/////////////////////////////////////////////////////////////////////////////////// /// OpenGL Mathematics (glm.g-truc.net) /// /// Copyright (c) 2005 - 2014 G-Truc Creation (www.g-truc.net) /// Permission is hereby granted, free of charge, to any person obtaining a copy /// of this software and associated documentation files (the "Software"), to deal /// in the Software without restriction, including without limitation the rights /// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell /// copies of the Software, and to permit persons to whom the Software is /// furnished to do so, subject to the following conditions: /// /// The above copyright notice and this permission notice shall be included in /// all copies or substantial portions of the Software. /// /// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR /// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, /// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE /// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER /// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, /// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN /// THE SOFTWARE. /// /// @ref core /// @file glm/core/func_geometric.inl /// @date 2008-08-03 / 2011-06-15 /// @author Christophe Riccio /////////////////////////////////////////////////////////////////////////////////// #include "func_exponential.hpp" #include "func_common.hpp" #include "type_vec2.hpp" #include "type_vec4.hpp" #include "type_float.hpp" namespace glm{ namespace detail { template <template <class, precision> class vecType, typename T, precision P> struct compute_dot{}; template <typename T, precision P> struct compute_dot<detail::tvec1, T, P> { GLM_FUNC_QUALIFIER static T call(detail::tvec1<T, P> const & x, detail::tvec1<T, P> const & y) { # ifdef __CUDACC__ // Wordaround for a CUDA compiler bug up to CUDA6 detail::tvec1<T, P> tmp(x * y); return tmp.x; # else return detail::tvec1<T, P>(x * y).x; # endif } }; template <typename T, precision P> struct compute_dot<detail::tvec2, T, P> { GLM_FUNC_QUALIFIER static T call(detail::tvec2<T, P> const & x, detail::tvec2<T, P> const & y) { detail::tvec2<T, P> tmp(x * y); return tmp.x + tmp.y; } }; template <typename T, precision P> struct compute_dot<detail::tvec3, T, P> { GLM_FUNC_QUALIFIER static T call(detail::tvec3<T, P> const & x, detail::tvec3<T, P> const & y) { detail::tvec3<T, P> tmp(x * y); return tmp.x + tmp.y + tmp.z; } }; template <typename T, precision P> struct compute_dot<detail::tvec4, T, P> { GLM_FUNC_QUALIFIER static T call(detail::tvec4<T, P> const & x, detail::tvec4<T, P> const & y) { detail::tvec4<T, P> tmp(x * y); return (tmp.x + tmp.y) + (tmp.z + tmp.w); } }; }//namespace detail // length template <typename genType> GLM_FUNC_QUALIFIER genType length ( genType const & x ) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'length' only accept floating-point inputs"); genType sqr = x * x; return sqrt(sqr); } template <typename T, precision P> GLM_FUNC_QUALIFIER T length(detail::tvec2<T, P> const & v) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' only accept floating-point inputs"); T sqr = v.x * v.x + v.y * v.y; return sqrt(sqr); } template <typename T, precision P> GLM_FUNC_QUALIFIER T length(detail::tvec3<T, P> const & v) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' only accept floating-point inputs"); T sqr = v.x * v.x + v.y * v.y + v.z * v.z; return sqrt(sqr); } template <typename T, precision P> GLM_FUNC_QUALIFIER T length(detail::tvec4<T, P> const & v) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' only accept floating-point inputs"); T sqr = v.x * v.x + v.y * v.y + v.z * v.z + v.w * v.w; return sqrt(sqr); } // distance template <typename genType> GLM_FUNC_QUALIFIER genType distance ( genType const & p0, genType const & p1 ) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'distance' only accept floating-point inputs"); return length(p1 - p0); } template <typename T, precision P> GLM_FUNC_QUALIFIER T distance ( detail::tvec2<T, P> const & p0, detail::tvec2<T, P> const & p1 ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'distance' only accept floating-point inputs"); return length(p1 - p0); } template <typename T, precision P> GLM_FUNC_QUALIFIER T distance ( detail::tvec3<T, P> const & p0, detail::tvec3<T, P> const & p1 ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'distance' only accept floating-point inputs"); return length(p1 - p0); } template <typename T, precision P> GLM_FUNC_QUALIFIER T distance ( detail::tvec4<T, P> const & p0, detail::tvec4<T, P> const & p1 ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'distance' only accept floating-point inputs"); return length(p1 - p0); } // dot template <typename T> GLM_FUNC_QUALIFIER T dot ( T const & x, T const & y ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' only accept floating-point inputs"); return detail::compute_dot<detail::tvec1, T, highp>::call(x, y); } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER T dot ( vecType<T, P> const & x, vecType<T, P> const & y ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' only accept floating-point inputs"); return detail::compute_dot<vecType, T, P>::call(x, y); } /* // SSE3 GLM_FUNC_QUALIFIER float dot(const tvec4<float>& x, const tvec4<float>& y) { float Result; __asm { mov esi, x mov edi, y movaps xmm0, [esi] mulps xmm0, [edi] haddps( _xmm0, _xmm0 ) haddps( _xmm0, _xmm0 ) movss Result, xmm0 } return Result; } */ // cross template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> cross ( detail::tvec3<T, P> const & x, detail::tvec3<T, P> const & y ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cross' only accept floating-point inputs"); return detail::tvec3<T, P>( x.y * y.z - y.y * x.z, x.z * y.x - y.z * x.x, x.x * y.y - y.x * x.y); } // normalize template <typename genType> GLM_FUNC_QUALIFIER genType normalize ( genType const & x ) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'normalize' only accept floating-point inputs"); return x < genType(0) ? genType(-1) : genType(1); } // According to issue 10 GLSL 1.10 specification, if length(x) == 0 then result is undefine and generate an error template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec2<T, P> normalize ( detail::tvec2<T, P> const & x ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' only accept floating-point inputs"); T sqr = x.x * x.x + x.y * x.y; return x * inversesqrt(sqr); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec3<T, P> normalize ( detail::tvec3<T, P> const & x ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' only accept floating-point inputs"); T sqr = x.x * x.x + x.y * x.y + x.z * x.z; return x * inversesqrt(sqr); } template <typename T, precision P> GLM_FUNC_QUALIFIER detail::tvec4<T, P> normalize ( detail::tvec4<T, P> const & x ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' only accept floating-point inputs"); T sqr = x.x * x.x + x.y * x.y + x.z * x.z + x.w * x.w; return x * inversesqrt(sqr); } // faceforward template <typename genType> GLM_FUNC_QUALIFIER genType faceforward ( genType const & N, genType const & I, genType const & Nref ) { return dot(Nref, I) < 0 ? N : -N; } // reflect template <typename genType> GLM_FUNC_QUALIFIER genType reflect ( genType const & I, genType const & N ) { return I - N * dot(N, I) * genType(2); } // refract template <typename genType> GLM_FUNC_QUALIFIER genType refract ( genType const & I, genType const & N, genType const & eta ) { GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'refract' only accept floating-point inputs"); genType dotValue = dot(N, I); genType k = genType(1) - eta * eta * (genType(1) - dotValue * dotValue); if(k < genType(0)) return genType(0); else return eta * I - (eta * dotValue + sqrt(k)) * N; } template <typename T, precision P, template <typename, precision> class vecType> GLM_FUNC_QUALIFIER vecType<T, P> refract ( vecType<T, P> const & I, vecType<T, P> const & N, T const & eta ) { GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'refract' only accept floating-point inputs"); T dotValue = dot(N, I); T k = T(1) - eta * eta * (T(1) - dotValue * dotValue); if(k < T(0)) return vecType<T, P>(0); else return eta * I - (eta * dotValue + std::sqrt(k)) * N; } }//namespace glm