/* * Author: Brendan Le Foll <brendan.le.foll@intel.com> * Copyright (c) 2014 Intel Corporation. * * Code based on LSM303DLH sample by Jim Lindblom SparkFun Electronics * and the CompensatedCompass.ino by Frankie Chu from SeedStudio * * Further modifications to port to the LSM303d by <bruce.j.beare@intel.com> * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include <iostream> #include <string> #include <stdexcept> #include <unistd.h> #include <stdlib.h> #include "lsm303d.h" using namespace upm; LSM303d::LSM303d(int bus, int addr, int accScale) : m_i2c(bus) { m_addr = addr; uint8_t afs_bits = 0; // LM303D_SCALE_2G - see the data sheet const uint8_t abw_bits = 3; // 50hz Anti-alias filter bandwidth - see the data sheet // 0x27 is the 'normal' mode with X/Y/Z enable // Data is available at 100HZ. // See the data sheet for higher data rates. setRegisterSafe(m_addr, CTRL_REG1, 0x67); // scale can be 2, 4 or 8 switch (accScale) { case LM303D_SCALE_2G: afs_bits = 0; break; case LM303D_SCALE_4G: afs_bits = 1; break; case LM303D_SCALE_6G: afs_bits = 2; break; case LM303D_SCALE_8G: afs_bits = 3; break; case LM303D_SCALE_16G: afs_bits = 4; break; default: throw std::invalid_argument(std::string(__FUNCTION__) + ": failed to specify scaling correctly"); break; } setRegisterSafe(m_addr, CTRL_REG2, (abw_bits<<6)|(afs_bits<<3)); // Enable Mag. const uint8_t mag_resolution_bits = 3 << 5; // high resolution const uint8_t mag_data_rate_bits = 4 << 2; // 50 hz const uint8_t mag_sensor_mode = 0; // continuous conversion setRegisterSafe(m_addr, CTRL_REG5, mag_resolution_bits|mag_data_rate_bits); setRegisterSafe(m_addr, CTRL_REG7, mag_sensor_mode); } float LSM303d::getHeading() { if (getCoordinates() != mraa::SUCCESS) { return -1.0; } float heading = 180.0 * atan2(double(coor[Y]), double(coor[X]))/M_PI; if (heading < 0.0) heading += 360.0; return heading; } int16_t* LSM303d::getRawAccelData() { return &accel[0]; } int16_t* LSM303d::getRawCoorData() { return &coor[0]; } int16_t LSM303d::getAccelX() { return accel[X]; } int16_t LSM303d::getAccelY() { return accel[Y]; } int16_t LSM303d::getAccelZ() { return accel[Z]; } mraa::Result LSM303d::getCoordinates() { mraa::Result ret = mraa::SUCCESS; uint8_t status = writeThenRead(STATUS_M); coor[X] = (int16_t(writeThenRead(OUT_X_H_M)) << 8) | int16_t(writeThenRead(OUT_X_L_M)); coor[Y] = (int16_t(writeThenRead(OUT_Y_H_M)) << 8) | int16_t(writeThenRead(OUT_Y_L_M)); coor[Z] = (int16_t(writeThenRead(OUT_Z_H_M)) << 8) | int16_t(writeThenRead(OUT_Z_L_M)); //printf("status=0x%x, X=%d, Y=%d, Z=%d\n", status, coor[X], coor[Y], coor[Z]); return ret; } int16_t LSM303d::getCoorX() { return coor[X]; } int16_t LSM303d::getCoorY() { return coor[Y]; } int16_t LSM303d::getCoorZ() { return coor[Z]; } // helper function that writes a value to the acc and then reads int LSM303d::writeThenRead(uint8_t reg) { m_i2c.address(m_addr); m_i2c.writeByte(reg); m_i2c.address(m_addr); return (int) m_i2c.readByte(); } mraa::Result LSM303d::getAcceleration() { mraa::Result ret = mraa::SUCCESS; accel[X] = (int16_t(writeThenRead(OUT_X_H_A)) << 8) | int16_t(writeThenRead(OUT_X_L_A)); accel[Y] = (int16_t(writeThenRead(OUT_Y_H_A)) << 8) | int16_t(writeThenRead(OUT_Y_L_A)); accel[Z] = (int16_t(writeThenRead(OUT_Z_H_A)) << 8) | int16_t(writeThenRead(OUT_Z_L_A)); //printf("X=%x, Y=%x, Z=%x\n", accel[X], accel[Y], accel[Z]); return ret; } // helper function that sets a register and then checks the set was succesful mraa::Result LSM303d::setRegisterSafe(uint8_t slave, uint8_t sregister, uint8_t data) { buf[0] = sregister; buf[1] = data; if (m_i2c.address(slave) != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_address() failed"); return mraa::ERROR_INVALID_HANDLE; } if (m_i2c.write(buf, 2) != mraa::SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_write() failed"); return mraa::ERROR_INVALID_HANDLE; } uint8_t val = m_i2c.readReg(sregister); if (val != data) { throw std::invalid_argument(std::string(__FUNCTION__) + ": failed to set register correctly"); return mraa::ERROR_UNSPECIFIED; } return mraa::SUCCESS; }