// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/base/atomic-utils.h" #include "src/macro-assembler.h" #include "src/objects.h" #include "src/property-descriptor.h" #include "src/v8.h" #include "src/simulator.h" #include "src/wasm/ast-decoder.h" #include "src/wasm/module-decoder.h" #include "src/wasm/wasm-debug.h" #include "src/wasm/wasm-function-name-table.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-result.h" #include "src/compiler/wasm-compiler.h" namespace v8 { namespace internal { namespace wasm { static const int kPlaceholderMarker = 1000000000; static const char* wasmSections[] = { #define F(enumerator, order, string) string, FOR_EACH_WASM_SECTION_TYPE(F) #undef F "<unknown>" // entry for "Max" }; static uint8_t wasmSectionsLengths[]{ #define F(enumerator, order, string) sizeof(string) - 1, FOR_EACH_WASM_SECTION_TYPE(F) #undef F 9 // entry for "Max" }; static uint8_t wasmSectionsOrders[]{ #define F(enumerator, order, string) order, FOR_EACH_WASM_SECTION_TYPE(F) #undef F 0 // entry for "Max" }; static_assert(sizeof(wasmSections) / sizeof(wasmSections[0]) == (size_t)WasmSection::Code::Max + 1, "expected enum WasmSection::Code to be monotonic from 0"); WasmSection::Code WasmSection::begin() { return (WasmSection::Code)0; } WasmSection::Code WasmSection::end() { return WasmSection::Code::Max; } WasmSection::Code WasmSection::next(WasmSection::Code code) { return (WasmSection::Code)(1 + (uint32_t)code); } const char* WasmSection::getName(WasmSection::Code code) { return wasmSections[(size_t)code]; } size_t WasmSection::getNameLength(WasmSection::Code code) { return wasmSectionsLengths[(size_t)code]; } int WasmSection::getOrder(WasmSection::Code code) { return wasmSectionsOrders[(size_t)code]; } WasmSection::Code WasmSection::lookup(const byte* string, uint32_t length) { // TODO(jfb) Linear search, it may be better to do a common-prefix search. for (Code i = begin(); i != end(); i = next(i)) { if (getNameLength(i) == length && 0 == memcmp(getName(i), string, length)) { return i; } } return Code::Max; } std::ostream& operator<<(std::ostream& os, const WasmModule& module) { os << "WASM module with "; os << (module.min_mem_pages * module.kPageSize) << " min mem"; os << (module.max_mem_pages * module.kPageSize) << " max mem"; os << module.functions.size() << " functions"; os << module.functions.size() << " globals"; os << module.functions.size() << " data segments"; return os; } std::ostream& operator<<(std::ostream& os, const WasmFunction& function) { os << "WASM function with signature " << *function.sig; os << " code bytes: " << (function.code_end_offset - function.code_start_offset); return os; } std::ostream& operator<<(std::ostream& os, const WasmFunctionName& pair) { os << "#" << pair.function_->func_index << ":"; if (pair.function_->name_offset > 0) { if (pair.module_) { WasmName name = pair.module_->GetName(pair.function_->name_offset, pair.function_->name_length); os.write(name.start(), name.length()); } else { os << "+" << pair.function_->func_index; } } else { os << "?"; } return os; } namespace { // Internal constants for the layout of the module object. const int kWasmModuleFunctionTable = 0; const int kWasmModuleCodeTable = 1; const int kWasmMemArrayBuffer = 2; const int kWasmGlobalsArrayBuffer = 3; // TODO(clemensh): Remove function name array, extract names from module bytes. const int kWasmFunctionNamesArray = 4; const int kWasmModuleBytesString = 5; const int kWasmDebugInfo = 6; const int kWasmModuleInternalFieldCount = 7; uint32_t GetMinModuleMemSize(const WasmModule* module) { return WasmModule::kPageSize * module->min_mem_pages; } void LoadDataSegments(const WasmModule* module, byte* mem_addr, size_t mem_size) { for (const WasmDataSegment& segment : module->data_segments) { if (!segment.init) continue; if (!segment.source_size) continue; CHECK_LT(segment.dest_addr, mem_size); CHECK_LE(segment.source_size, mem_size); CHECK_LE(segment.dest_addr + segment.source_size, mem_size); byte* addr = mem_addr + segment.dest_addr; memcpy(addr, module->module_start + segment.source_offset, segment.source_size); } } Handle<FixedArray> BuildFunctionTable(Isolate* isolate, const WasmModule* module) { // Compute the size of the indirect function table uint32_t table_size = module->FunctionTableSize(); if (table_size == 0) { return Handle<FixedArray>::null(); } Handle<FixedArray> fixed = isolate->factory()->NewFixedArray(2 * table_size); for (uint32_t i = 0; i < static_cast<uint32_t>(module->function_table.size()); ++i) { const WasmFunction* function = &module->functions[module->function_table[i]]; fixed->set(i, Smi::FromInt(function->sig_index)); } return fixed; } Handle<JSArrayBuffer> NewArrayBuffer(Isolate* isolate, size_t size, byte** backing_store) { *backing_store = nullptr; if (size > (WasmModule::kMaxMemPages * WasmModule::kPageSize)) { // TODO(titzer): lift restriction on maximum memory allocated here. return Handle<JSArrayBuffer>::null(); } void* memory = isolate->array_buffer_allocator()->Allocate(size); if (memory == nullptr) { return Handle<JSArrayBuffer>::null(); } *backing_store = reinterpret_cast<byte*>(memory); #if DEBUG // Double check the API allocator actually zero-initialized the memory. byte* bytes = reinterpret_cast<byte*>(*backing_store); for (size_t i = 0; i < size; ++i) { DCHECK_EQ(0, bytes[i]); } #endif Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer(); JSArrayBuffer::Setup(buffer, isolate, false, memory, static_cast<int>(size)); buffer->set_is_neuterable(false); return buffer; } void RelocateInstanceCode(WasmModuleInstance* instance) { for (uint32_t i = 0; i < instance->function_code.size(); ++i) { Handle<Code> function = instance->function_code[i]; AllowDeferredHandleDereference embedding_raw_address; int mask = (1 << RelocInfo::WASM_MEMORY_REFERENCE) | (1 << RelocInfo::WASM_MEMORY_SIZE_REFERENCE); for (RelocIterator it(*function, mask); !it.done(); it.next()) { it.rinfo()->update_wasm_memory_reference( nullptr, instance->mem_start, GetMinModuleMemSize(instance->module), static_cast<uint32_t>(instance->mem_size)); } } } // Set the memory for a module instance to be the {memory} array buffer. void SetMemory(WasmModuleInstance* instance, Handle<JSArrayBuffer> memory) { memory->set_is_neuterable(false); instance->mem_start = reinterpret_cast<byte*>(memory->backing_store()); instance->mem_size = memory->byte_length()->Number(); instance->mem_buffer = memory; RelocateInstanceCode(instance); } // Allocate memory for a module instance as a new JSArrayBuffer. bool AllocateMemory(ErrorThrower* thrower, Isolate* isolate, WasmModuleInstance* instance) { DCHECK(instance->module); DCHECK(instance->mem_buffer.is_null()); if (instance->module->min_mem_pages > WasmModule::kMaxMemPages) { thrower->Error("Out of memory: wasm memory too large"); return false; } instance->mem_size = GetMinModuleMemSize(instance->module); instance->mem_buffer = NewArrayBuffer(isolate, instance->mem_size, &instance->mem_start); if (instance->mem_start == nullptr) { thrower->Error("Out of memory: wasm memory"); instance->mem_size = 0; return false; } RelocateInstanceCode(instance); return true; } bool AllocateGlobals(ErrorThrower* thrower, Isolate* isolate, WasmModuleInstance* instance) { uint32_t globals_size = instance->module->globals_size; if (globals_size > 0) { instance->globals_buffer = NewArrayBuffer(isolate, globals_size, &instance->globals_start); if (!instance->globals_start) { // Not enough space for backing store of globals. thrower->Error("Out of memory: wasm globals"); return false; } for (uint32_t i = 0; i < instance->function_code.size(); ++i) { Handle<Code> function = instance->function_code[i]; AllowDeferredHandleDereference embedding_raw_address; int mask = 1 << RelocInfo::WASM_GLOBAL_REFERENCE; for (RelocIterator it(*function, mask); !it.done(); it.next()) { it.rinfo()->update_wasm_global_reference(nullptr, instance->globals_start); } } } return true; } Handle<Code> CreatePlaceholder(Factory* factory, uint32_t index, Code::Kind kind) { // Create a placeholder code object and encode the corresponding index in // the {constant_pool_offset} field of the code object. // TODO(titzer): placeholder code objects are somewhat dangerous. static byte buffer[] = {0, 0, 0, 0, 0, 0, 0, 0}; // fake instructions. static CodeDesc desc = {buffer, 8, 8, 0, 0, nullptr, 0, nullptr}; Handle<Code> code = factory->NewCode(desc, Code::KindField::encode(kind), Handle<Object>::null()); code->set_constant_pool_offset(static_cast<int>(index) + kPlaceholderMarker); return code; } // TODO(mtrofin): remove when we stop relying on placeholders. void InitializePlaceholders(Factory* factory, std::vector<Handle<Code>>* placeholders, size_t size) { DCHECK(placeholders->empty()); placeholders->reserve(size); for (uint32_t i = 0; i < size; ++i) { placeholders->push_back(CreatePlaceholder(factory, i, Code::WASM_FUNCTION)); } } bool LinkFunction(Handle<Code> unlinked, const std::vector<Handle<Code>>& code_targets, Code::Kind kind) { bool modified = false; int mode_mask = RelocInfo::kCodeTargetMask; AllowDeferredHandleDereference embedding_raw_address; for (RelocIterator it(*unlinked, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (RelocInfo::IsCodeTarget(mode)) { Code* target = Code::GetCodeFromTargetAddress(it.rinfo()->target_address()); if (target->kind() == kind && target->constant_pool_offset() >= kPlaceholderMarker) { // Patch direct calls to placeholder code objects. uint32_t index = target->constant_pool_offset() - kPlaceholderMarker; CHECK(index < code_targets.size()); Handle<Code> new_target = code_targets[index]; if (target != *new_target) { it.rinfo()->set_target_address(new_target->instruction_start(), SKIP_WRITE_BARRIER, SKIP_ICACHE_FLUSH); modified = true; } } } } return modified; } void LinkModuleFunctions(Isolate* isolate, std::vector<Handle<Code>>& functions) { for (size_t i = 0; i < functions.size(); ++i) { Handle<Code> code = functions[i]; bool modified = LinkFunction(code, functions, Code::WASM_FUNCTION); if (modified) { Assembler::FlushICache(isolate, code->instruction_start(), code->instruction_size()); } } } void LinkImports(Isolate* isolate, std::vector<Handle<Code>>& functions, const std::vector<Handle<Code>>& imports) { for (uint32_t i = 0; i < functions.size(); ++i) { Handle<Code> code = functions[i]; bool modified = LinkFunction(code, imports, Code::WASM_TO_JS_FUNCTION); if (modified) { Assembler::FlushICache(isolate, code->instruction_start(), code->instruction_size()); } } } } // namespace WasmModule::WasmModule() : module_start(nullptr), module_end(nullptr), min_mem_pages(0), max_mem_pages(0), mem_export(false), mem_external(false), start_function_index(-1), origin(kWasmOrigin), globals_size(0), indirect_table_size(0), pending_tasks(new base::Semaphore(0)) {} static MaybeHandle<JSFunction> ReportFFIError(ErrorThrower& thrower, const char* error, uint32_t index, wasm::WasmName module_name, wasm::WasmName function_name) { if (!function_name.is_empty()) { thrower.Error("Import #%d module=\"%.*s\" function=\"%.*s\" error: %s", index, module_name.length(), module_name.start(), function_name.length(), function_name.start(), error); } else { thrower.Error("Import #%d module=\"%.*s\" error: %s", index, module_name.length(), module_name.start(), error); } thrower.Error("Import "); return MaybeHandle<JSFunction>(); } static MaybeHandle<JSFunction> LookupFunction( ErrorThrower& thrower, Factory* factory, Handle<JSReceiver> ffi, uint32_t index, wasm::WasmName module_name, wasm::WasmName function_name) { if (ffi.is_null()) { return ReportFFIError(thrower, "FFI is not an object", index, module_name, function_name); } // Look up the module first. Handle<String> name = factory->InternalizeUtf8String(module_name); MaybeHandle<Object> result = Object::GetProperty(ffi, name); if (result.is_null()) { return ReportFFIError(thrower, "module not found", index, module_name, function_name); } Handle<Object> module = result.ToHandleChecked(); if (!module->IsJSReceiver()) { return ReportFFIError(thrower, "module is not an object or function", index, module_name, function_name); } Handle<Object> function; if (!function_name.is_empty()) { // Look up the function in the module. Handle<String> name = factory->InternalizeUtf8String(function_name); MaybeHandle<Object> result = Object::GetProperty(module, name); if (result.is_null()) { return ReportFFIError(thrower, "function not found", index, module_name, function_name); } function = result.ToHandleChecked(); } else { // No function specified. Use the "default export". function = module; } if (!function->IsJSFunction()) { return ReportFFIError(thrower, "not a function", index, module_name, function_name); } return Handle<JSFunction>::cast(function); } namespace { // Fetches the compilation unit of a wasm function and executes its parallel // phase. bool FetchAndExecuteCompilationUnit( Isolate* isolate, std::vector<compiler::WasmCompilationUnit*>* compilation_units, std::queue<compiler::WasmCompilationUnit*>* executed_units, base::Mutex* result_mutex, base::AtomicNumber<size_t>* next_unit) { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; DisallowCodeDependencyChange no_dependency_change; // - 1 because AtomicIntrement returns the value after the atomic increment. size_t index = next_unit->Increment(1) - 1; if (index >= compilation_units->size()) { return false; } compiler::WasmCompilationUnit* unit = compilation_units->at(index); if (unit != nullptr) { unit->ExecuteCompilation(); { base::LockGuard<base::Mutex> guard(result_mutex); executed_units->push(unit); } } return true; } class WasmCompilationTask : public CancelableTask { public: WasmCompilationTask( Isolate* isolate, std::vector<compiler::WasmCompilationUnit*>* compilation_units, std::queue<compiler::WasmCompilationUnit*>* executed_units, base::Semaphore* on_finished, base::Mutex* result_mutex, base::AtomicNumber<size_t>* next_unit) : CancelableTask(isolate), isolate_(isolate), compilation_units_(compilation_units), executed_units_(executed_units), on_finished_(on_finished), result_mutex_(result_mutex), next_unit_(next_unit) {} void RunInternal() override { while (FetchAndExecuteCompilationUnit(isolate_, compilation_units_, executed_units_, result_mutex_, next_unit_)) { } on_finished_->Signal(); } Isolate* isolate_; std::vector<compiler::WasmCompilationUnit*>* compilation_units_; std::queue<compiler::WasmCompilationUnit*>* executed_units_; base::Semaphore* on_finished_; base::Mutex* result_mutex_; base::AtomicNumber<size_t>* next_unit_; }; // Records statistics on the code generated by compiling WASM functions. struct CodeStats { size_t code_size; size_t reloc_size; inline CodeStats() : code_size(0), reloc_size(0) {} inline void Record(Code* code) { code_size += code->body_size(); reloc_size += code->relocation_info()->length(); } inline void Report() { PrintF("Total generated wasm code: %zu bytes\n", code_size); PrintF("Total generated wasm reloc: %zu bytes\n", reloc_size); } }; bool CompileWrappersToImportedFunctions( Isolate* isolate, const WasmModule* module, const Handle<JSReceiver> ffi, WasmModuleInstance* instance, ErrorThrower* thrower, Factory* factory) { if (module->import_table.size() > 0) { instance->import_code.reserve(module->import_table.size()); for (uint32_t index = 0; index < module->import_table.size(); ++index) { const WasmImport& import = module->import_table[index]; WasmName module_name = module->GetNameOrNull(import.module_name_offset, import.module_name_length); WasmName function_name = module->GetNameOrNull( import.function_name_offset, import.function_name_length); MaybeHandle<JSFunction> function = LookupFunction( *thrower, factory, ffi, index, module_name, function_name); if (function.is_null()) return false; Handle<Code> code = compiler::CompileWasmToJSWrapper( isolate, function.ToHandleChecked(), import.sig, module_name, function_name); instance->import_code[index] = code; } } return true; } void InitializeParallelCompilation( Isolate* isolate, const std::vector<WasmFunction>& functions, std::vector<compiler::WasmCompilationUnit*>& compilation_units, ModuleEnv& module_env, ErrorThrower& thrower) { for (uint32_t i = FLAG_skip_compiling_wasm_funcs; i < functions.size(); ++i) { compilation_units[i] = new compiler::WasmCompilationUnit( &thrower, isolate, &module_env, &functions[i], i); } } uint32_t* StartCompilationTasks( Isolate* isolate, std::vector<compiler::WasmCompilationUnit*>& compilation_units, std::queue<compiler::WasmCompilationUnit*>& executed_units, base::Semaphore* pending_tasks, base::Mutex& result_mutex, base::AtomicNumber<size_t>& next_unit) { const size_t num_tasks = Min(static_cast<size_t>(FLAG_wasm_num_compilation_tasks), V8::GetCurrentPlatform()->NumberOfAvailableBackgroundThreads()); uint32_t* task_ids = new uint32_t[num_tasks]; for (size_t i = 0; i < num_tasks; ++i) { WasmCompilationTask* task = new WasmCompilationTask(isolate, &compilation_units, &executed_units, pending_tasks, &result_mutex, &next_unit); task_ids[i] = task->id(); V8::GetCurrentPlatform()->CallOnBackgroundThread( task, v8::Platform::kShortRunningTask); } return task_ids; } void WaitForCompilationTasks(Isolate* isolate, uint32_t* task_ids, base::Semaphore* pending_tasks) { const size_t num_tasks = Min(static_cast<size_t>(FLAG_wasm_num_compilation_tasks), V8::GetCurrentPlatform()->NumberOfAvailableBackgroundThreads()); for (size_t i = 0; i < num_tasks; ++i) { // If the task has not started yet, then we abort it. Otherwise we wait for // it to finish. if (!isolate->cancelable_task_manager()->TryAbort(task_ids[i])) { pending_tasks->Wait(); } } } void FinishCompilationUnits( std::queue<compiler::WasmCompilationUnit*>& executed_units, std::vector<Handle<Code>>& results, base::Mutex& result_mutex) { while (true) { compiler::WasmCompilationUnit* unit = nullptr; { base::LockGuard<base::Mutex> guard(&result_mutex); if (executed_units.empty()) { break; } unit = executed_units.front(); executed_units.pop(); } int j = unit->index(); results[j] = unit->FinishCompilation(); delete unit; } } void CompileInParallel(Isolate* isolate, const WasmModule* module, std::vector<Handle<Code>>& functions, ErrorThrower* thrower, ModuleEnv* module_env) { // Data structures for the parallel compilation. std::vector<compiler::WasmCompilationUnit*> compilation_units( module->functions.size()); std::queue<compiler::WasmCompilationUnit*> executed_units; //----------------------------------------------------------------------- // For parallel compilation: // 1) The main thread allocates a compilation unit for each wasm function // and stores them in the vector {compilation_units}. // 2) The main thread spawns {WasmCompilationTask} instances which run on // the background threads. // 3.a) The background threads and the main thread pick one compilation // unit at a time and execute the parallel phase of the compilation // unit. After finishing the execution of the parallel phase, the // result is enqueued in {executed_units}. // 3.b) If {executed_units} contains a compilation unit, the main thread // dequeues it and finishes the compilation. // 4) After the parallel phase of all compilation units has started, the // main thread waits for all {WasmCompilationTask} instances to finish. // 5) The main thread finishes the compilation. // Turn on the {CanonicalHandleScope} so that the background threads can // use the node cache. CanonicalHandleScope canonical(isolate); // 1) The main thread allocates a compilation unit for each wasm function // and stores them in the vector {compilation_units}. InitializeParallelCompilation(isolate, module->functions, compilation_units, *module_env, *thrower); // Objects for the synchronization with the background threads. base::Mutex result_mutex; base::AtomicNumber<size_t> next_unit( static_cast<size_t>(FLAG_skip_compiling_wasm_funcs)); // 2) The main thread spawns {WasmCompilationTask} instances which run on // the background threads. base::SmartArrayPointer<uint32_t> task_ids(StartCompilationTasks( isolate, compilation_units, executed_units, module->pending_tasks.get(), result_mutex, next_unit)); // 3.a) The background threads and the main thread pick one compilation // unit at a time and execute the parallel phase of the compilation // unit. After finishing the execution of the parallel phase, the // result is enqueued in {executed_units}. while (FetchAndExecuteCompilationUnit(isolate, &compilation_units, &executed_units, &result_mutex, &next_unit)) { // 3.b) If {executed_units} contains a compilation unit, the main thread // dequeues it and finishes the compilation unit. Compilation units // are finished concurrently to the background threads to save // memory. FinishCompilationUnits(executed_units, functions, result_mutex); } // 4) After the parallel phase of all compilation units has started, the // main thread waits for all {WasmCompilationTask} instances to finish. WaitForCompilationTasks(isolate, task_ids.get(), module->pending_tasks.get()); // Finish the compilation of the remaining compilation units. FinishCompilationUnits(executed_units, functions, result_mutex); } void CompileSequentially(Isolate* isolate, const WasmModule* module, std::vector<Handle<Code>>& functions, ErrorThrower* thrower, ModuleEnv* module_env) { DCHECK(!thrower->error()); for (uint32_t i = FLAG_skip_compiling_wasm_funcs; i < module->functions.size(); ++i) { const WasmFunction& func = module->functions[i]; DCHECK_EQ(i, func.func_index); WasmName str = module->GetName(func.name_offset, func.name_length); Handle<Code> code = Handle<Code>::null(); // Compile the function. code = compiler::WasmCompilationUnit::CompileWasmFunction( thrower, isolate, module_env, &func); if (code.is_null()) { thrower->Error("Compilation of #%d:%.*s failed.", i, str.length(), str.start()); break; } // Install the code into the linker table. functions[i] = code; } } void PopulateFunctionTable(WasmModuleInstance* instance) { if (!instance->function_table.is_null()) { uint32_t table_size = instance->module->FunctionTableSize(); DCHECK_EQ(table_size * 2, instance->function_table->length()); uint32_t populated_table_size = static_cast<uint32_t>(instance->module->function_table.size()); for (uint32_t i = 0; i < populated_table_size; ++i) { instance->function_table->set( i + table_size, *instance->function_code[instance->module->function_table[i]]); } } } } // namespace void SetDeoptimizationData(Factory* factory, Handle<JSObject> js_object, std::vector<Handle<Code>>& functions) { for (size_t i = FLAG_skip_compiling_wasm_funcs; i < functions.size(); ++i) { Handle<Code> code = functions[i]; DCHECK(code->deoptimization_data() == nullptr || code->deoptimization_data()->length() == 0); Handle<FixedArray> deopt_data = factory->NewFixedArray(2, TENURED); if (!js_object.is_null()) { deopt_data->set(0, *js_object); } deopt_data->set(1, Smi::FromInt(static_cast<int>(i))); deopt_data->set_length(2); code->set_deoptimization_data(*deopt_data); } } Handle<FixedArray> WasmModule::CompileFunctions(Isolate* isolate) const { Factory* factory = isolate->factory(); ErrorThrower thrower(isolate, "WasmModule::CompileFunctions()"); WasmModuleInstance temp_instance_for_compilation(this); temp_instance_for_compilation.function_table = BuildFunctionTable(isolate, this); temp_instance_for_compilation.context = isolate->native_context(); temp_instance_for_compilation.mem_size = GetMinModuleMemSize(this); temp_instance_for_compilation.mem_start = nullptr; temp_instance_for_compilation.globals_start = nullptr; ModuleEnv module_env; module_env.module = this; module_env.instance = &temp_instance_for_compilation; module_env.origin = origin; InitializePlaceholders(factory, &module_env.placeholders, functions.size()); Handle<FixedArray> ret = factory->NewFixedArray(static_cast<int>(functions.size()), TENURED); temp_instance_for_compilation.import_code.resize(import_table.size()); for (uint32_t i = 0; i < import_table.size(); ++i) { temp_instance_for_compilation.import_code[i] = CreatePlaceholder(factory, i, Code::WASM_TO_JS_FUNCTION); } isolate->counters()->wasm_functions_per_module()->AddSample( static_cast<int>(functions.size())); if (FLAG_wasm_num_compilation_tasks != 0) { CompileInParallel(isolate, this, temp_instance_for_compilation.function_code, &thrower, &module_env); } else { CompileSequentially(isolate, this, temp_instance_for_compilation.function_code, &thrower, &module_env); } if (thrower.error()) { return Handle<FixedArray>::null(); } LinkModuleFunctions(isolate, temp_instance_for_compilation.function_code); // At this point, compilation has completed. Update the code table // and record sizes. for (size_t i = FLAG_skip_compiling_wasm_funcs; i < temp_instance_for_compilation.function_code.size(); ++i) { Code* code = *temp_instance_for_compilation.function_code[i]; ret->set(static_cast<int>(i), code); } PopulateFunctionTable(&temp_instance_for_compilation); return ret; } // Instantiates a wasm module as a JSObject. // * allocates a backing store of {mem_size} bytes. // * installs a named property "memory" for that buffer if exported // * installs named properties on the object for exported functions // * compiles wasm code to machine code MaybeHandle<JSObject> WasmModule::Instantiate( Isolate* isolate, Handle<JSReceiver> ffi, Handle<JSArrayBuffer> memory) const { HistogramTimerScope wasm_instantiate_module_time_scope( isolate->counters()->wasm_instantiate_module_time()); ErrorThrower thrower(isolate, "WasmModule::Instantiate()"); Factory* factory = isolate->factory(); //------------------------------------------------------------------------- // Allocate the instance and its JS counterpart. //------------------------------------------------------------------------- Handle<Map> map = factory->NewMap( JS_OBJECT_TYPE, JSObject::kHeaderSize + kWasmModuleInternalFieldCount * kPointerSize); WasmModuleInstance instance(this); instance.context = isolate->native_context(); instance.js_object = factory->NewJSObjectFromMap(map, TENURED); Handle<FixedArray> code_table = CompileFunctions(isolate); if (code_table.is_null()) return Handle<JSObject>::null(); instance.js_object->SetInternalField(kWasmModuleCodeTable, *code_table); size_t module_bytes_len = instance.module->module_end - instance.module->module_start; DCHECK_LE(module_bytes_len, static_cast<size_t>(kMaxInt)); Vector<const uint8_t> module_bytes_vec(instance.module->module_start, static_cast<int>(module_bytes_len)); Handle<String> module_bytes_string = factory->NewStringFromOneByte(module_bytes_vec, TENURED) .ToHandleChecked(); instance.js_object->SetInternalField(kWasmModuleBytesString, *module_bytes_string); for (uint32_t i = 0; i < functions.size(); ++i) { Handle<Code> code = Handle<Code>(Code::cast(code_table->get(i))); instance.function_code[i] = code; } //------------------------------------------------------------------------- // Allocate and initialize the linear memory. //------------------------------------------------------------------------- isolate->counters()->wasm_min_mem_pages_count()->AddSample( instance.module->min_mem_pages); isolate->counters()->wasm_max_mem_pages_count()->AddSample( instance.module->max_mem_pages); if (memory.is_null()) { if (!AllocateMemory(&thrower, isolate, &instance)) { return MaybeHandle<JSObject>(); } } else { SetMemory(&instance, memory); } instance.js_object->SetInternalField(kWasmMemArrayBuffer, *instance.mem_buffer); LoadDataSegments(this, instance.mem_start, instance.mem_size); //------------------------------------------------------------------------- // Allocate the globals area if necessary. //------------------------------------------------------------------------- if (!AllocateGlobals(&thrower, isolate, &instance)) { return MaybeHandle<JSObject>(); } if (!instance.globals_buffer.is_null()) { instance.js_object->SetInternalField(kWasmGlobalsArrayBuffer, *instance.globals_buffer); } HistogramTimerScope wasm_compile_module_time_scope( isolate->counters()->wasm_compile_module_time()); ModuleEnv module_env; module_env.module = this; module_env.instance = &instance; module_env.origin = origin; //------------------------------------------------------------------------- // Compile wrappers to imported functions. //------------------------------------------------------------------------- if (!CompileWrappersToImportedFunctions(isolate, this, ffi, &instance, &thrower, factory)) { return MaybeHandle<JSObject>(); } // If FLAG_print_wasm_code_size is set, this aggregates the sum of all code // objects created for this module. // TODO(titzer): switch this to TRACE_EVENT CodeStats code_stats; if (FLAG_print_wasm_code_size) { for (Handle<Code> c : instance.function_code) code_stats.Record(*c); for (Handle<Code> c : instance.import_code) code_stats.Record(*c); } { instance.js_object->SetInternalField(kWasmModuleFunctionTable, Smi::FromInt(0)); LinkImports(isolate, instance.function_code, instance.import_code); SetDeoptimizationData(factory, instance.js_object, instance.function_code); //------------------------------------------------------------------------- // Create and populate the exports object. //------------------------------------------------------------------------- if (export_table.size() > 0 || mem_export) { Handle<JSObject> exports_object; if (origin == kWasmOrigin) { // Create the "exports" object. Handle<JSFunction> object_function = Handle<JSFunction>( isolate->native_context()->object_function(), isolate); exports_object = factory->NewJSObject(object_function, TENURED); Handle<String> exports_name = factory->InternalizeUtf8String("exports"); JSObject::AddProperty(instance.js_object, exports_name, exports_object, READ_ONLY); } else { // Just export the functions directly on the object returned. exports_object = instance.js_object; } PropertyDescriptor desc; desc.set_writable(false); // Compile wrappers and add them to the exports object. for (const WasmExport& exp : export_table) { if (thrower.error()) break; WasmName str = GetName(exp.name_offset, exp.name_length); Handle<String> name = factory->InternalizeUtf8String(str); Handle<Code> code = instance.function_code[exp.func_index]; Handle<JSFunction> function = compiler::CompileJSToWasmWrapper( isolate, &module_env, name, code, instance.js_object, exp.func_index); if (FLAG_print_wasm_code_size) { code_stats.Record(function->code()); } desc.set_value(function); Maybe<bool> status = JSReceiver::DefineOwnProperty( isolate, exports_object, name, &desc, Object::THROW_ON_ERROR); if (!status.IsJust()) { thrower.Error("export of %.*s failed.", str.length(), str.start()); break; } } if (mem_export) { // Export the memory as a named property. Handle<String> name = factory->InternalizeUtf8String("memory"); JSObject::AddProperty(exports_object, name, instance.mem_buffer, READ_ONLY); } } } if (FLAG_print_wasm_code_size) { code_stats.Report(); } //------------------------------------------------------------------------- // Attach the function name table. //------------------------------------------------------------------------- Handle<ByteArray> function_name_table = BuildFunctionNamesTable(isolate, module_env.module); instance.js_object->SetInternalField(kWasmFunctionNamesArray, *function_name_table); // Run the start function if one was specified. if (this->start_function_index >= 0) { HandleScope scope(isolate); uint32_t index = static_cast<uint32_t>(this->start_function_index); Handle<String> name = isolate->factory()->NewStringFromStaticChars("start"); Handle<Code> code = instance.function_code[index]; Handle<JSFunction> jsfunc = compiler::CompileJSToWasmWrapper( isolate, &module_env, name, code, instance.js_object, index); // Call the JS function. Handle<Object> undefined = isolate->factory()->undefined_value(); MaybeHandle<Object> retval = Execution::Call(isolate, jsfunc, undefined, 0, nullptr); if (retval.is_null()) { thrower.Error("WASM.instantiateModule(): start function failed"); } } return instance.js_object; } // TODO(mtrofin): remove this once we move to WASM_DIRECT_CALL Handle<Code> ModuleEnv::GetCodeOrPlaceholder(uint32_t index) const { DCHECK(IsValidFunction(index)); if (!placeholders.empty()) return placeholders[index]; DCHECK_NOT_NULL(instance); return instance->function_code[index]; } Handle<Code> ModuleEnv::GetImportCode(uint32_t index) { DCHECK(IsValidImport(index)); return instance ? instance->import_code[index] : Handle<Code>::null(); } compiler::CallDescriptor* ModuleEnv::GetCallDescriptor(Zone* zone, uint32_t index) { DCHECK(IsValidFunction(index)); // Always make a direct call to whatever is in the table at that location. // A wrapper will be generated for FFI calls. const WasmFunction* function = &module->functions[index]; return GetWasmCallDescriptor(zone, function->sig); } Handle<Object> GetWasmFunctionNameOrNull(Isolate* isolate, Handle<Object> wasm, uint32_t func_index) { if (!wasm->IsUndefined(isolate)) { Handle<ByteArray> func_names_arr_obj( ByteArray::cast(Handle<JSObject>::cast(wasm)->GetInternalField( kWasmFunctionNamesArray)), isolate); // TODO(clemens): Extract this from the module bytes; skip whole function // name table. Handle<Object> name; if (GetWasmFunctionNameFromTable(func_names_arr_obj, func_index) .ToHandle(&name)) { return name; } } return isolate->factory()->null_value(); } Handle<String> GetWasmFunctionName(Isolate* isolate, Handle<Object> wasm, uint32_t func_index) { Handle<Object> name_or_null = GetWasmFunctionNameOrNull(isolate, wasm, func_index); if (!name_or_null->IsNull(isolate)) { return Handle<String>::cast(name_or_null); } return isolate->factory()->NewStringFromStaticChars("<WASM UNNAMED>"); } bool IsWasmObject(Object* object) { if (!object->IsJSObject()) return false; JSObject* obj = JSObject::cast(object); if (obj->GetInternalFieldCount() != kWasmModuleInternalFieldCount || !obj->GetInternalField(kWasmModuleCodeTable)->IsFixedArray() || !obj->GetInternalField(kWasmMemArrayBuffer)->IsJSArrayBuffer() || !obj->GetInternalField(kWasmFunctionNamesArray)->IsByteArray() || !obj->GetInternalField(kWasmModuleBytesString)->IsSeqOneByteString()) { return false; } DisallowHeapAllocation no_gc; SeqOneByteString* bytes = SeqOneByteString::cast(obj->GetInternalField(kWasmModuleBytesString)); if (bytes->length() < 4) return false; if (memcmp(bytes->GetChars(), "\0asm", 4)) return false; // All checks passed. return true; } SeqOneByteString* GetWasmBytes(JSObject* wasm) { return SeqOneByteString::cast(wasm->GetInternalField(kWasmModuleBytesString)); } WasmDebugInfo* GetDebugInfo(JSObject* wasm) { Object* info = wasm->GetInternalField(kWasmDebugInfo); if (!info->IsUndefined(wasm->GetIsolate())) return WasmDebugInfo::cast(info); Handle<WasmDebugInfo> new_info = WasmDebugInfo::New(handle(wasm)); wasm->SetInternalField(kWasmDebugInfo, *new_info); return *new_info; } namespace testing { int32_t CompileAndRunWasmModule(Isolate* isolate, const byte* module_start, const byte* module_end, bool asm_js) { HandleScope scope(isolate); Zone zone(isolate->allocator()); ErrorThrower thrower(isolate, "CompileAndRunWasmModule"); // Decode the module, but don't verify function bodies, since we'll // be compiling them anyway. ModuleResult decoding_result = DecodeWasmModule(isolate, &zone, module_start, module_end, false, asm_js ? kAsmJsOrigin : kWasmOrigin); std::unique_ptr<const WasmModule> module(decoding_result.val); if (decoding_result.failed()) { // Module verification failed. throw. thrower.Error("WASM.compileRun() failed: %s", decoding_result.error_msg.get()); return -1; } if (module->import_table.size() > 0) { thrower.Error("Not supported: module has imports."); } if (module->export_table.size() == 0) { thrower.Error("Not supported: module has no exports."); } if (thrower.error()) return -1; Handle<JSObject> instance = module ->Instantiate(isolate, Handle<JSReceiver>::null(), Handle<JSArrayBuffer>::null()) .ToHandleChecked(); Handle<Name> exports = isolate->factory()->InternalizeUtf8String("exports"); Handle<JSObject> exports_object = Handle<JSObject>::cast( JSObject::GetProperty(instance, exports).ToHandleChecked()); Handle<Name> main_name = isolate->factory()->NewStringFromStaticChars("main"); PropertyDescriptor desc; Maybe<bool> property_found = JSReceiver::GetOwnPropertyDescriptor( isolate, exports_object, main_name, &desc); if (!property_found.FromMaybe(false)) return -1; Handle<JSFunction> main_export = Handle<JSFunction>::cast(desc.value()); // Call the JS function. Handle<Object> undefined = isolate->factory()->undefined_value(); MaybeHandle<Object> retval = Execution::Call(isolate, main_export, undefined, 0, nullptr); // The result should be a number. if (retval.is_null()) { thrower.Error("WASM.compileRun() failed: Invocation was null"); return -1; } Handle<Object> result = retval.ToHandleChecked(); if (result->IsSmi()) { return Smi::cast(*result)->value(); } if (result->IsHeapNumber()) { return static_cast<int32_t>(HeapNumber::cast(*result)->value()); } thrower.Error("WASM.compileRun() failed: Return value should be number"); return -1; } } // namespace testing } // namespace wasm } // namespace internal } // namespace v8