// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/x64/codegen-x64.h" #if V8_TARGET_ARCH_X64 #include "src/codegen.h" #include "src/macro-assembler.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterFrame(StackFrame::INTERNAL); DCHECK(!masm->has_frame()); masm->set_has_frame(true); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveFrame(StackFrame::INTERNAL); DCHECK(masm->has_frame()); masm->set_has_frame(false); } #define __ masm. UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) { size_t actual_size; // Allocate buffer in executable space. byte* buffer = static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); if (buffer == nullptr) return nullptr; MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), CodeObjectRequired::kNo); // xmm0: raw double input. // Move double input into registers. __ Sqrtsd(xmm0, xmm0); __ Ret(); CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(desc)); Assembler::FlushICache(isolate, buffer, actual_size); base::OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer); } #undef __ // ------------------------------------------------------------------------- // Code generators #define __ ACCESS_MASM(masm) void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* allocation_memento_found) { // Return address is on the stack. Register scratch = rdi; DCHECK(!AreAliased(receiver, key, value, target_map, scratch)); if (mode == TRACK_ALLOCATION_SITE) { DCHECK(allocation_memento_found != NULL); __ JumpIfJSArrayHasAllocationMemento( receiver, scratch, allocation_memento_found); } // Set transitioned map. __ movp(FieldOperand(receiver, HeapObject::kMapOffset), target_map); __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void ElementsTransitionGenerator::GenerateSmiToDouble( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* fail) { // Return address is on the stack. DCHECK(receiver.is(rdx)); DCHECK(key.is(rcx)); DCHECK(value.is(rax)); DCHECK(target_map.is(rbx)); // The fail label is not actually used since we do not allocate. Label allocated, new_backing_store, only_change_map, done; if (mode == TRACK_ALLOCATION_SITE) { __ JumpIfJSArrayHasAllocationMemento(rdx, rdi, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ movp(r8, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(r8, Heap::kEmptyFixedArrayRootIndex); __ j(equal, &only_change_map); __ SmiToInteger32(r9, FieldOperand(r8, FixedDoubleArray::kLengthOffset)); if (kPointerSize == kDoubleSize) { // Check backing store for COW-ness. For COW arrays we have to // allocate a new backing store. __ CompareRoot(FieldOperand(r8, HeapObject::kMapOffset), Heap::kFixedCOWArrayMapRootIndex); __ j(equal, &new_backing_store); } else { // For x32 port we have to allocate a new backing store as SMI size is // not equal with double size. DCHECK(kDoubleSize == 2 * kPointerSize); __ jmp(&new_backing_store); } // Check if the backing store is in new-space. If not, we need to allocate // a new one since the old one is in pointer-space. // If in new space, we can reuse the old backing store because it is // the same size. __ JumpIfNotInNewSpace(r8, rdi, &new_backing_store); __ movp(r14, r8); // Destination array equals source array. // r8 : source FixedArray // r9 : elements array length // r14: destination FixedDoubleArray // Set backing store's map __ LoadRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ movp(FieldOperand(r14, HeapObject::kMapOffset), rdi); __ bind(&allocated); // Set transitioned map. __ movp(FieldOperand(rdx, HeapObject::kMapOffset), rbx); __ RecordWriteField(rdx, HeapObject::kMapOffset, rbx, rdi, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Convert smis to doubles and holes to hole NaNs. The Array's length // remains unchanged. STATIC_ASSERT(FixedDoubleArray::kLengthOffset == FixedArray::kLengthOffset); STATIC_ASSERT(FixedDoubleArray::kHeaderSize == FixedArray::kHeaderSize); Label loop, entry, convert_hole; __ movq(r15, bit_cast<int64_t, uint64_t>(kHoleNanInt64)); // r15: the-hole NaN __ jmp(&entry); // Allocate new backing store. __ bind(&new_backing_store); __ leap(rdi, Operand(r9, times_8, FixedArray::kHeaderSize)); __ Allocate(rdi, r14, r11, r15, fail, NO_ALLOCATION_FLAGS); // Set backing store's map __ LoadRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ movp(FieldOperand(r14, HeapObject::kMapOffset), rdi); // Set receiver's backing store. __ movp(FieldOperand(rdx, JSObject::kElementsOffset), r14); __ movp(r11, r14); __ RecordWriteField(rdx, JSObject::kElementsOffset, r11, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Set backing store's length. __ Integer32ToSmi(r11, r9); __ movp(FieldOperand(r14, FixedDoubleArray::kLengthOffset), r11); __ jmp(&allocated); __ bind(&only_change_map); // Set transitioned map. __ movp(FieldOperand(rdx, HeapObject::kMapOffset), rbx); __ RecordWriteField(rdx, HeapObject::kMapOffset, rbx, rdi, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ jmp(&done); // Conversion loop. __ bind(&loop); __ movp(rbx, FieldOperand(r8, r9, times_pointer_size, FixedArray::kHeaderSize)); // r9 : current element's index // rbx: current element (smi-tagged) __ JumpIfNotSmi(rbx, &convert_hole); __ SmiToInteger32(rbx, rbx); __ Cvtlsi2sd(kScratchDoubleReg, rbx); __ Movsd(FieldOperand(r14, r9, times_8, FixedDoubleArray::kHeaderSize), kScratchDoubleReg); __ jmp(&entry); __ bind(&convert_hole); if (FLAG_debug_code) { __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); __ Assert(equal, kObjectFoundInSmiOnlyArray); } __ movq(FieldOperand(r14, r9, times_8, FixedDoubleArray::kHeaderSize), r15); __ bind(&entry); __ decp(r9); __ j(not_sign, &loop); __ bind(&done); } void ElementsTransitionGenerator::GenerateDoubleToObject( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* fail) { // Return address is on the stack. DCHECK(receiver.is(rdx)); DCHECK(key.is(rcx)); DCHECK(value.is(rax)); DCHECK(target_map.is(rbx)); Label loop, entry, convert_hole, gc_required, only_change_map; if (mode == TRACK_ALLOCATION_SITE) { __ JumpIfJSArrayHasAllocationMemento(rdx, rdi, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ movp(r8, FieldOperand(rdx, JSObject::kElementsOffset)); __ CompareRoot(r8, Heap::kEmptyFixedArrayRootIndex); __ j(equal, &only_change_map); __ Push(rsi); __ Push(rax); __ movp(r8, FieldOperand(rdx, JSObject::kElementsOffset)); __ SmiToInteger32(r9, FieldOperand(r8, FixedDoubleArray::kLengthOffset)); // r8 : source FixedDoubleArray // r9 : number of elements __ leap(rdi, Operand(r9, times_pointer_size, FixedArray::kHeaderSize)); __ Allocate(rdi, r11, r14, r15, &gc_required, NO_ALLOCATION_FLAGS); // r11: destination FixedArray __ LoadRoot(rdi, Heap::kFixedArrayMapRootIndex); __ movp(FieldOperand(r11, HeapObject::kMapOffset), rdi); __ Integer32ToSmi(r14, r9); __ movp(FieldOperand(r11, FixedArray::kLengthOffset), r14); // Prepare for conversion loop. __ movq(rsi, bit_cast<int64_t, uint64_t>(kHoleNanInt64)); __ LoadRoot(rdi, Heap::kTheHoleValueRootIndex); // rsi: the-hole NaN // rdi: pointer to the-hole // Allocating heap numbers in the loop below can fail and cause a jump to // gc_required. We can't leave a partly initialized FixedArray behind, // so pessimistically fill it with holes now. Label initialization_loop, initialization_loop_entry; __ jmp(&initialization_loop_entry, Label::kNear); __ bind(&initialization_loop); __ movp(FieldOperand(r11, r9, times_pointer_size, FixedArray::kHeaderSize), rdi); __ bind(&initialization_loop_entry); __ decp(r9); __ j(not_sign, &initialization_loop); __ SmiToInteger32(r9, FieldOperand(r8, FixedDoubleArray::kLengthOffset)); __ jmp(&entry); // Call into runtime if GC is required. __ bind(&gc_required); __ Pop(rax); __ Pop(rsi); __ jmp(fail); // Box doubles into heap numbers. __ bind(&loop); __ movq(r14, FieldOperand(r8, r9, times_8, FixedDoubleArray::kHeaderSize)); // r9 : current element's index // r14: current element __ cmpq(r14, rsi); __ j(equal, &convert_hole); // Non-hole double, copy value into a heap number. __ AllocateHeapNumber(rax, r15, &gc_required); // rax: new heap number __ movq(FieldOperand(rax, HeapNumber::kValueOffset), r14); __ movp(FieldOperand(r11, r9, times_pointer_size, FixedArray::kHeaderSize), rax); __ movp(r15, r9); __ RecordWriteArray(r11, rax, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ jmp(&entry, Label::kNear); // Replace the-hole NaN with the-hole pointer. __ bind(&convert_hole); __ movp(FieldOperand(r11, r9, times_pointer_size, FixedArray::kHeaderSize), rdi); __ bind(&entry); __ decp(r9); __ j(not_sign, &loop); // Replace receiver's backing store with newly created and filled FixedArray. __ movp(FieldOperand(rdx, JSObject::kElementsOffset), r11); __ RecordWriteField(rdx, JSObject::kElementsOffset, r11, r15, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Pop(rax); __ Pop(rsi); __ bind(&only_change_map); // Set transitioned map. __ movp(FieldOperand(rdx, HeapObject::kMapOffset), rbx); __ RecordWriteField(rdx, HeapObject::kMapOffset, rbx, rdi, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, Register index, Register result, Label* call_runtime) { // Fetch the instance type of the receiver into result register. __ movp(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset)); // We need special handling for indirect strings. Label check_sequential; __ testb(result, Immediate(kIsIndirectStringMask)); __ j(zero, &check_sequential, Label::kNear); // Dispatch on the indirect string shape: slice or cons. Label cons_string; __ testb(result, Immediate(kSlicedNotConsMask)); __ j(zero, &cons_string, Label::kNear); // Handle slices. Label indirect_string_loaded; __ SmiToInteger32(result, FieldOperand(string, SlicedString::kOffsetOffset)); __ addp(index, result); __ movp(string, FieldOperand(string, SlicedString::kParentOffset)); __ jmp(&indirect_string_loaded, Label::kNear); // Handle cons strings. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ bind(&cons_string); __ CompareRoot(FieldOperand(string, ConsString::kSecondOffset), Heap::kempty_stringRootIndex); __ j(not_equal, call_runtime); __ movp(string, FieldOperand(string, ConsString::kFirstOffset)); __ bind(&indirect_string_loaded); __ movp(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(result, FieldOperand(result, Map::kInstanceTypeOffset)); // Distinguish sequential and external strings. Only these two string // representations can reach here (slices and flat cons strings have been // reduced to the underlying sequential or external string). Label seq_string; __ bind(&check_sequential); STATIC_ASSERT(kSeqStringTag == 0); __ testb(result, Immediate(kStringRepresentationMask)); __ j(zero, &seq_string, Label::kNear); // Handle external strings. Label one_byte_external, done; if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ testb(result, Immediate(kIsIndirectStringMask)); __ Assert(zero, kExternalStringExpectedButNotFound); } // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ testb(result, Immediate(kShortExternalStringTag)); __ j(not_zero, call_runtime); // Check encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ testb(result, Immediate(kStringEncodingMask)); __ movp(result, FieldOperand(string, ExternalString::kResourceDataOffset)); __ j(not_equal, &one_byte_external, Label::kNear); // Two-byte string. __ movzxwl(result, Operand(result, index, times_2, 0)); __ jmp(&done, Label::kNear); __ bind(&one_byte_external); // One-byte string. __ movzxbl(result, Operand(result, index, times_1, 0)); __ jmp(&done, Label::kNear); // Dispatch on the encoding: one-byte or two-byte. Label one_byte; __ bind(&seq_string); STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ testb(result, Immediate(kStringEncodingMask)); __ j(not_zero, &one_byte, Label::kNear); // Two-byte string. // Load the two-byte character code into the result register. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ movzxwl(result, FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&done, Label::kNear); // One-byte string. // Load the byte into the result register. __ bind(&one_byte); __ movzxbl(result, FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize)); __ bind(&done); } #undef __ CodeAgingHelper::CodeAgingHelper(Isolate* isolate) { USE(isolate); DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); // The sequence of instructions that is patched out for aging code is the // following boilerplate stack-building prologue that is found both in // FUNCTION and OPTIMIZED_FUNCTION code: CodePatcher patcher(isolate, young_sequence_.start(), young_sequence_.length()); patcher.masm()->pushq(rbp); patcher.masm()->movp(rbp, rsp); patcher.masm()->Push(rsi); patcher.masm()->Push(rdi); } #ifdef DEBUG bool CodeAgingHelper::IsOld(byte* candidate) const { return *candidate == kCallOpcode; } #endif bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { bool result = isolate->code_aging_helper()->IsYoung(sequence); DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); return result; } void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, MarkingParity* parity) { if (IsYoungSequence(isolate, sequence)) { *age = kNoAgeCodeAge; *parity = NO_MARKING_PARITY; } else { sequence++; // Skip the kCallOpcode byte Address target_address = sequence + *reinterpret_cast<int*>(sequence) + Assembler::kCallTargetAddressOffset; Code* stub = GetCodeFromTargetAddress(target_address); GetCodeAgeAndParity(stub, age, parity); } } void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age, MarkingParity parity) { uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); if (age == kNoAgeCodeAge) { isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); Assembler::FlushICache(isolate, sequence, young_length); } else { Code* stub = GetCodeAgeStub(isolate, age, parity); CodePatcher patcher(isolate, sequence, young_length); patcher.masm()->call(stub->instruction_start()); patcher.masm()->Nop( kNoCodeAgeSequenceLength - Assembler::kShortCallInstructionLength); } } Operand StackArgumentsAccessor::GetArgumentOperand(int index) { DCHECK(index >= 0); int receiver = (receiver_mode_ == ARGUMENTS_CONTAIN_RECEIVER) ? 1 : 0; int displacement_to_last_argument = base_reg_.is(rsp) ? kPCOnStackSize : kFPOnStackSize + kPCOnStackSize; displacement_to_last_argument += extra_displacement_to_last_argument_; if (argument_count_reg_.is(no_reg)) { // argument[0] is at base_reg_ + displacement_to_last_argument + // (argument_count_immediate_ + receiver - 1) * kPointerSize. DCHECK(argument_count_immediate_ + receiver > 0); return Operand(base_reg_, displacement_to_last_argument + (argument_count_immediate_ + receiver - 1 - index) * kPointerSize); } else { // argument[0] is at base_reg_ + displacement_to_last_argument + // argument_count_reg_ * times_pointer_size + (receiver - 1) * kPointerSize. return Operand(base_reg_, argument_count_reg_, times_pointer_size, displacement_to_last_argument + (receiver - 1 - index) * kPointerSize); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64