** * INT_GEN_1_REG and INT_GEN_2_REG (GEN_X) bits * */ typedef enum { INT_GEN_X_REG_XLIE_XDOWNE = 0x01, // enable intr on X low or dir recog INT_GEN_X_REG_XHIE_XUPE = 0x02, INT_GEN_X_REG_YLIE_YDOWNE = 0x04, INT_GEN_X_REG_YHIE_YUPE = 0x08, INT_GEN_X_REG_ZLIE_ZDOWNE = 0x10, INT_GEN_X_REG_ZHIE_ZUPE = 0x20, INT_GEN_X_REG_6D = 0x40, // enable 6D direction function INT_GEN_X_REG_AOI = 0x80 // AND/OR combination of intrs } INT_GEN_X_REG_BITS_T; /** * INT_GEN_1_SRC and INT_GEN_2_SRC (GEN_X) bits * */ typedef enum { INT_GEN_X_SRC_XL = 0x01, INT_GEN_X_SRC_XH = 0x02, INT_GEN_X_SRC_YL = 0x04, INT_GEN_X_SRC_YH = 0x08, INT_GEN_X_SRC_ZL = 0x10, INT_GEN_X_SRC_ZH = 0x20, INT_GEN_X_SRC_IA = 0x40 // 0x80 reserved } INT_GEN_X_SRC_BITS_T; /** * INT_GEN_1_THS and INT_GEN_2_THS (GEN_X) bits * */ typedef enum { INT_GEN_X_THS0 = 0x01, // interrupt threshold INT_GEN_X_THS1 = 0x02, INT_GEN_X_THS2 = 0x04, INT_GEN_X_THS3 = 0x08, INT_GEN_X_THS4 = 0x10, INT_GEN_X_THS5 = 0x20, INT_GEN_X_THS6 = 0x40, _INT_GEN_X_THS_MASK = 127, _INT_GEN_X_THS_SHIFT = 0 // 0x80 reserved } INT_GEN_X_THS_BITS_T; /** * INT_GEN_1_DUR and INT_GEN_2_DUR (GEN_X) bits * */ typedef enum { INT_GEN_X_DUR0 = 0x01, // interrupt duration INT_GEN_X_DUR1 = 0x02, INT_GEN_X_DUR2 = 0x04, INT_GEN_X_DUR3 = 0x08, INT_GEN_X_DUR4 = 0x10, INT_GEN_X_DUR5 = 0x20, INT_GEN_X_DUR6 = 0x40, _INT_GEN_X_DUR_MASK = 127, _INT_GEN_X_DUR_SHIFT = 0 // 0x80 reserved } INT_GEN_X_DUR_BITS_T; /** * CLICK_CONFIG bits * */ typedef enum { CLICK_CONFIG_XS = 0x01, // enable intr single click x CLICK_CONFIG_XD = 0x02, // enable intr double click x CLICK_CONFIG_YS = 0x04, CLICK_CONFIG_YD = 0x08, CLICK_CONFIG_ZS = 0x10, CLICK_CONFIG_ZD = 0x20 // 0x40, 0x80 reserved } CLICK_CONFIG_BITS_T; /** * CLICK_SRC bits * */ typedef enum { CLICK_SRC_X = 0x01, CLICK_SRC_Y = 0x02, CLICK_SRC_Z = 0x04, CLICK_SRC_SIGN = 0x08, CLICK_SRC_SCLICK = 0x10, CLICK_SRC_DCLICK = 0x20, CLICK_SRC_IA = 0x40 // 0x80 reserved } CLICK_SRC_BITS_T; /** * CLICK_THS bits * */ typedef enum { CLICK_THS_THS0 = 0x01, // click threshold CLICK_THS_THS1 = 0x02, CLICK_THS_THS2 = 0x04, CLICK_THS_THS3 = 0x08, CLICK_THS_THS4 = 0x10, CLICK_THS_THS5 = 0x20, CLICK_THS_THS6 = 0x40, _CLICK_THS_THS_MASK = 127, _CLICK_THS_THS_SHIFT = 0 // 0x80 reserved } CLICK_THS_BITS_T; /** * CLICK_TIME_LIMIT bits * */ typedef enum { CLICK_TIME_LIMIT_TLI0 = 0x01, CLICK_TIME_LIMIT_TLI1 = 0x02, CLICK_TIME_LIMIT_TLI2 = 0x04, CLICK_TIME_LIMIT_TLI3 = 0x08, CLICK_TIME_LIMIT_TLI4 = 0x10, CLICK_TIME_LIMIT_TLI5 = 0x20, CLICK_TIME_LIMIT_TLI6 = 0x40, _CLICK_TIME_LIMIT_TLI_MASK = 127, _CLICK_TIME_LIMIT_TLI_SHIFT = 0 // 0x80 reserved } CLICK_TIME_LIMIT_BITS_T; /** * ACT_THS (sleep-to-wake/return-to-sleep activation threshold) bits * */ typedef enum { ACT_THS_ACTH0 = 0x01, // 1 LSb = 16mg (?) ACT_THS_ACTH1 = 0x02, ACT_THS_ACTH2 = 0x04, ACT_THS_ACTH3 = 0x08, ACT_THS_ACTH4 = 0x10, ACT_THS_ACTH5 = 0x20, ACT_THS_ACTH6 = 0x40, _ACT_THS_ACTH_MASK = 127, _ACT_THS_ACTH_SHIFT = 0 // 0x80 reserved } ACT_THS_BITS_T; // Driver specific enumerations // device enums for read/write regs typedef enum { DEV_GYRO, DEV_XM } DEVICE_T; // interrupt selection for installISR() and uninstallISR() typedef enum { INTERRUPT_G_INT, // gyroscope interrupt INTERRUPT_G_DRDY, // gyroscope data ready interrupt INTERRUPT_XM_GEN1, // XM interrupt generator 1 INTERRUPT_XM_GEN2 // XM interrupt generator 2 } INTERRUPT_PINS_T; /** * lsm9ds0 constructor * * @param bus i2c bus to use * @param address the address for this device */ LSM9DS0(int bus=LSM9DS0_I2C_BUS, uint8_t gAddress=LSM9DS0_DEFAULT_GYRO_ADDR, uint8_t xmAddress=LSM9DS0_DEFAULT_XM_ADDR); /** * LSM9DS0 Destructor */ ~LSM9DS0(); /** * set up initial values and start operation * * @return true if successful */ bool init(); /** * update the accelerometer, gyroscope, magnetometer and * termperature values. */ void update(); /** * update the gyroscope values only */ void updateGyroscope(); /** * update the accelerometer values only */ void updateAccelerometer(); /** * update the magnetometer values only */ void updateMagnetometer(); /** * update the temperature value only */ void updateTemperature(); /** * read a register * * @param dev the device to access (XM or G) * @param reg the register to read * @return the value of the register */ uint8_t readReg(DEVICE_T dev, uint8_t reg); /** * read contiguous register into a buffer * * @param dev the device to access (XM or G) * @param reg the register to start reading at * @param buf the buffer to store the results * @param len the number of registers to read * @return the value of the register */ void readRegs(DEVICE_T dev, uint8_t reg, uint8_t *buffer, int len); /** * write to a register * * @param dev the device to access (XM or G) * @param reg the register to write to * @param val the value to write * @return true if successful, false otherwise */ bool writeReg(DEVICE_T dev, uint8_t reg, uint8_t val); /** * enable or disable the gyro power down mode * * @param enable true to put device to sleep, false to wake up * @return true if successful, false otherwise */ bool setGyroscopePowerDown(bool enable); /** * enable or disable gyroscope axes. If all axis are disabled, * and powerdown mode is not set, then the gyro goes into sleep * mode. * * @param axes bit mask of valid axes, (CTRL_REG1_G_YEN, ...) * @return true if successful, false otherwise */ bool setGyroscopeEnableAxes(uint8_t axes); /** * set the gyroscope Output Data Rate (ODR) * * @param odr one of the G_ODR_T values * @return true if successful, false otherwise */ bool setGyroscopeODR(G_ODR_T odr); /** * set the scaling mode of the gyroscope * * @param scale one of the G_FS_T values * @return true if successful, false otherwise */ bool setGyroscopeScale(G_FS_T scale); /** * enable or disable accelerometer axes. * * @param axes bit mask of valid axes, (CTRL_REG1_XM_AXEN, ...) * @return true if successful, false otherwise */ bool setAccelerometerEnableAxes(uint8_t axes); /** * set the accelerometer Output Data Rate (ODR) * * @param odr one of the XM_AODR_T values * @return true if successful, false otherwise */ bool setAccelerometerODR(XM_AODR_T odr); /** * set the scaling mode of the accelerometer * * @param scale one of the XM_AFS_T values * @return true if successful, false otherwise */ bool setAccelerometerScale(XM_AFS_T scale); /** * set the magnetometer resolution * * @param res one of the XM_RES_T values * @return true if successful, false otherwise */ bool setMagnetometerResolution(XM_RES_T res); /** * set the magnetometer Output Data Rate (ODR) * * @param odr one of the XM_ODR_T values * @return true if successful, false otherwise */ bool setMagnetometerODR(XM_ODR_T odr); /** * set the magnetometer sensor mode * * @param mode one of the XM_MD_T values * @return true if successful, false otherwise */ bool setMagnetometerMode(XM_MD_T mode); /** * enable or disable magnetometer low power mode (LPM). When in * low power mode, the magnetometer updates at 3.125Hz, regardless * of it's ODR setting. * * @param enable true to enable LPM, false otherwise * @return true if successful, false otherwise */ bool setMagnetometerLPM(bool enable); /** * set the scaling mode of the magnetometer * * @param scale one of the XM_MFS_T values * @return true if successful, false otherwise */ bool setMagnetometerScale(XM_MFS_T scale); /** * get the accelerometer values in gravities * * @param x the returned x value, if arg is non-NULL * @param y the returned y value, if arg is non-NULL * @param z the returned z value, if arg is non-NULL * @return true if successful, false otherwise */ void getAccelerometer(float *x, float *y, float *z); /** * get the gyroscope values in degrees per second * * @param x the returned x value, if arg is non-NULL * @param y the returned y value, if arg is non-NULL * @param z the returned z value, if arg is non-NULL * @return true if successful, false otherwise */ void getGyroscope(float *x, float *y, float *z); /** * get the magnetometer values in gauss * * @param x the returned x value, if arg is non-NULL * @param y the returned y value, if arg is non-NULL * @param z the returned z value, if arg is non-NULL * @return true if successful, false otherwise */ void getMagnetometer(float *x, float *y, float *z); #if defined(SWIGJAVA) || defined(JAVACALLBACK) /** * get the accelerometer values in gravities * * @return Array containing X, Y, Z acceleration values */ float *getAccelerometer(); /** * get the gyroscope values in degrees per second * * @return Array containing X, Y, Z gyroscope values */ float *getGyroscope(); /** * get the magnetometer values in gauss * * @return Array containing X, Y, Z magnetometer values */ float *getMagnetometer(); #endif /** * get the temperature value. Unfortunately the datasheet does * not provide a mechanism to convert the temperature value into * the correct value, so I made a 'guess'. If it's wrong, and you * figure it out, send a patch! * * @return the temperature value in degrees Celcius */ float getTemperature(); /** * enable onboard temperature measurement sensor * * @param enable true to enable temperature sensor, false to disable * @return true if successful, false otherwise */ bool enableTemperatureSensor(bool enable); /** * return the gyroscope status register * * @return bitmask of STATUS_REG_G_BITS_T bits */ uint8_t getGyroscopeStatus(); /** * return the magnetometer status register * * @return bitmask of STATUS_REG_M_BITS_T bits */ uint8_t getMagnetometerStatus(); /** * return the accelerometer status register * * @return bitmask of STATUS_REG_A_BITS_T bits */ uint8_t getAccelerometerStatus(); /** * return the gyroscope interrupt config register * * @return bitmask of INT1_CFG_G_BITS_T bits */ uint8_t getGyroscopeInterruptConfig(); /** * set the gyroscope interrupt config register * * @param enables bitmask of INT1_CFG_G_BITS_T values * @return true if successful */ bool setGyroscopeInterruptConfig(uint8_t enables); /** * return the gyroscope interrupt src register * * @return bitmask of INT1_SRC_G_BITS_T bits */ uint8_t getGyroscopeInterruptSrc(); /** * return the magnetometer interrupt control register * * @return bitmask of INT_CTRL_REG_M_BITS_T bits */ uint8_t getMagnetometerInterruptControl(); /** * set the magnetometer interrupt control register * * @param enables bitmask of INT_CTRL_REG_M_BITS_T values * @return true if successful */ bool setMagnetometerInterruptControl(uint8_t enables); /** * return the magnetometer interrupt src register * * @return bitmask of INT_SRC_REG_M_BITS_T bits */ uint8_t getMagnetometerInterruptSrc(); /** * return the inertial interrupt generator 1 register * * @return bitmask of INT_GEN_X_REG_BITS_T bits */ uint8_t getInterruptGen1(); /** * set the inertial interrupt generator 1 register * * @param enables bitmask of INT_GEN_X_REG_BITS_T values * @return true if successful */ bool setInterruptGen1(uint8_t enables); /** * return the inertial interrupt generator 1 src register * * @return bitmask of INT_GEN_X_SRC_BITS_T bits */ uint8_t getInterruptGen1Src(); /** * return the inertial interrupt generator 2 register * * @return bitmask of INT_GEN_X_REG_BITS_T bits */ uint8_t getInterruptGen2(); /** * set the inertial interrupt generator 2 register * * @param enables bitmask of INT_GEN_X_REG_BITS_T values * @return true if successful */ bool setInterruptGen2(uint8_t enables); /** * return the inertial interrupt generator 2 src register * * @return bitmask of INT_GEN_X_SRC_BITS_T bits */ uint8_t getInterruptGen2Src(); #if defined(SWIGJAVA) || defined(JAVACALLBACK) void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level, IsrCallback *cb); #else /** * install an interrupt handler. * * @param intr one of the INTERRUPT_PINS_T values specifying which * interrupt pin out of 4 you are installing * @param gpio gpio pin to use as interrupt pin * @param level the interrupt trigger level (one of mraa::Edge * values). Make sure that you have configured the interrupt pin * properly for whatever level you choose. * @param isr the interrupt handler, accepting a void * argument * @param arg the argument to pass the the interrupt handler */ void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level, void (*isr)(void *), void *arg); #endif /** * uninstall a previously installed interrupt handler * * @param intr one of the INTERRUPT_PINS_T values specifying which * interrupt pin out of 4 you are uninstalling */ void uninstallISR(INTERRUPT_PINS_T intr); protected: // uncompensated accelerometer and gyroscope values float m_accelX; float m_accelY; float m_accelZ; float m_gyroX; float m_gyroY; float m_gyroZ; float m_magX; float m_magY; float m_magZ; // uncompensated temperature value float m_temp; // accelerometer and gyro scaling factors, depending on their Full // Scale settings. float m_accelScale; float m_gyroScale; float m_magScale; private: // OR'd with a register, this enables register autoincrement mode, // which we need. #if defined(SWIGJAVA) || defined(JAVACALLBACK) void installISR(INTERRUPT_PINS_T intr, int gpio, mraa::Edge level, void (*isr)(void *), void *arg); #endif static const uint8_t m_autoIncrementMode = 0x80; mraa::I2c m_i2cG; mraa::I2c m_i2cXM; uint8_t m_gAddr; uint8_t m_xmAddr; // return a reference to a gpio pin pointer depending on intr mraa::Gpio*& getPin(INTERRUPT_PINS_T intr); // possible interrupt pins mraa::Gpio *m_gpioG_INT; mraa::Gpio *m_gpioG_DRDY; mraa::Gpio *m_gpioXM_GEN1; mraa::Gpio *m_gpioXM_GEN2; }; }