/* * Author: Jon Trulson <jtrulson@ics.com> * Copyright (c) 2015 Intel Corporation. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include <unistd.h> #include <math.h> #include <iostream> #include <string> #include <stdexcept> #include "at42qt1070.h" using namespace upm; using namespace std; AT42QT1070::AT42QT1070(int bus, uint8_t address) { m_addr = address; // setup our i2c link if (!(m_i2c = mraa_i2c_init(bus))) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_init() failed"); return; } mraa_result_t rv; if ((rv = mraa_i2c_address(m_i2c, m_addr)) != MRAA_SUCCESS) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_i2c_address() failed"); return; } if (readChipID() != 0x2E) { throw std::runtime_error("Chip ID does not match the expected value (2Eh)"); } m_buttonStates = 0; m_calibrating = false; m_overflow = false; } AT42QT1070::~AT42QT1070() { mraa_i2c_stop(m_i2c); } bool AT42QT1070::writeByte(uint8_t reg, uint8_t byte) { mraa_result_t rv = mraa_i2c_write_byte_data(m_i2c, byte, reg); if (rv != MRAA_SUCCESS) { throw std::runtime_error(std::string(__FUNCTION__) + ": mraa_i2c_write_byte() failed"); return false; } return true; } bool AT42QT1070::writeWord(uint8_t reg, uint16_t word) { mraa_result_t rv = mraa_i2c_write_word_data(m_i2c, word, reg); if (rv != MRAA_SUCCESS) { throw std::runtime_error(std::string(__FUNCTION__) + ": mraa_i2c_write_word() failed"); return false; } return true; } uint8_t AT42QT1070::readByte(uint8_t reg) { return mraa_i2c_read_byte_data(m_i2c, reg); } uint16_t AT42QT1070::readWord(uint8_t reg) { return mraa_i2c_read_word_data(m_i2c, reg); } uint8_t AT42QT1070::readChipID(void) { return readByte(REG_CHIPID); } void AT42QT1070::updateState() { uint8_t stat = readByte(REG_DETSTATUS); // if we are calibrating, don't change anything if (stat & DET_CALIBRATE) { m_calibrating = true; return; } else { m_calibrating = false; } if (stat & DET_OVERFLOW) m_overflow = true; else m_overflow = false; // if a touch is occurring, read the button states if (stat & DET_TOUCH) { uint8_t keys = readByte(REG_KEYSTATUS); // high bit is reserved, filter it out m_buttonStates = keys & ~0x80; } else { m_buttonStates = 0; } } uint8_t AT42QT1070::getLPMode(void) { return readByte(REG_LP); } uint8_t AT42QT1070::setLPMode(uint8_t mode) { writeByte(REG_LP, mode); return getLPMode(); } uint8_t AT42QT1070::getAVE(uint8_t key) { uint8_t value, ave; if (key > 6) { throw std::invalid_argument("Only keys 0-6 are allowed"); } value = readByte(REG_AVE0 + key); ave = (value & 0xFC) >> 2; return ave; } uint8_t AT42QT1070::setAVE(uint8_t key, uint8_t ave) { uint8_t value; if (key > 6) { throw std::invalid_argument("Only keys 0-6 are allowed"); } switch (ave) { case 1: case 2: case 4: case 8: case 16: case 32: break; default: throw std::invalid_argument("Invalid averaging factor"); } value = readByte(REG_AVE0 + key); value = value & 0x03; value = value | (ave << 2); writeByte(REG_AVE0 + key, value); return getAVE(key); } uint8_t AT42QT1070::getAKSGroup(uint8_t key) { uint8_t value, aks; if (key > 6) { throw std::invalid_argument("Only keys 0-6 are allowed"); } value = readByte(REG_AVE0 + key); aks = value & 0x03; return aks; } uint8_t AT42QT1070::setAKSGroup(uint8_t key, uint8_t group) { uint8_t value; if (key > 6) { throw std::invalid_argument("Only keys 0-6 are allowed"); } if (group > 3) { throw std::invalid_argument("Only groups 0-3 are allowed"); } value = readByte(REG_AVE0 + key); value = value & 0xFC; value = value | group; writeByte(REG_AVE0 + key, value); return getAKSGroup(key); } bool AT42QT1070::reset() { // write a non-zero value to the reset register return writeByte(REG_RESET, 0xff); } bool AT42QT1070::calibrate() { // write a non-zero value to the calibrate register return writeByte(REG_CALIBRATE, 0xff); }