// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/code-generator.h" #include "src/compiler/common-operator.h" #include "src/compiler/graph.h" #include "src/compiler/instruction.h" #include "src/compiler/linkage.h" #include "src/compiler/machine-operator.h" #include "src/compiler/node.h" #include "src/compiler/operator.h" #include "src/compiler/schedule.h" #include "src/compiler/scheduler.h" #include "test/cctest/cctest.h" namespace v8 { namespace internal { namespace compiler { typedef v8::internal::compiler::Instruction TestInstr; typedef v8::internal::compiler::InstructionSequence TestInstrSeq; // A testing helper for the register code abstraction. class InstructionTester : public HandleAndZoneScope { public: // We're all friends here. InstructionTester() : graph(zone()), schedule(zone()), common(zone()), machine(zone()), code(NULL) {} Graph graph; Schedule schedule; CommonOperatorBuilder common; MachineOperatorBuilder machine; TestInstrSeq* code; Zone* zone() { return main_zone(); } void allocCode() { if (schedule.rpo_order()->size() == 0) { // Compute the RPO order. Scheduler::ComputeSpecialRPO(main_zone(), &schedule); CHECK_NE(0u, schedule.rpo_order()->size()); } InstructionBlocks* instruction_blocks = TestInstrSeq::InstructionBlocksFor(main_zone(), &schedule); code = new (main_zone()) TestInstrSeq(main_isolate(), main_zone(), instruction_blocks); } Node* Int32Constant(int32_t val) { Node* node = graph.NewNode(common.Int32Constant(val)); schedule.AddNode(schedule.start(), node); return node; } Node* Float64Constant(double val) { Node* node = graph.NewNode(common.Float64Constant(val)); schedule.AddNode(schedule.start(), node); return node; } Node* Parameter(int32_t which) { Node* node = graph.NewNode(common.Parameter(which)); schedule.AddNode(schedule.start(), node); return node; } Node* NewNode(BasicBlock* block) { Node* node = graph.NewNode(common.Int32Constant(111)); schedule.AddNode(block, node); return node; } int NewInstr() { InstructionCode opcode = static_cast<InstructionCode>(110); TestInstr* instr = TestInstr::New(zone(), opcode); return code->AddInstruction(instr); } UnallocatedOperand Unallocated(int vreg) { return UnallocatedOperand(UnallocatedOperand::ANY, vreg); } RpoNumber RpoFor(BasicBlock* block) { return RpoNumber::FromInt(block->rpo_number()); } InstructionBlock* BlockAt(BasicBlock* block) { return code->InstructionBlockAt(RpoFor(block)); } BasicBlock* GetBasicBlock(int instruction_index) { const InstructionBlock* block = code->GetInstructionBlock(instruction_index); return schedule.rpo_order()->at(block->rpo_number().ToSize()); } int first_instruction_index(BasicBlock* block) { return BlockAt(block)->first_instruction_index(); } int last_instruction_index(BasicBlock* block) { return BlockAt(block)->last_instruction_index(); } }; TEST(InstructionBasic) { InstructionTester R; for (int i = 0; i < 10; i++) { R.Int32Constant(i); // Add some nodes to the graph. } BasicBlock* last = R.schedule.start(); for (int i = 0; i < 5; i++) { BasicBlock* block = R.schedule.NewBasicBlock(); R.schedule.AddGoto(last, block); last = block; } R.allocCode(); BasicBlockVector* blocks = R.schedule.rpo_order(); CHECK_EQ(static_cast<int>(blocks->size()), R.code->InstructionBlockCount()); for (auto block : *blocks) { CHECK_EQ(block->rpo_number(), R.BlockAt(block)->rpo_number().ToInt()); CHECK(!block->loop_end()); } } TEST(InstructionGetBasicBlock) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); BasicBlock* b1 = R.schedule.NewBasicBlock(); BasicBlock* b2 = R.schedule.NewBasicBlock(); BasicBlock* b3 = R.schedule.end(); R.schedule.AddGoto(b0, b1); R.schedule.AddGoto(b1, b2); R.schedule.AddGoto(b2, b3); R.allocCode(); R.code->StartBlock(R.RpoFor(b0)); int i0 = R.NewInstr(); int i1 = R.NewInstr(); R.code->EndBlock(R.RpoFor(b0)); R.code->StartBlock(R.RpoFor(b1)); int i2 = R.NewInstr(); int i3 = R.NewInstr(); int i4 = R.NewInstr(); int i5 = R.NewInstr(); R.code->EndBlock(R.RpoFor(b1)); R.code->StartBlock(R.RpoFor(b2)); int i6 = R.NewInstr(); int i7 = R.NewInstr(); int i8 = R.NewInstr(); R.code->EndBlock(R.RpoFor(b2)); R.code->StartBlock(R.RpoFor(b3)); R.code->EndBlock(R.RpoFor(b3)); CHECK_EQ(b0, R.GetBasicBlock(i0)); CHECK_EQ(b0, R.GetBasicBlock(i1)); CHECK_EQ(b1, R.GetBasicBlock(i2)); CHECK_EQ(b1, R.GetBasicBlock(i3)); CHECK_EQ(b1, R.GetBasicBlock(i4)); CHECK_EQ(b1, R.GetBasicBlock(i5)); CHECK_EQ(b2, R.GetBasicBlock(i6)); CHECK_EQ(b2, R.GetBasicBlock(i7)); CHECK_EQ(b2, R.GetBasicBlock(i8)); CHECK_EQ(b0, R.GetBasicBlock(R.first_instruction_index(b0))); CHECK_EQ(b0, R.GetBasicBlock(R.last_instruction_index(b0))); CHECK_EQ(b1, R.GetBasicBlock(R.first_instruction_index(b1))); CHECK_EQ(b1, R.GetBasicBlock(R.last_instruction_index(b1))); CHECK_EQ(b2, R.GetBasicBlock(R.first_instruction_index(b2))); CHECK_EQ(b2, R.GetBasicBlock(R.last_instruction_index(b2))); CHECK_EQ(b3, R.GetBasicBlock(R.first_instruction_index(b3))); CHECK_EQ(b3, R.GetBasicBlock(R.last_instruction_index(b3))); } TEST(InstructionIsGapAt) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); R.schedule.AddReturn(b0, R.Int32Constant(1)); R.allocCode(); TestInstr* i0 = TestInstr::New(R.zone(), 100); TestInstr* g = TestInstr::New(R.zone(), 103); R.code->StartBlock(R.RpoFor(b0)); R.code->AddInstruction(i0); R.code->AddInstruction(g); R.code->EndBlock(R.RpoFor(b0)); CHECK(R.code->instructions().size() == 2); } TEST(InstructionIsGapAt2) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); BasicBlock* b1 = R.schedule.end(); R.schedule.AddGoto(b0, b1); R.schedule.AddReturn(b1, R.Int32Constant(1)); R.allocCode(); TestInstr* i0 = TestInstr::New(R.zone(), 100); TestInstr* g = TestInstr::New(R.zone(), 103); R.code->StartBlock(R.RpoFor(b0)); R.code->AddInstruction(i0); R.code->AddInstruction(g); R.code->EndBlock(R.RpoFor(b0)); TestInstr* i1 = TestInstr::New(R.zone(), 102); TestInstr* g1 = TestInstr::New(R.zone(), 104); R.code->StartBlock(R.RpoFor(b1)); R.code->AddInstruction(i1); R.code->AddInstruction(g1); R.code->EndBlock(R.RpoFor(b1)); CHECK(R.code->instructions().size() == 4); } TEST(InstructionAddGapMove) { InstructionTester R; BasicBlock* b0 = R.schedule.start(); R.schedule.AddReturn(b0, R.Int32Constant(1)); R.allocCode(); TestInstr* i0 = TestInstr::New(R.zone(), 100); TestInstr* g = TestInstr::New(R.zone(), 103); R.code->StartBlock(R.RpoFor(b0)); R.code->AddInstruction(i0); R.code->AddInstruction(g); R.code->EndBlock(R.RpoFor(b0)); CHECK(R.code->instructions().size() == 2); int index = 0; for (auto instr : R.code->instructions()) { UnallocatedOperand op1 = R.Unallocated(index++); UnallocatedOperand op2 = R.Unallocated(index++); instr->GetOrCreateParallelMove(TestInstr::START, R.zone()) ->AddMove(op1, op2); ParallelMove* move = instr->GetParallelMove(TestInstr::START); CHECK(move); CHECK_EQ(1u, move->size()); MoveOperands* cur = move->at(0); CHECK(op1.Equals(cur->source())); CHECK(op2.Equals(cur->destination())); } } TEST(InstructionOperands) { base::AccountingAllocator allocator; Zone zone(&allocator); { TestInstr* i = TestInstr::New(&zone, 101); CHECK_EQ(0, static_cast<int>(i->OutputCount())); CHECK_EQ(0, static_cast<int>(i->InputCount())); CHECK_EQ(0, static_cast<int>(i->TempCount())); } int vreg = 15; InstructionOperand outputs[] = { UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg)}; InstructionOperand inputs[] = { UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg)}; InstructionOperand temps[] = { UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg), UnallocatedOperand(UnallocatedOperand::MUST_HAVE_REGISTER, vreg)}; for (size_t i = 0; i < arraysize(outputs); i++) { for (size_t j = 0; j < arraysize(inputs); j++) { for (size_t k = 0; k < arraysize(temps); k++) { TestInstr* m = TestInstr::New(&zone, 101, i, outputs, j, inputs, k, temps); CHECK(i == m->OutputCount()); CHECK(j == m->InputCount()); CHECK(k == m->TempCount()); for (size_t z = 0; z < i; z++) { CHECK(outputs[z].Equals(*m->OutputAt(z))); } for (size_t z = 0; z < j; z++) { CHECK(inputs[z].Equals(*m->InputAt(z))); } for (size_t z = 0; z < k; z++) { CHECK(temps[z].Equals(*m->TempAt(z))); } } } } } } // namespace compiler } // namespace internal } // namespace v8