/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "modules.audio.audio_hal" /*#define LOG_NDEBUG 0*/ #include <errno.h> #include <inttypes.h> #include <pthread.h> #include <stdint.h> #include <stdlib.h> #include <sys/time.h> #include <log/log.h> #include <cutils/str_parms.h> #include <cutils/properties.h> #include <hardware/audio.h> #include <hardware/audio_alsaops.h> #include <hardware/hardware.h> #include <system/audio.h> #include <tinyalsa/asoundlib.h> #include <audio_utils/channels.h> #include <dirent.h> #include <sys/ioctl.h> #include <fcntl.h> #include <sound/asound.h> #define PCM_DEV_STR "pcm" #if TARGET_AUDIO_PRIMARY #define AUDIO_STR "ALC662 rev1 Analog" #else #define AUDIO_STR "USB Audio" #endif #define MAX_PATH_LEN 30 #define NBR_RETRIES 5 #define RETRY_WAIT_USEC 20000 /* FOR TESTING: * Set k_force_channels to force the number of channels to present to AudioFlinger. * 0 disables (this is default: present the device channels to AudioFlinger). * 2 forces to legacy stereo mode. * * Others values can be tried (up to 8). * TODO: AudioFlinger cannot support more than 8 active output channels * at this time, so limiting logic needs to be put here or communicated from above. */ static const unsigned k_force_channels = 0; #include "alsa_device_profile.h" #include "alsa_device_proxy.h" #include "alsa_logging.h" #define DEFAULT_INPUT_BUFFER_SIZE_MS 20 struct audio_device { struct audio_hw_device hw_device; pthread_mutex_t lock; /* see note below on mutex acquisition order */ /* output */ alsa_device_profile out_profile; /* input */ alsa_device_profile in_profile; bool mic_muted; bool standby; #if TARGET_AUDIO_PRIMARY unsigned int master_volume; #endif }; struct stream_out { struct audio_stream_out stream; pthread_mutex_t lock; /* see note below on mutex acquisition order */ pthread_mutex_t pre_lock; /* acquire before lock to avoid DOS by playback thread */ bool standby; struct audio_device *dev; /* hardware information - only using this for the lock */ alsa_device_profile * profile; /* Points to the alsa_device_profile in the audio_device */ alsa_device_proxy proxy; /* state of the stream */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ audio_channel_mask_t hal_channel_mask; /* channel mask exposed to AudioFlinger. */ void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ }; struct stream_in { struct audio_stream_in stream; pthread_mutex_t lock; /* see note below on mutex acquisition order */ pthread_mutex_t pre_lock; /* acquire before lock to avoid DOS by capture thread */ bool standby; struct audio_device *dev; /* hardware information - only using this for the lock */ alsa_device_profile * profile; /* Points to the alsa_device_profile in the audio_device */ alsa_device_proxy proxy; /* state of the stream */ unsigned hal_channel_count; /* channel count exposed to AudioFlinger. * This may differ from the device channel count when * the device is not compatible with AudioFlinger * capabilities, e.g. exposes too many channels or * too few channels. */ audio_channel_mask_t hal_channel_mask; /* channel mask exposed to AudioFlinger. */ /* We may need to read more data from the device in order to data reduce to 16bit, 4chan */ void * conversion_buffer; /* any conversions are put into here * they could come from here too if * there was a previous conversion */ size_t conversion_buffer_size; /* in bytes */ }; /* * NOTE: when multiple mutexes have to be acquired, always take the * stream_in or stream_out mutex first, followed by the audio_device mutex. * stream pre_lock is always acquired before stream lock to prevent starvation of control thread by * higher priority playback or capture thread. */ static int in_stream_card_number = -1, out_stream_card_number = -1; /* * Examines a pcm-device file to see if its a USB Audio device and * returns its card-number. If no match, returns -1. */ static int first_valid_sound_card(char *pcm_name, bool is_out_stream) { int fd; char pcm_dev_path[MAX_PATH_LEN]; struct snd_pcm_info info; char type; int pcm_name_length; ALOGV("%s enter",__func__); pcm_name_length = strlen(pcm_name); if (pcm_name_length < 2) { return -1; } type = is_out_stream ? 'p' : 'c'; /* If pcm out then filename must end with 0p/0c */ if ((pcm_name[pcm_name_length -2] != '0') && (pcm_name[pcm_name_length - 1] != type)) { ALOGV("%s exit",__func__); return -1; } snprintf(pcm_dev_path, sizeof(pcm_dev_path), "/dev/snd/%s", pcm_name); fd = open(pcm_dev_path, O_RDONLY); if (fd != -1) { if (!(ioctl(fd, SNDRV_PCM_IOCTL_INFO, &info))) { if (strstr(info.id, AUDIO_STR)) { close(fd); ALOGV("%s exit",__func__); return info.card; } } else { ALOGE("ioctl failed for file: %s", pcm_dev_path); } close(fd); } ALOGV("%s exit",__func__); return -1; } /* * Returns the number of the first valid USB Audio card * If none is found, returns -1. */ static int get_first_sound_card(bool is_out_stream) { DIR *dir; struct dirent *de = NULL; int card_nr; ALOGV("%s enter",__func__); dir = opendir("/dev/snd"); if (dir == NULL) { ALOGE("Could not open directory /dev/snd"); ALOGV("%s exit",__func__); return -1; } while ((de = readdir(dir))) { if (strncmp(de->d_name, PCM_DEV_STR, sizeof(PCM_DEV_STR) - 1) == 0) { if ((card_nr = first_valid_sound_card(de->d_name, is_out_stream)) != -1) { closedir(dir); ALOGV("%s exit",__func__); return card_nr; } } } closedir(dir); ALOGW("No usb-card found in /dev/snd"); ALOGV("%s exit",__func__); return -1; } static bool parse_card_device_params(bool is_out_stream, int *card, int *device) { int try_time; int found_card = -1; if (is_out_stream) { if (out_stream_card_number != -1) { *card = out_stream_card_number; *device = 0; return true; } } else { if (in_stream_card_number != -1) { *card = in_stream_card_number; *device = 0; return true; } } for (try_time = 0; try_time < NBR_RETRIES; try_time++) { found_card = get_first_sound_card(is_out_stream); if (found_card == -1) usleep(RETRY_WAIT_USEC); else break; } if (found_card == -1) { *card = -1; *device = -1; return false; } if (is_out_stream) { out_stream_card_number = found_card; } else { in_stream_card_number = found_card; } *card = found_card; *device = 0; return true; } static char * device_get_parameters(alsa_device_profile * profile, const char * keys) { if (profile->card < 0 || profile->device < 0) { return strdup(""); } struct str_parms *query = str_parms_create_str(keys); struct str_parms *result = str_parms_create(); /* These keys are from hardware/libhardware/include/audio.h */ /* supported sample rates */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES)) { char* rates_list = profile_get_sample_rate_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_SAMPLING_RATES, rates_list); free(rates_list); } /* supported channel counts */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_CHANNELS)) { char* channels_list = profile_get_channel_count_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_CHANNELS, channels_list); free(channels_list); } /* supported sample formats */ if (str_parms_has_key(query, AUDIO_PARAMETER_STREAM_SUP_FORMATS)) { char * format_params = profile_get_format_strs(profile); str_parms_add_str(result, AUDIO_PARAMETER_STREAM_SUP_FORMATS, format_params); free(format_params); } str_parms_destroy(query); char* result_str = str_parms_to_str(result); str_parms_destroy(result); ALOGV("device_get_parameters = %s", result_str); return result_str; } void lock_input_stream(struct stream_in *in) { pthread_mutex_lock(&in->pre_lock); pthread_mutex_lock(&in->lock); pthread_mutex_unlock(&in->pre_lock); } void lock_output_stream(struct stream_out *out) { pthread_mutex_lock(&out->pre_lock); pthread_mutex_lock(&out->lock); pthread_mutex_unlock(&out->pre_lock); } /* * HAl Functions */ /** * NOTE: when multiple mutexes have to be acquired, always respect the * following order: hw device > out stream */ /* * OUT functions */ static uint32_t out_get_sample_rate(const struct audio_stream *stream) { uint32_t rate = proxy_get_sample_rate(&((struct stream_out*)stream)->proxy); ALOGV("out_get_sample_rate() = %d", rate); return rate; } static int out_set_sample_rate(struct audio_stream *stream, uint32_t rate) { return 0; } static size_t out_get_buffer_size(const struct audio_stream *stream) { const struct stream_out* out = (const struct stream_out*)stream; size_t buffer_size = proxy_get_period_size(&out->proxy) * audio_stream_out_frame_size(&(out->stream)); return buffer_size; } static uint32_t out_get_channels(const struct audio_stream *stream) { const struct stream_out *out = (const struct stream_out*)stream; return out->hal_channel_mask; } static audio_format_t out_get_format(const struct audio_stream *stream) { /* Note: The HAL doesn't do any FORMAT conversion at this time. It * Relies on the framework to provide data in the specified format. * This could change in the future. */ alsa_device_proxy * proxy = &((struct stream_out*)stream)->proxy; audio_format_t format = audio_format_from_pcm_format(proxy_get_format(proxy)); return format; } static int out_set_format(struct audio_stream *stream, audio_format_t format) { return 0; } static int out_standby(struct audio_stream *stream) { struct stream_out *out = (struct stream_out *)stream; lock_output_stream(out); if (!out->standby) { pthread_mutex_lock(&out->dev->lock); proxy_close(&out->proxy); pthread_mutex_unlock(&out->dev->lock); out->standby = true; } pthread_mutex_unlock(&out->lock); return 0; } static int out_dump(const struct audio_stream *stream, int fd) { return 0; } static int out_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("out_set_parameters() keys:%s", kvpairs); struct stream_out *out = (struct stream_out *)stream; int routing = 0; int ret_value = 0; int card = -1; int device = -1; if (!parse_card_device_params(true, &card, &device)) { // nothing to do return ret_value; } lock_output_stream(out); /* Lock the device because that is where the profile lives */ pthread_mutex_lock(&out->dev->lock); if (!profile_is_cached_for(out->profile, card, device)) { /* cannot read pcm device info if playback is active */ if (!out->standby) ret_value = -ENOSYS; else { int saved_card = out->profile->card; int saved_device = out->profile->device; out->profile->card = card; out->profile->device = device; ret_value = profile_read_device_info(out->profile) ? 0 : -EINVAL; if (ret_value != 0) { out->profile->card = saved_card; out->profile->device = saved_device; } } } pthread_mutex_unlock(&out->dev->lock); pthread_mutex_unlock(&out->lock); return ret_value; } static char * out_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_out *out = (struct stream_out *)stream; lock_output_stream(out); pthread_mutex_lock(&out->dev->lock); char * params_str = device_get_parameters(out->profile, keys); pthread_mutex_unlock(&out->lock); pthread_mutex_unlock(&out->dev->lock); return params_str; } static uint32_t out_get_latency(const struct audio_stream_out *stream) { alsa_device_proxy * proxy = &((struct stream_out*)stream)->proxy; return proxy_get_latency(proxy); } static int out_set_volume(struct audio_stream_out *stream, float left, float right) { return -ENOSYS; } /* must be called with hw device and output stream mutexes locked */ static int start_output_stream(struct stream_out *out) { ALOGV("start_output_stream(card:%d device:%d)", out->profile->card, out->profile->device); return proxy_open(&out->proxy); } static ssize_t out_write(struct audio_stream_out *stream, const void* buffer, size_t bytes) { int ret; struct stream_out *out = (struct stream_out *)stream; lock_output_stream(out); if (out->standby) { pthread_mutex_lock(&out->dev->lock); ret = start_output_stream(out); pthread_mutex_unlock(&out->dev->lock); if (ret != 0) { goto err; } out->standby = false; } alsa_device_proxy* proxy = &out->proxy; const void * write_buff = buffer; int num_write_buff_bytes = bytes; const int num_device_channels = proxy_get_channel_count(proxy); /* what we told alsa */ const int num_req_channels = out->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { /* allocate buffer */ const size_t required_conversion_buffer_size = bytes * num_device_channels / num_req_channels; if (required_conversion_buffer_size > out->conversion_buffer_size) { out->conversion_buffer_size = required_conversion_buffer_size; out->conversion_buffer = realloc(out->conversion_buffer, out->conversion_buffer_size); } /* convert data */ const audio_format_t audio_format = out_get_format(&(out->stream.common)); const unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_write_buff_bytes = adjust_channels(write_buff, num_req_channels, out->conversion_buffer, num_device_channels, sample_size_in_bytes, num_write_buff_bytes); write_buff = out->conversion_buffer; } if (write_buff != NULL && num_write_buff_bytes != 0) { proxy_write(&out->proxy, write_buff, num_write_buff_bytes); } pthread_mutex_unlock(&out->lock); return bytes; err: pthread_mutex_unlock(&out->lock); if (ret != 0) { usleep(bytes * 1000000 / audio_stream_out_frame_size(stream) / out_get_sample_rate(&stream->common)); } return bytes; } static int out_get_render_position(const struct audio_stream_out *stream, uint32_t *dsp_frames) { return -EINVAL; } static int out_get_presentation_position(const struct audio_stream_out *stream, uint64_t *frames, struct timespec *timestamp) { struct stream_out *out = (struct stream_out *)stream; // discard const qualifier lock_output_stream(out); const alsa_device_proxy *proxy = &out->proxy; const int ret = proxy_get_presentation_position(proxy, frames, timestamp); pthread_mutex_unlock(&out->lock); ALOGV("out_get_presentation_position() status:%d frames:%llu", ret, (unsigned long long)*frames); return ret; } static int out_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int out_get_next_write_timestamp(const struct audio_stream_out *stream, int64_t *timestamp) { return -EINVAL; } static int adev_open_output_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, audio_output_flags_t flags, struct audio_config *config, struct audio_stream_out **stream_out, const char *address /*__unused*/) { ALOGV("adev_open_output_stream() handle:0x%X, device:0x%X, flags:0x%X, addr:%s", handle, devices, flags, address); struct audio_device *adev = (struct audio_device *)dev; struct stream_out *out; out = (struct stream_out *)calloc(1, sizeof(struct stream_out)); if (!out) return -ENOMEM; /* setup function pointers */ out->stream.common.get_sample_rate = out_get_sample_rate; out->stream.common.set_sample_rate = out_set_sample_rate; out->stream.common.get_buffer_size = out_get_buffer_size; out->stream.common.get_channels = out_get_channels; out->stream.common.get_format = out_get_format; out->stream.common.set_format = out_set_format; out->stream.common.standby = out_standby; out->stream.common.dump = out_dump; out->stream.common.set_parameters = out_set_parameters; out->stream.common.get_parameters = out_get_parameters; out->stream.common.add_audio_effect = out_add_audio_effect; out->stream.common.remove_audio_effect = out_remove_audio_effect; out->stream.get_latency = out_get_latency; out->stream.set_volume = out_set_volume; out->stream.write = out_write; out->stream.get_render_position = out_get_render_position; out->stream.get_presentation_position = out_get_presentation_position; out->stream.get_next_write_timestamp = out_get_next_write_timestamp; pthread_mutex_init(&out->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&out->pre_lock, (const pthread_mutexattr_t *) NULL); out->dev = adev; pthread_mutex_lock(&adev->lock); out->profile = &adev->out_profile; // build this to hand to the alsa_device_proxy struct pcm_config proxy_config; memset(&proxy_config, 0, sizeof(proxy_config)); /* Pull out the card/device pair */ parse_card_device_params(true, &(out->profile->card), &(out->profile->device)); profile_read_device_info(out->profile); pthread_mutex_unlock(&adev->lock); int ret = 0; /* Rate */ if (config->sample_rate == 0) { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(out->profile); } else if (profile_is_sample_rate_valid(out->profile, config->sample_rate)) { proxy_config.rate = config->sample_rate; } else { ALOGE("%s: The requested sample rate (%d) is not valid", __func__, config->sample_rate); proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(out->profile); ret = -EINVAL; } /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { proxy_config.format = profile_get_default_format(out->profile); config->format = audio_format_from_pcm_format(proxy_config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(out->profile, fmt)) { proxy_config.format = fmt; } else { ALOGE("%s: The requested format (0x%x) is not valid", __func__, config->format); proxy_config.format = profile_get_default_format(out->profile); config->format = audio_format_from_pcm_format(proxy_config.format); ret = -EINVAL; } } /* Channels */ unsigned proposed_channel_count = 0; if (k_force_channels) { proposed_channel_count = k_force_channels; } else if (config->channel_mask == AUDIO_CHANNEL_NONE) { proposed_channel_count = profile_get_default_channel_count(out->profile); } if (proposed_channel_count != 0) { if (proposed_channel_count <= FCC_2) { // use channel position mask for mono and stereo config->channel_mask = audio_channel_out_mask_from_count(proposed_channel_count); } else { // use channel index mask for multichannel config->channel_mask = audio_channel_mask_for_index_assignment_from_count(proposed_channel_count); } out->hal_channel_count = proposed_channel_count; } else { out->hal_channel_count = audio_channel_count_from_out_mask(config->channel_mask); } /* we can expose any channel mask, and emulate internally based on channel count. */ out->hal_channel_mask = config->channel_mask; /* no validity checks are needed as proxy_prepare() forces channel_count to be valid. * and we emulate any channel count discrepancies in out_write(). */ proxy_config.channels = proposed_channel_count; proxy_prepare(&out->proxy, out->profile, &proxy_config); /* TODO The retry mechanism isn't implemented in AudioPolicyManager/AudioFlinger. */ ret = 0; out->conversion_buffer = NULL; out->conversion_buffer_size = 0; out->standby = true; *stream_out = &out->stream; return ret; err_open: free(out); *stream_out = NULL; return -ENOSYS; } static void adev_close_output_stream(struct audio_hw_device *dev, struct audio_stream_out *stream) { struct stream_out *out = (struct stream_out *)stream; ALOGV("adev_close_output_stream(c:%d d:%d)", out->profile->card, out->profile->device); /* Close the pcm device */ out_standby(&stream->common); free(out->conversion_buffer); out->conversion_buffer = NULL; out->conversion_buffer_size = 0; free(stream); } static size_t adev_get_input_buffer_size(const struct audio_hw_device *dev, const struct audio_config *config) { /* TODO This needs to be calculated based on format/channels/rate */ return 320; } /* * IN functions */ static uint32_t in_get_sample_rate(const struct audio_stream *stream) { uint32_t rate = proxy_get_sample_rate(&((const struct stream_in *)stream)->proxy); ALOGV("in_get_sample_rate() = %d", rate); return rate; } static int in_set_sample_rate(struct audio_stream *stream, uint32_t rate) { ALOGV("in_set_sample_rate(%d) - NOPE", rate); return -ENOSYS; } static size_t in_get_buffer_size(const struct audio_stream *stream) { const struct stream_in * in = ((const struct stream_in*)stream); return proxy_get_period_size(&in->proxy) * audio_stream_in_frame_size(&(in->stream)); } static uint32_t in_get_channels(const struct audio_stream *stream) { const struct stream_in *in = (const struct stream_in*)stream; return in->hal_channel_mask; } static audio_format_t in_get_format(const struct audio_stream *stream) { alsa_device_proxy *proxy = &((struct stream_in*)stream)->proxy; audio_format_t format = audio_format_from_pcm_format(proxy_get_format(proxy)); return format; } static int in_set_format(struct audio_stream *stream, audio_format_t format) { ALOGV("in_set_format(%d) - NOPE", format); return -ENOSYS; } static int in_standby(struct audio_stream *stream) { struct stream_in *in = (struct stream_in *)stream; lock_input_stream(in); if (!in->standby) { pthread_mutex_lock(&in->dev->lock); proxy_close(&in->proxy); pthread_mutex_unlock(&in->dev->lock); in->standby = true; } pthread_mutex_unlock(&in->lock); return 0; } static int in_dump(const struct audio_stream *stream, int fd) { return 0; } static int in_set_parameters(struct audio_stream *stream, const char *kvpairs) { ALOGV("in_set_parameters() keys:%s", kvpairs); struct stream_in *in = (struct stream_in *)stream; char value[32]; int param_val; int routing = 0; int ret_value = 0; int card = -1; int device = -1; if (!parse_card_device_params(false, &card, &device)) { // nothing to do return ret_value; } lock_input_stream(in); pthread_mutex_lock(&in->dev->lock); if (card >= 0 && device >= 0 && !profile_is_cached_for(in->profile, card, device)) { /* cannot read pcm device info if playback is active */ if (!in->standby) ret_value = -ENOSYS; else { int saved_card = in->profile->card; int saved_device = in->profile->device; in->profile->card = card; in->profile->device = device; ret_value = profile_read_device_info(in->profile) ? 0 : -EINVAL; if (ret_value != 0) { in->profile->card = saved_card; in->profile->device = saved_device; } } } pthread_mutex_unlock(&in->dev->lock); pthread_mutex_unlock(&in->lock); return ret_value; } static char * in_get_parameters(const struct audio_stream *stream, const char *keys) { struct stream_in *in = (struct stream_in *)stream; lock_input_stream(in); pthread_mutex_lock(&in->dev->lock); char * params_str = device_get_parameters(in->profile, keys); pthread_mutex_unlock(&in->dev->lock); pthread_mutex_unlock(&in->lock); return params_str; } static int in_add_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_remove_audio_effect(const struct audio_stream *stream, effect_handle_t effect) { return 0; } static int in_set_gain(struct audio_stream_in *stream, float gain) { return 0; } /* must be called with hw device and output stream mutexes locked */ static int start_input_stream(struct stream_in *in) { ALOGV("ustart_input_stream(card:%d device:%d)", in->profile->card, in->profile->device); return proxy_open(&in->proxy); } /* TODO mutex stuff here (see out_write) */ static ssize_t in_read(struct audio_stream_in *stream, void* buffer, size_t bytes) { size_t num_read_buff_bytes = 0; void * read_buff = buffer; void * out_buff = buffer; int ret = 0; struct stream_in * in = (struct stream_in *)stream; lock_input_stream(in); if (in->standby) { pthread_mutex_lock(&in->dev->lock); ret = start_input_stream(in); pthread_mutex_unlock(&in->dev->lock); if (ret != 0) { goto err; } in->standby = false; } alsa_device_profile * profile = in->profile; /* * OK, we need to figure out how much data to read to be able to output the requested * number of bytes in the HAL format (16-bit, stereo). */ num_read_buff_bytes = bytes; int num_device_channels = proxy_get_channel_count(&in->proxy); /* what we told Alsa */ int num_req_channels = in->hal_channel_count; /* what we told AudioFlinger */ if (num_device_channels != num_req_channels) { num_read_buff_bytes = (num_device_channels * num_read_buff_bytes) / num_req_channels; } /* Setup/Realloc the conversion buffer (if necessary). */ if (num_read_buff_bytes != bytes) { if (num_read_buff_bytes > in->conversion_buffer_size) { /*TODO Remove this when AudioPolicyManger/AudioFlinger support arbitrary formats (and do these conversions themselves) */ in->conversion_buffer_size = num_read_buff_bytes; in->conversion_buffer = realloc(in->conversion_buffer, in->conversion_buffer_size); } read_buff = in->conversion_buffer; } ret = proxy_read(&in->proxy, read_buff, num_read_buff_bytes); if (ret == 0) { if (num_device_channels != num_req_channels) { // ALOGV("chans dev:%d req:%d", num_device_channels, num_req_channels); out_buff = buffer; /* Num Channels conversion */ if (num_device_channels != num_req_channels) { audio_format_t audio_format = in_get_format(&(in->stream.common)); unsigned sample_size_in_bytes = audio_bytes_per_sample(audio_format); num_read_buff_bytes = adjust_channels(read_buff, num_device_channels, out_buff, num_req_channels, sample_size_in_bytes, num_read_buff_bytes); } } /* no need to acquire in->dev->lock to read mic_muted here as we don't change its state */ if (num_read_buff_bytes > 0 && in->dev->mic_muted) memset(buffer, 0, num_read_buff_bytes); } else { num_read_buff_bytes = 0; // reset the value after USB headset is unplugged } err: pthread_mutex_unlock(&in->lock); return num_read_buff_bytes; } static uint32_t in_get_input_frames_lost(struct audio_stream_in *stream) { return 0; } static int adev_open_input_stream(struct audio_hw_device *dev, audio_io_handle_t handle, audio_devices_t devices, struct audio_config *config, struct audio_stream_in **stream_in, audio_input_flags_t flags __unused, const char *address /*__unused*/, audio_source_t source __unused) { ALOGV("in adev_open_input_stream() rate:%" PRIu32 ", chanMask:0x%" PRIX32 ", fmt:%" PRIu8, config->sample_rate, config->channel_mask, config->format); struct stream_in *in = (struct stream_in *)calloc(1, sizeof(struct stream_in)); int ret = 0; if (in == NULL) return -ENOMEM; /* setup function pointers */ in->stream.common.get_sample_rate = in_get_sample_rate; in->stream.common.set_sample_rate = in_set_sample_rate; in->stream.common.get_buffer_size = in_get_buffer_size; in->stream.common.get_channels = in_get_channels; in->stream.common.get_format = in_get_format; in->stream.common.set_format = in_set_format; in->stream.common.standby = in_standby; in->stream.common.dump = in_dump; in->stream.common.set_parameters = in_set_parameters; in->stream.common.get_parameters = in_get_parameters; in->stream.common.add_audio_effect = in_add_audio_effect; in->stream.common.remove_audio_effect = in_remove_audio_effect; in->stream.set_gain = in_set_gain; in->stream.read = in_read; in->stream.get_input_frames_lost = in_get_input_frames_lost; pthread_mutex_init(&in->lock, (const pthread_mutexattr_t *) NULL); pthread_mutex_init(&in->pre_lock, (const pthread_mutexattr_t *) NULL); in->dev = (struct audio_device *)dev; pthread_mutex_lock(&in->dev->lock); in->profile = &in->dev->in_profile; struct pcm_config proxy_config; memset(&proxy_config, 0, sizeof(proxy_config)); /* Pull out the card/device pair */ parse_card_device_params(false, &(in->profile->card), &(in->profile->device)); profile_read_device_info(in->profile); pthread_mutex_unlock(&in->dev->lock); /* Rate */ if (config->sample_rate == 0) { proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(in->profile); } else if (profile_is_sample_rate_valid(in->profile, config->sample_rate)) { proxy_config.rate = config->sample_rate; } else { ALOGE("%s: The requested sample rate (%d) is not valid", __func__, config->sample_rate); proxy_config.rate = config->sample_rate = profile_get_default_sample_rate(in->profile); ret = -EINVAL; } /* Format */ if (config->format == AUDIO_FORMAT_DEFAULT) { proxy_config.format = profile_get_default_format(in->profile); config->format = audio_format_from_pcm_format(proxy_config.format); } else { enum pcm_format fmt = pcm_format_from_audio_format(config->format); if (profile_is_format_valid(in->profile, fmt)) { proxy_config.format = fmt; } else { ALOGE("%s: The requested format (0x%x) is not valid", __func__, config->format); proxy_config.format = profile_get_default_format(in->profile); config->format = audio_format_from_pcm_format(proxy_config.format); ret = -EINVAL; } } /* Channels */ unsigned proposed_channel_count = 0; if (k_force_channels) { proposed_channel_count = k_force_channels; } else if (config->channel_mask == AUDIO_CHANNEL_NONE) { proposed_channel_count = profile_get_default_channel_count(in->profile); } if (proposed_channel_count != 0) { config->channel_mask = audio_channel_in_mask_from_count(proposed_channel_count); if (config->channel_mask == AUDIO_CHANNEL_INVALID) config->channel_mask = audio_channel_mask_for_index_assignment_from_count(proposed_channel_count); in->hal_channel_count = proposed_channel_count; } else { in->hal_channel_count = audio_channel_count_from_in_mask(config->channel_mask); } /* we can expose any channel mask, and emulate internally based on channel count. */ in->hal_channel_mask = config->channel_mask; proxy_config.channels = profile_get_default_channel_count(in->profile); proxy_prepare(&in->proxy, in->profile, &proxy_config); in->standby = true; in->conversion_buffer = NULL; in->conversion_buffer_size = 0; *stream_in = &in->stream; return ret; } static void adev_close_input_stream(struct audio_hw_device *dev, struct audio_stream_in *stream) { struct stream_in *in = (struct stream_in *)stream; /* Close the pcm device */ in_standby(&stream->common); free(in->conversion_buffer); free(stream); } /* * ADEV Functions */ static int adev_set_parameters(struct audio_hw_device *dev, const char *kvpairs) { return 0; } static char * adev_get_parameters(const struct audio_hw_device *dev, const char *keys) { return strdup(""); } static int adev_init_check(const struct audio_hw_device *dev) { return 0; } static int adev_set_voice_volume(struct audio_hw_device *dev, float volume) { return -ENOSYS; } static int adev_set_master_volume(struct audio_hw_device *dev, float volume) { #if TARGET_AUDIO_PRIMARY struct mixer *mixer; struct mixer_ctl *ctl; struct audio_device * adev = (struct audio_device *)dev; if ((0 > volume) || (1 < volume) || (NULL == adev)) return -EINVAL; pthread_mutex_lock(&adev->lock); adev->master_volume = (int)(volume*100); if (!(mixer = mixer_open(1))) { pthread_mutex_unlock(&adev->lock); return -ENOSYS; } ctl = mixer_get_ctl(mixer,29); mixer_ctl_set_value(ctl,0,adev->master_volume); mixer_close(mixer); pthread_mutex_unlock(&adev->lock); return 0; #else return -ENOSYS; #endif } static int adev_set_mode(struct audio_hw_device *dev, audio_mode_t mode) { return 0; } static int adev_set_mic_mute(struct audio_hw_device *dev, bool state) { struct audio_device * adev = (struct audio_device *)dev; pthread_mutex_lock(&adev->lock); adev->mic_muted = state; pthread_mutex_unlock(&adev->lock); return -ENOSYS; } static int adev_get_mic_mute(const struct audio_hw_device *dev, bool *state) { return -ENOSYS; } static int adev_dump(const audio_hw_device_t *device, int fd) { return 0; } static int adev_close(hw_device_t *device) { struct audio_device *adev = (struct audio_device *)device; free(device); return 0; } static int adev_open(const hw_module_t* module, const char* name, hw_device_t** device) { #if TARGET_AUDIO_PRIMARY struct mixer *mixer; struct mixer_ctl *ctl; #endif if (strcmp(name, AUDIO_HARDWARE_INTERFACE) != 0) return -EINVAL; struct audio_device *adev = calloc(1, sizeof(struct audio_device)); if (!adev) return -ENOMEM; profile_init(&adev->out_profile, PCM_OUT); profile_init(&adev->in_profile, PCM_IN); adev->hw_device.common.tag = HARDWARE_DEVICE_TAG; adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_2_0; adev->hw_device.common.module = (struct hw_module_t *)module; adev->hw_device.common.close = adev_close; adev->hw_device.init_check = adev_init_check; adev->hw_device.set_voice_volume = adev_set_voice_volume; adev->hw_device.set_master_volume = adev_set_master_volume; adev->hw_device.set_mode = adev_set_mode; adev->hw_device.set_mic_mute = adev_set_mic_mute; adev->hw_device.get_mic_mute = adev_get_mic_mute; adev->hw_device.set_parameters = adev_set_parameters; adev->hw_device.get_parameters = adev_get_parameters; adev->hw_device.get_input_buffer_size = adev_get_input_buffer_size; adev->hw_device.open_output_stream = adev_open_output_stream; adev->hw_device.close_output_stream = adev_close_output_stream; adev->hw_device.open_input_stream = adev_open_input_stream; adev->hw_device.close_input_stream = adev_close_input_stream; adev->hw_device.dump = adev_dump; *device = &adev->hw_device.common; #if TARGET_AUDIO_PRIMARY mixer = mixer_open(1); if (mixer) { /* turning on master volume */ ctl = mixer_get_ctl(mixer,30); mixer_ctl_set_value(ctl,0,1); /* setting master volume to value 50 */ ctl = mixer_get_ctl(mixer,29); adev->master_volume = 50; mixer_ctl_set_value(ctl,0,adev->master_volume); mixer_close(mixer); } #endif return 0; } static struct hw_module_methods_t hal_module_methods = { .open = adev_open, }; struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_0_1, .hal_api_version = HARDWARE_HAL_API_VERSION, .id = AUDIO_HARDWARE_MODULE_ID, .name = "audio HW HAL", .author = "The Android Open Source Project", .methods = &hal_module_methods, }, };