/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref core /// @file glm/core/func_integer.inl /// @date 2010-03-17 / 2011-06-15 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include "type_vec2.hpp" #include "type_vec3.hpp" #include "type_vec4.hpp" #include "type_int.hpp" #include "_vectorize.hpp" #if(GLM_ARCH != GLM_ARCH_PURE) #if(GLM_COMPILER & GLM_COMPILER_VC) # include <intrin.h> # pragma intrinsic(_BitScanReverse) #endif//(GLM_COMPILER & GLM_COMPILER_VC) #endif//(GLM_ARCH != GLM_ARCH_PURE) #include <limits> namespace glm { // uaddCarry template <> GLM_FUNC_QUALIFIER uint uaddCarry ( uint const & x, uint const & y, uint & Carry ) { uint64 Value64 = static_cast<uint64>(x) + static_cast<uint64>(y); uint32 Result = static_cast<uint32>(Value64 % (static_cast<uint64>(1) << static_cast<uint64>(32))); Carry = (Value64 % (static_cast<uint64>(1) << static_cast<uint64>(32))) > 1 ? static_cast<uint32>(1) : static_cast<uint32>(0); return Result; } template <> GLM_FUNC_QUALIFIER uvec2 uaddCarry ( uvec2 const & x, uvec2 const & y, uvec2 & Carry ) { return uvec2( uaddCarry(x[0], y[0], Carry[0]), uaddCarry(x[1], y[1], Carry[1])); } template <> GLM_FUNC_QUALIFIER uvec3 uaddCarry ( uvec3 const & x, uvec3 const & y, uvec3 & Carry ) { return uvec3( uaddCarry(x[0], y[0], Carry[0]), uaddCarry(x[1], y[1], Carry[1]), uaddCarry(x[2], y[2], Carry[2])); } template <> GLM_FUNC_QUALIFIER uvec4 uaddCarry ( uvec4 const & x, uvec4 const & y, uvec4 & Carry ) { return uvec4( uaddCarry(x[0], y[0], Carry[0]), uaddCarry(x[1], y[1], Carry[1]), uaddCarry(x[2], y[2], Carry[2]), uaddCarry(x[3], y[3], Carry[3])); } // usubBorrow template <> GLM_FUNC_QUALIFIER uint usubBorrow ( uint const & x, uint const & y, uint & Borrow ) { GLM_STATIC_ASSERT(sizeof(uint) == sizeof(uint32), "uint and uint32 size mismatch"); Borrow = x >= y ? static_cast<uint32>(0) : static_cast<uint32>(1); if(y >= x) return y - x; else return static_cast<uint32>((static_cast<int64>(1) << static_cast<int64>(32)) + (static_cast<int64>(y) - static_cast<int64>(x))); } template <> GLM_FUNC_QUALIFIER uvec2 usubBorrow ( uvec2 const & x, uvec2 const & y, uvec2 & Borrow ) { return uvec2( usubBorrow(x[0], y[0], Borrow[0]), usubBorrow(x[1], y[1], Borrow[1])); } template <> GLM_FUNC_QUALIFIER uvec3 usubBorrow ( uvec3 const & x, uvec3 const & y, uvec3 & Borrow ) { return uvec3( usubBorrow(x[0], y[0], Borrow[0]), usubBorrow(x[1], y[1], Borrow[1]), usubBorrow(x[2], y[2], Borrow[2])); } template <> GLM_FUNC_QUALIFIER uvec4 usubBorrow ( uvec4 const & x, uvec4 const & y, uvec4 & Borrow ) { return uvec4( usubBorrow(x[0], y[0], Borrow[0]), usubBorrow(x[1], y[1], Borrow[1]), usubBorrow(x[2], y[2], Borrow[2]), usubBorrow(x[3], y[3], Borrow[3])); } // umulExtended template <> GLM_FUNC_QUALIFIER void umulExtended ( uint const & x, uint const & y, uint & msb, uint & lsb ) { GLM_STATIC_ASSERT(sizeof(uint) == sizeof(uint32), "uint and uint32 size mismatch"); uint64 Value64 = static_cast<uint64>(x) * static_cast<uint64>(y); uint32* PointerMSB = (reinterpret_cast<uint32*>(&Value64) + 1); msb = *PointerMSB; uint32* PointerLSB = (reinterpret_cast<uint32*>(&Value64) + 0); lsb = *PointerLSB; } template <> GLM_FUNC_QUALIFIER void umulExtended ( uvec2 const & x, uvec2 const & y, uvec2 & msb, uvec2 & lsb ) { umulExtended(x[0], y[0], msb[0], lsb[0]); umulExtended(x[1], y[1], msb[1], lsb[1]); } template <> GLM_FUNC_QUALIFIER void umulExtended ( uvec3 const & x, uvec3 const & y, uvec3 & msb, uvec3 & lsb ) { umulExtended(x[0], y[0], msb[0], lsb[0]); umulExtended(x[1], y[1], msb[1], lsb[1]); umulExtended(x[2], y[2], msb[2], lsb[2]); } template <> GLM_FUNC_QUALIFIER void umulExtended ( uvec4 const & x, uvec4 const & y, uvec4 & msb, uvec4 & lsb ) { umulExtended(x[0], y[0], msb[0], lsb[0]); umulExtended(x[1], y[1], msb[1], lsb[1]); umulExtended(x[2], y[2], msb[2], lsb[2]); umulExtended(x[3], y[3], msb[3], lsb[3]); } // imulExtended template <> GLM_FUNC_QUALIFIER void imulExtended ( int const & x, int const & y, int & msb, int & lsb ) { GLM_STATIC_ASSERT(sizeof(int) == sizeof(int32), "int and int32 size mismatch"); int64 Value64 = static_cast<int64>(x) * static_cast<int64>(y); int32* PointerMSB = (reinterpret_cast<int32*>(&Value64) + 1); msb = *PointerMSB; int32* PointerLSB = (reinterpret_cast<int32*>(&Value64)); lsb = *PointerLSB; } template <> GLM_FUNC_QUALIFIER void imulExtended ( ivec2 const & x, ivec2 const & y, ivec2 & msb, ivec2 & lsb ) { imulExtended(x[0], y[0], msb[0], lsb[0]), imulExtended(x[1], y[1], msb[1], lsb[1]); } template <> GLM_FUNC_QUALIFIER void imulExtended ( ivec3 const & x, ivec3 const & y, ivec3 & msb, ivec3 & lsb ) { imulExtended(x[0], y[0], msb[0], lsb[0]), imulExtended(x[1], y[1], msb[1], lsb[1]); imulExtended(x[2], y[2], msb[2], lsb[2]); } template <> GLM_FUNC_QUALIFIER void imulExtended ( ivec4 const & x, ivec4 const & y, ivec4 & msb, ivec4 & lsb ) { imulExtended(x[0], y[0], msb[0], lsb[0]), imulExtended(x[1], y[1], msb[1], lsb[1]); imulExtended(x[2], y[2], msb[2], lsb[2]); imulExtended(x[3], y[3], msb[3], lsb[3]); } // bitfieldExtract template <typename genIUType> GLM_FUNC_QUALIFIER genIUType bitfieldExtract ( genIUType const & Value, int const & Offset, int const & Bits ) { int GenSize = int(sizeof(genIUType)) << int(3); assert(Offset + Bits <= GenSize); genIUType ShiftLeft = Bits ? Value << (GenSize - (Bits + Offset)) : genIUType(0); genIUType ShiftBack = ShiftLeft >> genIUType(GenSize - Bits); return ShiftBack; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitfieldExtract ( detail::tvec2<T, P> const & Value, int const & Offset, int const & Bits ) { return detail::tvec2<T, P>( bitfieldExtract(Value[0], Offset, Bits), bitfieldExtract(Value[1], Offset, Bits)); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitfieldExtract ( detail::tvec3<T, P> const & Value, int const & Offset, int const & Bits ) { return detail::tvec3<T, P>( bitfieldExtract(Value[0], Offset, Bits), bitfieldExtract(Value[1], Offset, Bits), bitfieldExtract(Value[2], Offset, Bits)); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitfieldExtract ( detail::tvec4<T, P> const & Value, int const & Offset, int const & Bits ) { return detail::tvec4<T, P>( bitfieldExtract(Value[0], Offset, Bits), bitfieldExtract(Value[1], Offset, Bits), bitfieldExtract(Value[2], Offset, Bits), bitfieldExtract(Value[3], Offset, Bits)); } // bitfieldInsert template <typename genIUType> GLM_FUNC_QUALIFIER genIUType bitfieldInsert ( genIUType const & Base, genIUType const & Insert, int const & Offset, int const & Bits ) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'bitfieldInsert' only accept integer values"); assert(Offset + Bits <= sizeof(genIUType)); if(Bits == 0) return Base; genIUType Mask = 0; for(int Bit = Offset; Bit < Offset + Bits; ++Bit) Mask |= (1 << Bit); return (Base & ~Mask) | (Insert & Mask); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> bitfieldInsert ( detail::tvec2<T, P> const & Base, detail::tvec2<T, P> const & Insert, int const & Offset, int const & Bits ) { return detail::tvec2<T, P>( bitfieldInsert(Base[0], Insert[0], Offset, Bits), bitfieldInsert(Base[1], Insert[1], Offset, Bits)); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> bitfieldInsert ( detail::tvec3<T, P> const & Base, detail::tvec3<T, P> const & Insert, int const & Offset, int const & Bits ) { return detail::tvec3<T, P>( bitfieldInsert(Base[0], Insert[0], Offset, Bits), bitfieldInsert(Base[1], Insert[1], Offset, Bits), bitfieldInsert(Base[2], Insert[2], Offset, Bits)); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> bitfieldInsert ( detail::tvec4<T, P> const & Base, detail::tvec4<T, P> const & Insert, int const & Offset, int const & Bits ) { return detail::tvec4<T, P>( bitfieldInsert(Base[0], Insert[0], Offset, Bits), bitfieldInsert(Base[1], Insert[1], Offset, Bits), bitfieldInsert(Base[2], Insert[2], Offset, Bits), bitfieldInsert(Base[3], Insert[3], Offset, Bits)); } // bitfieldReverse template <typename genIUType> GLM_FUNC_QUALIFIER genIUType bitfieldReverse(genIUType const & Value) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'bitfieldReverse' only accept integer values"); genIUType Out = 0; std::size_t BitSize = sizeof(genIUType) * 8; for(std::size_t i = 0; i < BitSize; ++i) if(Value & (genIUType(1) << i)) Out |= genIUType(1) << (BitSize - 1 - i); return Out; } VECTORIZE_VEC(bitfieldReverse) // bitCount template <typename genIUType> GLM_FUNC_QUALIFIER int bitCount(genIUType const & Value) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'bitCount' only accept integer values"); int Count = 0; for(std::size_t i = 0; i < sizeof(genIUType) * std::size_t(8); ++i) { if(Value & (1 << i)) ++Count; } return Count; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<int, P> bitCount ( detail::tvec2<T, P> const & value ) { return detail::tvec2<int, P>( bitCount(value[0]), bitCount(value[1])); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<int, P> bitCount ( detail::tvec3<T, P> const & value ) { return detail::tvec3<int, P>( bitCount(value[0]), bitCount(value[1]), bitCount(value[2])); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<int, P> bitCount ( detail::tvec4<T, P> const & value ) { return detail::tvec4<int, P>( bitCount(value[0]), bitCount(value[1]), bitCount(value[2]), bitCount(value[3])); } // findLSB template <typename genIUType> GLM_FUNC_QUALIFIER int findLSB ( genIUType const & Value ) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values"); if(Value == 0) return -1; genIUType Bit; for(Bit = genIUType(0); !(Value & (1 << Bit)); ++Bit){} return Bit; } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<int, P> findLSB ( detail::tvec2<T, P> const & value ) { return detail::tvec2<int, P>( findLSB(value[0]), findLSB(value[1])); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<int, P> findLSB ( detail::tvec3<T, P> const & value ) { return detail::tvec3<int, P>( findLSB(value[0]), findLSB(value[1]), findLSB(value[2])); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<int, P> findLSB ( detail::tvec4<T, P> const & value ) { return detail::tvec4<int, P>( findLSB(value[0]), findLSB(value[1]), findLSB(value[2]), findLSB(value[3])); } // findMSB #if((GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & GLM_COMPILER_VC)) template <typename genIUType> GLM_FUNC_QUALIFIER int findMSB ( genIUType const & Value ) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); if(Value == 0) return -1; unsigned long Result(0); _BitScanReverse(&Result, Value); return int(Result); } /* // __builtin_clz seems to be buggy as it crasks for some values, from 0x00200000 to 80000000 #elif((GLM_ARCH != GLM_ARCH_PURE) && (GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC40)) template <typename genIUType> GLM_FUNC_QUALIFIER int findMSB ( genIUType const & Value ) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); if(Value == 0) return -1; // clz returns the number or trailing 0-bits; see // http://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Other-Builtins.html // // NoteBecause __builtin_clz only works for unsigned ints, this // implementation will not work for 64-bit integers. // return 31 - __builtin_clzl(Value); } */ #else /* SSE implementation idea __m128i const Zero = _mm_set_epi32( 0, 0, 0, 0); __m128i const One = _mm_set_epi32( 1, 1, 1, 1); __m128i Bit = _mm_set_epi32(-1, -1, -1, -1); __m128i Tmp = _mm_set_epi32(Value, Value, Value, Value); __m128i Mmi = Zero; for(int i = 0; i < 32; ++i) { __m128i Shilt = _mm_and_si128(_mm_cmpgt_epi32(Tmp, One), One); Tmp = _mm_srai_epi32(Tmp, One); Bit = _mm_add_epi32(Bit, _mm_and_si128(Shilt, i)); Mmi = _mm_and_si128(Mmi, One); } return Bit; */ template <typename genIUType> GLM_FUNC_QUALIFIER int findMSB ( genIUType const & Value ) { GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values"); if(Value == genIUType(0) || Value == genIUType(-1)) return -1; else if(Value > 0) { genIUType Bit = genIUType(-1); for(genIUType tmp = Value; tmp > 0; tmp >>= 1, ++Bit){} return Bit; } else //if(Value < 0) { int const BitCount(sizeof(genIUType) * 8); int MostSignificantBit(-1); for(int BitIndex(0); BitIndex < BitCount; ++BitIndex) MostSignificantBit = (Value & (1 << BitIndex)) ? MostSignificantBit : BitIndex; assert(MostSignificantBit >= 0); return MostSignificantBit; } } #endif//(GLM_COMPILER) template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<int, P> findMSB ( detail::tvec2<T, P> const & value ) { return detail::tvec2<int, P>( findMSB(value[0]), findMSB(value[1])); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<int, P> findMSB ( detail::tvec3<T, P> const & value ) { return detail::tvec3<int, P>( findMSB(value[0]), findMSB(value[1]), findMSB(value[2])); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<int, P> findMSB ( detail::tvec4<T, P> const & value ) { return detail::tvec4<int, P>( findMSB(value[0]), findMSB(value[1]), findMSB(value[2]), findMSB(value[3])); } }//namespace glm