// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include <stdint.h> #include <stdlib.h> #include <string.h> #include "src/wasm/wasm-macro-gen.h" #include "src/wasm/wasm-interpreter.h" #include "test/cctest/cctest.h" #include "test/cctest/compiler/value-helper.h" #include "test/cctest/wasm/test-signatures.h" #include "test/cctest/wasm/wasm-run-utils.h" using namespace v8::base; using namespace v8::internal; using namespace v8::internal::compiler; using namespace v8::internal::wasm; namespace v8 { namespace internal { namespace wasm { TEST(Run_WasmInt8Const_i) { WasmRunner<int32_t> r(kExecuteInterpreted); const byte kExpectedValue = 109; // return(kExpectedValue) BUILD(r, WASM_I8(kExpectedValue)); CHECK_EQ(kExpectedValue, r.Call()); } TEST(Run_WasmIfElse) { WasmRunner<int32_t> r(kExecuteInterpreted, MachineType::Int32()); BUILD(r, WASM_IF_ELSE(WASM_GET_LOCAL(0), WASM_I8(9), WASM_I8(10))); CHECK_EQ(10, r.Call(0)); CHECK_EQ(9, r.Call(1)); } TEST(Run_WasmIfReturn) { WasmRunner<int32_t> r(kExecuteInterpreted, MachineType::Int32()); BUILD(r, WASM_IF(WASM_GET_LOCAL(0), WASM_RETURN1(WASM_I8(77))), WASM_I8(65)); CHECK_EQ(65, r.Call(0)); CHECK_EQ(77, r.Call(1)); } TEST(Run_WasmNopsN) { const int kMaxNops = 10; byte code[kMaxNops + 2]; for (int nops = 0; nops < kMaxNops; nops++) { byte expected = static_cast<byte>(20 + nops); memset(code, kExprNop, sizeof(code)); code[nops] = kExprI8Const; code[nops + 1] = expected; WasmRunner<int32_t> r(kExecuteInterpreted); r.Build(code, code + nops + 2); CHECK_EQ(expected, r.Call()); } } TEST(Run_WasmConstsN) { const int kMaxConsts = 10; byte code[kMaxConsts * 2]; for (int count = 1; count < kMaxConsts; count++) { for (int i = 0; i < count; i++) { code[i * 2] = kExprI8Const; code[i * 2 + 1] = static_cast<byte>(count * 10 + i); } byte expected = static_cast<byte>(count * 11 - 1); WasmRunner<int32_t> r(kExecuteInterpreted); r.Build(code, code + (count * 2)); CHECK_EQ(expected, r.Call()); } } TEST(Run_WasmBlocksN) { const int kMaxNops = 10; const int kExtra = 4; byte code[kMaxNops + kExtra]; for (int nops = 0; nops < kMaxNops; nops++) { byte expected = static_cast<byte>(30 + nops); memset(code, kExprNop, sizeof(code)); code[0] = kExprBlock; code[1 + nops] = kExprI8Const; code[1 + nops + 1] = expected; code[1 + nops + 2] = kExprEnd; WasmRunner<int32_t> r(kExecuteInterpreted); r.Build(code, code + nops + kExtra); CHECK_EQ(expected, r.Call()); } } TEST(Run_WasmBlockBreakN) { const int kMaxNops = 10; const int kExtra = 6; byte code[kMaxNops + kExtra]; for (int nops = 0; nops < kMaxNops; nops++) { // Place the break anywhere within the block. for (int index = 0; index < nops; index++) { memset(code, kExprNop, sizeof(code)); code[0] = kExprBlock; code[sizeof(code) - 1] = kExprEnd; int expected = nops * 11 + index; code[1 + index + 0] = kExprI8Const; code[1 + index + 1] = static_cast<byte>(expected); code[1 + index + 2] = kExprBr; code[1 + index + 3] = ARITY_1; code[1 + index + 4] = 0; WasmRunner<int32_t> r(kExecuteInterpreted); r.Build(code, code + kMaxNops + kExtra); CHECK_EQ(expected, r.Call()); } } } TEST(Run_Wasm_nested_ifs_i) { WasmRunner<int32_t> r(kExecuteInterpreted, MachineType::Int32(), MachineType::Int32()); BUILD(r, WASM_IF_ELSE( WASM_GET_LOCAL(0), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(11), WASM_I8(12)), WASM_IF_ELSE(WASM_GET_LOCAL(1), WASM_I8(13), WASM_I8(14)))); CHECK_EQ(11, r.Call(1, 1)); CHECK_EQ(12, r.Call(1, 0)); CHECK_EQ(13, r.Call(0, 1)); CHECK_EQ(14, r.Call(0, 0)); } // Make tests more robust by not hard-coding offsets of various operations. // The {Find} method finds the offsets for the given bytecodes, returning // the offsets in an array. SmartArrayPointer<int> Find(byte* code, size_t code_size, int n, ...) { va_list vl; va_start(vl, n); SmartArrayPointer<int> offsets(new int[n]); for (int i = 0; i < n; i++) { offsets[i] = -1; } int pos = 0; WasmOpcode current = static_cast<WasmOpcode>(va_arg(vl, int)); for (size_t i = 0; i < code_size; i++) { if (code[i] == current) { offsets[pos++] = static_cast<int>(i); if (pos == n) break; current = static_cast<WasmOpcode>(va_arg(vl, int)); } } va_end(vl); return offsets; } TEST(Breakpoint_I32Add) { static const int kLocalsDeclSize = 1; static const int kNumBreakpoints = 3; byte code[] = {WASM_I32_ADD(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))}; SmartArrayPointer<int> offsets = Find(code, sizeof(code), kNumBreakpoints, kExprGetLocal, kExprGetLocal, kExprI32Add); WasmRunner<int32_t> r(kExecuteInterpreted, MachineType::Uint32(), MachineType::Uint32()); r.Build(code, code + arraysize(code)); WasmInterpreter* interpreter = r.interpreter(); WasmInterpreter::Thread* thread = interpreter->GetThread(0); for (int i = 0; i < kNumBreakpoints; i++) { interpreter->SetBreakpoint(r.function(), kLocalsDeclSize + offsets[i], true); } FOR_UINT32_INPUTS(a) { for (uint32_t b = 11; b < 3000000000u; b += 1000000000u) { thread->Reset(); WasmVal args[] = {WasmVal(*a), WasmVal(b)}; thread->PushFrame(r.function(), args); for (int i = 0; i < kNumBreakpoints; i++) { thread->Run(); // run to next breakpoint // Check the thread stopped at the right pc. CHECK_EQ(WasmInterpreter::PAUSED, thread->state()); CHECK_EQ(kLocalsDeclSize + offsets[i], thread->GetBreakpointPc()); } thread->Run(); // run to completion // Check the thread finished with the right value. CHECK_EQ(WasmInterpreter::FINISHED, thread->state()); uint32_t expected = (*a) + (b); CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>()); } } } TEST(Step_I32Mul) { static const int kTraceLength = 4; byte code[] = {WASM_I32_MUL(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))}; WasmRunner<int32_t> r(kExecuteInterpreted, MachineType::Uint32(), MachineType::Uint32()); r.Build(code, code + arraysize(code)); WasmInterpreter* interpreter = r.interpreter(); WasmInterpreter::Thread* thread = interpreter->GetThread(0); FOR_UINT32_INPUTS(a) { for (uint32_t b = 33; b < 3000000000u; b += 1000000000u) { thread->Reset(); WasmVal args[] = {WasmVal(*a), WasmVal(b)}; thread->PushFrame(r.function(), args); // Run instructions one by one. for (int i = 0; i < kTraceLength - 1; i++) { thread->Step(); // Check the thread stopped. CHECK_EQ(WasmInterpreter::PAUSED, thread->state()); } // Run last instruction. thread->Step(); // Check the thread finished with the right value. CHECK_EQ(WasmInterpreter::FINISHED, thread->state()); uint32_t expected = (*a) * (b); CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>()); } } } TEST(Breakpoint_I32And_disable) { static const int kLocalsDeclSize = 1; static const int kNumBreakpoints = 1; byte code[] = {WASM_I32_AND(WASM_GET_LOCAL(0), WASM_GET_LOCAL(1))}; SmartArrayPointer<int> offsets = Find(code, sizeof(code), kNumBreakpoints, kExprI32And); WasmRunner<int32_t> r(kExecuteInterpreted, MachineType::Uint32(), MachineType::Uint32()); r.Build(code, code + arraysize(code)); WasmInterpreter* interpreter = r.interpreter(); WasmInterpreter::Thread* thread = interpreter->GetThread(0); FOR_UINT32_INPUTS(a) { for (uint32_t b = 11; b < 3000000000u; b += 1000000000u) { // Run with and without breakpoints. for (int do_break = 0; do_break < 2; do_break++) { interpreter->SetBreakpoint(r.function(), kLocalsDeclSize + offsets[0], do_break); thread->Reset(); WasmVal args[] = {WasmVal(*a), WasmVal(b)}; thread->PushFrame(r.function(), args); if (do_break) { thread->Run(); // run to next breakpoint // Check the thread stopped at the right pc. CHECK_EQ(WasmInterpreter::PAUSED, thread->state()); CHECK_EQ(kLocalsDeclSize + offsets[0], thread->GetBreakpointPc()); } thread->Run(); // run to completion // Check the thread finished with the right value. CHECK_EQ(WasmInterpreter::FINISHED, thread->state()); uint32_t expected = (*a) & (b); CHECK_EQ(expected, thread->GetReturnValue().to<uint32_t>()); } } } } } // namespace wasm } // namespace internal } // namespace v8