/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ResourceTable.h" #include "ResourceValues.h" #include "ValueVisitor.h" #include "flatten/ChunkWriter.h" #include "flatten/ResourceTypeExtensions.h" #include "flatten/TableFlattener.h" #include "util/BigBuffer.h" #include <android-base/macros.h> #include <algorithm> #include <type_traits> #include <numeric> using namespace android; namespace aapt { namespace { template <typename T> static bool cmpIds(const T* a, const T* b) { return a->id.value() < b->id.value(); } static void strcpy16_htod(uint16_t* dst, size_t len, const StringPiece16& src) { if (len == 0) { return; } size_t i; const char16_t* srcData = src.data(); for (i = 0; i < len - 1 && i < src.size(); i++) { dst[i] = util::hostToDevice16((uint16_t) srcData[i]); } dst[i] = 0; } static bool cmpStyleEntries(const Style::Entry& a, const Style::Entry& b) { if (a.key.id) { if (b.key.id) { return a.key.id.value() < b.key.id.value(); } return true; } else if (!b.key.id) { return a.key.name.value() < b.key.name.value(); } return false; } struct FlatEntry { ResourceEntry* entry; Value* value; // The entry string pool index to the entry's name. uint32_t entryKey; }; class MapFlattenVisitor : public RawValueVisitor { public: using RawValueVisitor::visit; MapFlattenVisitor(ResTable_entry_ext* outEntry, BigBuffer* buffer) : mOutEntry(outEntry), mBuffer(buffer) { } void visit(Attribute* attr) override { { Reference key = Reference(ResTable_map::ATTR_TYPE); BinaryPrimitive val(Res_value::TYPE_INT_DEC, attr->typeMask); flattenEntry(&key, &val); } if (attr->minInt != std::numeric_limits<int32_t>::min()) { Reference key = Reference(ResTable_map::ATTR_MIN); BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->minInt)); flattenEntry(&key, &val); } if (attr->maxInt != std::numeric_limits<int32_t>::max()) { Reference key = Reference(ResTable_map::ATTR_MAX); BinaryPrimitive val(Res_value::TYPE_INT_DEC, static_cast<uint32_t>(attr->maxInt)); flattenEntry(&key, &val); } for (Attribute::Symbol& s : attr->symbols) { BinaryPrimitive val(Res_value::TYPE_INT_DEC, s.value); flattenEntry(&s.symbol, &val); } } void visit(Style* style) override { if (style->parent) { const Reference& parentRef = style->parent.value(); assert(parentRef.id && "parent has no ID"); mOutEntry->parent.ident = util::hostToDevice32(parentRef.id.value().id); } // Sort the style. std::sort(style->entries.begin(), style->entries.end(), cmpStyleEntries); for (Style::Entry& entry : style->entries) { flattenEntry(&entry.key, entry.value.get()); } } void visit(Styleable* styleable) override { for (auto& attrRef : styleable->entries) { BinaryPrimitive val(Res_value{}); flattenEntry(&attrRef, &val); } } void visit(Array* array) override { for (auto& item : array->items) { ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>(); flattenValue(item.get(), outEntry); outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value)); mEntryCount++; } } void visit(Plural* plural) override { const size_t count = plural->values.size(); for (size_t i = 0; i < count; i++) { if (!plural->values[i]) { continue; } ResourceId q; switch (i) { case Plural::Zero: q.id = android::ResTable_map::ATTR_ZERO; break; case Plural::One: q.id = android::ResTable_map::ATTR_ONE; break; case Plural::Two: q.id = android::ResTable_map::ATTR_TWO; break; case Plural::Few: q.id = android::ResTable_map::ATTR_FEW; break; case Plural::Many: q.id = android::ResTable_map::ATTR_MANY; break; case Plural::Other: q.id = android::ResTable_map::ATTR_OTHER; break; default: assert(false); break; } Reference key(q); flattenEntry(&key, plural->values[i].get()); } } /** * Call this after visiting a Value. This will finish any work that * needs to be done to prepare the entry. */ void finish() { mOutEntry->count = util::hostToDevice32(mEntryCount); } private: void flattenKey(Reference* key, ResTable_map* outEntry) { assert(key->id && "key has no ID"); outEntry->name.ident = util::hostToDevice32(key->id.value().id); } void flattenValue(Item* value, ResTable_map* outEntry) { bool result = value->flatten(&outEntry->value); assert(result && "flatten failed"); } void flattenEntry(Reference* key, Item* value) { ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>(); flattenKey(key, outEntry); flattenValue(value, outEntry); outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value)); mEntryCount++; } ResTable_entry_ext* mOutEntry; BigBuffer* mBuffer; size_t mEntryCount = 0; }; class PackageFlattener { public: PackageFlattener(IDiagnostics* diag, ResourceTablePackage* package) : mDiag(diag), mPackage(package) { } bool flattenPackage(BigBuffer* buffer) { ChunkWriter pkgWriter(buffer); ResTable_package* pkgHeader = pkgWriter.startChunk<ResTable_package>( RES_TABLE_PACKAGE_TYPE); pkgHeader->id = util::hostToDevice32(mPackage->id.value()); if (mPackage->name.size() >= arraysize(pkgHeader->name)) { mDiag->error(DiagMessage() << "package name '" << mPackage->name << "' is too long"); return false; } // Copy the package name in device endianness. strcpy16_htod(pkgHeader->name, arraysize(pkgHeader->name), mPackage->name); // Serialize the types. We do this now so that our type and key strings // are populated. We write those first. BigBuffer typeBuffer(1024); flattenTypes(&typeBuffer); pkgHeader->typeStrings = util::hostToDevice32(pkgWriter.size()); StringPool::flattenUtf16(pkgWriter.getBuffer(), mTypePool); pkgHeader->keyStrings = util::hostToDevice32(pkgWriter.size()); StringPool::flattenUtf16(pkgWriter.getBuffer(), mKeyPool); // Append the types. buffer->appendBuffer(std::move(typeBuffer)); pkgWriter.finish(); return true; } private: IDiagnostics* mDiag; ResourceTablePackage* mPackage; StringPool mTypePool; StringPool mKeyPool; template <typename T, bool IsItem> T* writeEntry(FlatEntry* entry, BigBuffer* buffer) { static_assert(std::is_same<ResTable_entry, T>::value || std::is_same<ResTable_entry_ext, T>::value, "T must be ResTable_entry or ResTable_entry_ext"); T* result = buffer->nextBlock<T>(); ResTable_entry* outEntry = (ResTable_entry*)(result); if (entry->entry->symbolStatus.state == SymbolState::kPublic) { outEntry->flags |= ResTable_entry::FLAG_PUBLIC; } if (entry->value->isWeak()) { outEntry->flags |= ResTable_entry::FLAG_WEAK; } if (!IsItem) { outEntry->flags |= ResTable_entry::FLAG_COMPLEX; } outEntry->flags = util::hostToDevice16(outEntry->flags); outEntry->key.index = util::hostToDevice32(entry->entryKey); outEntry->size = util::hostToDevice16(sizeof(T)); return result; } bool flattenValue(FlatEntry* entry, BigBuffer* buffer) { if (Item* item = valueCast<Item>(entry->value)) { writeEntry<ResTable_entry, true>(entry, buffer); Res_value* outValue = buffer->nextBlock<Res_value>(); bool result = item->flatten(outValue); assert(result && "flatten failed"); outValue->size = util::hostToDevice16(sizeof(*outValue)); } else { ResTable_entry_ext* outEntry = writeEntry<ResTable_entry_ext, false>(entry, buffer); MapFlattenVisitor visitor(outEntry, buffer); entry->value->accept(&visitor); visitor.finish(); } return true; } bool flattenConfig(const ResourceTableType* type, const ConfigDescription& config, std::vector<FlatEntry>* entries, BigBuffer* buffer) { ChunkWriter typeWriter(buffer); ResTable_type* typeHeader = typeWriter.startChunk<ResTable_type>(RES_TABLE_TYPE_TYPE); typeHeader->id = type->id.value(); typeHeader->config = config; typeHeader->config.swapHtoD(); auto maxAccum = [](uint32_t max, const std::unique_ptr<ResourceEntry>& a) -> uint32_t { return std::max(max, (uint32_t) a->id.value()); }; // Find the largest entry ID. That is how many entries we will have. const uint32_t entryCount = std::accumulate(type->entries.begin(), type->entries.end(), 0, maxAccum) + 1; typeHeader->entryCount = util::hostToDevice32(entryCount); uint32_t* indices = typeWriter.nextBlock<uint32_t>(entryCount); assert((size_t) entryCount <= std::numeric_limits<uint16_t>::max() + 1); memset(indices, 0xff, entryCount * sizeof(uint32_t)); typeHeader->entriesStart = util::hostToDevice32(typeWriter.size()); const size_t entryStart = typeWriter.getBuffer()->size(); for (FlatEntry& flatEntry : *entries) { assert(flatEntry.entry->id.value() < entryCount); indices[flatEntry.entry->id.value()] = util::hostToDevice32( typeWriter.getBuffer()->size() - entryStart); if (!flattenValue(&flatEntry, typeWriter.getBuffer())) { mDiag->error(DiagMessage() << "failed to flatten resource '" << ResourceNameRef(mPackage->name, type->type, flatEntry.entry->name) << "' for configuration '" << config << "'"); return false; } } typeWriter.finish(); return true; } std::vector<ResourceTableType*> collectAndSortTypes() { std::vector<ResourceTableType*> sortedTypes; for (auto& type : mPackage->types) { if (type->type == ResourceType::kStyleable) { // Styleables aren't real Resource Types, they are represented in the R.java // file. continue; } assert(type->id && "type must have an ID set"); sortedTypes.push_back(type.get()); } std::sort(sortedTypes.begin(), sortedTypes.end(), cmpIds<ResourceTableType>); return sortedTypes; } std::vector<ResourceEntry*> collectAndSortEntries(ResourceTableType* type) { // Sort the entries by entry ID. std::vector<ResourceEntry*> sortedEntries; for (auto& entry : type->entries) { assert(entry->id && "entry must have an ID set"); sortedEntries.push_back(entry.get()); } std::sort(sortedEntries.begin(), sortedEntries.end(), cmpIds<ResourceEntry>); return sortedEntries; } bool flattenTypeSpec(ResourceTableType* type, std::vector<ResourceEntry*>* sortedEntries, BigBuffer* buffer) { ChunkWriter typeSpecWriter(buffer); ResTable_typeSpec* specHeader = typeSpecWriter.startChunk<ResTable_typeSpec>( RES_TABLE_TYPE_SPEC_TYPE); specHeader->id = type->id.value(); if (sortedEntries->empty()) { typeSpecWriter.finish(); return true; } // We can't just take the size of the vector. There may be holes in the entry ID space. // Since the entries are sorted by ID, the last one will be the biggest. const size_t numEntries = sortedEntries->back()->id.value() + 1; specHeader->entryCount = util::hostToDevice32(numEntries); // Reserve space for the masks of each resource in this type. These // show for which configuration axis the resource changes. uint32_t* configMasks = typeSpecWriter.nextBlock<uint32_t>(numEntries); const size_t actualNumEntries = sortedEntries->size(); for (size_t entryIndex = 0; entryIndex < actualNumEntries; entryIndex++) { ResourceEntry* entry = sortedEntries->at(entryIndex); // Populate the config masks for this entry. if (entry->symbolStatus.state == SymbolState::kPublic) { configMasks[entry->id.value()] |= util::hostToDevice32(ResTable_typeSpec::SPEC_PUBLIC); } const size_t configCount = entry->values.size(); for (size_t i = 0; i < configCount; i++) { const ConfigDescription& config = entry->values[i]->config; for (size_t j = i + 1; j < configCount; j++) { configMasks[entry->id.value()] |= util::hostToDevice32( config.diff(entry->values[j]->config)); } } } typeSpecWriter.finish(); return true; } bool flattenTypes(BigBuffer* buffer) { // Sort the types by their IDs. They will be inserted into the StringPool in this order. std::vector<ResourceTableType*> sortedTypes = collectAndSortTypes(); size_t expectedTypeId = 1; for (ResourceTableType* type : sortedTypes) { // If there is a gap in the type IDs, fill in the StringPool // with empty values until we reach the ID we expect. while (type->id.value() > expectedTypeId) { std::u16string typeName(u"?"); typeName += expectedTypeId; mTypePool.makeRef(typeName); expectedTypeId++; } expectedTypeId++; mTypePool.makeRef(toString(type->type)); std::vector<ResourceEntry*> sortedEntries = collectAndSortEntries(type); if (!flattenTypeSpec(type, &sortedEntries, buffer)) { return false; } // The binary resource table lists resource entries for each configuration. // We store them inverted, where a resource entry lists the values for each // configuration available. Here we reverse this to match the binary table. std::map<ConfigDescription, std::vector<FlatEntry>> configToEntryListMap; for (ResourceEntry* entry : sortedEntries) { const uint32_t keyIndex = (uint32_t) mKeyPool.makeRef(entry->name).getIndex(); // Group values by configuration. for (auto& configValue : entry->values) { configToEntryListMap[configValue->config].push_back(FlatEntry{ entry, configValue->value.get(), keyIndex }); } } // Flatten a configuration value. for (auto& entry : configToEntryListMap) { if (!flattenConfig(type, entry.first, &entry.second, buffer)) { return false; } } } return true; } }; } // namespace bool TableFlattener::consume(IAaptContext* context, ResourceTable* table) { // We must do this before writing the resources, since the string pool IDs may change. table->stringPool.sort([](const StringPool::Entry& a, const StringPool::Entry& b) -> bool { int diff = a.context.priority - b.context.priority; if (diff < 0) return true; if (diff > 0) return false; diff = a.context.config.compare(b.context.config); if (diff < 0) return true; if (diff > 0) return false; return a.value < b.value; }); table->stringPool.prune(); // Write the ResTable header. ChunkWriter tableWriter(mBuffer); ResTable_header* tableHeader = tableWriter.startChunk<ResTable_header>(RES_TABLE_TYPE); tableHeader->packageCount = util::hostToDevice32(table->packages.size()); // Flatten the values string pool. StringPool::flattenUtf8(tableWriter.getBuffer(), table->stringPool); BigBuffer packageBuffer(1024); // Flatten each package. for (auto& package : table->packages) { PackageFlattener flattener(context->getDiagnostics(), package.get()); if (!flattener.flattenPackage(&packageBuffer)) { return false; } } // Finally merge all the packages into the main buffer. tableWriter.getBuffer()->appendBuffer(std::move(packageBuffer)); tableWriter.finish(); return true; } } // namespace aapt