// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/typing-asm.h" #include <limits> #include "src/v8.h" #include "src/ast/ast.h" #include "src/ast/scopes.h" #include "src/codegen.h" #include "src/type-cache.h" namespace v8 { namespace internal { #define FAIL(node, msg) \ do { \ valid_ = false; \ int line = node->position() == RelocInfo::kNoPosition \ ? -1 \ : script_->GetLineNumber(node->position()); \ base::OS::SNPrintF(error_message_, sizeof(error_message_), \ "asm: line %d: %s\n", line + 1, msg); \ return; \ } while (false) #define RECURSE(call) \ do { \ DCHECK(!HasStackOverflow()); \ call; \ if (HasStackOverflow()) return; \ if (!valid_) return; \ } while (false) AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script, FunctionLiteral* root) : zone_(zone), isolate_(isolate), script_(script), root_(root), valid_(true), allow_simd_(false), property_info_(nullptr), intish_(0), stdlib_types_(zone), stdlib_heap_types_(zone), stdlib_math_types_(zone), #define V(NAME, Name, name, lane_count, lane_type) \ stdlib_simd_##name##_types_(zone), SIMD128_TYPES(V) #undef V global_variable_type_(base::HashMap::PointersMatch, ZoneHashMap::kDefaultHashMapCapacity, ZoneAllocationPolicy(zone)), local_variable_type_(base::HashMap::PointersMatch, ZoneHashMap::kDefaultHashMapCapacity, ZoneAllocationPolicy(zone)), in_function_(false), building_function_tables_(false), visiting_exports_(false), cache_(TypeCache::Get()), bounds_(zone) { InitializeAstVisitor(isolate); InitializeStdlib(); } bool AsmTyper::Validate() { VisitAsmModule(root_); return valid_ && !HasStackOverflow(); } void AsmTyper::VisitAsmModule(FunctionLiteral* fun) { Scope* scope = fun->scope(); if (!scope->is_function_scope()) FAIL(fun, "not at function scope"); ExpressionStatement* use_asm = fun->body()->first()->AsExpressionStatement(); if (use_asm == nullptr) FAIL(fun, "missing \"use asm\""); Literal* use_asm_literal = use_asm->expression()->AsLiteral(); if (use_asm_literal == nullptr) FAIL(fun, "missing \"use asm\""); if (!use_asm_literal->raw_value()->AsString()->IsOneByteEqualTo("use asm")) FAIL(fun, "missing \"use asm\""); // Module parameters. for (int i = 0; i < scope->num_parameters(); ++i) { Variable* param = scope->parameter(i); DCHECK(GetType(param) == nullptr); SetType(param, Type::None()); } ZoneList<Declaration*>* decls = scope->declarations(); // Set all globals to type Any. VariableDeclaration* decl = scope->function(); if (decl != nullptr) SetType(decl->proxy()->var(), Type::None()); RECURSE(VisitDeclarations(scope->declarations())); // Validate global variables. RECURSE(VisitStatements(fun->body())); // Validate function annotations. for (int i = 0; i < decls->length(); ++i) { FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration(); if (decl != nullptr) { RECURSE(VisitFunctionAnnotation(decl->fun())); Variable* var = decl->proxy()->var(); if (property_info_ != nullptr) { SetVariableInfo(var, property_info_); property_info_ = nullptr; } SetType(var, computed_type_); DCHECK(GetType(var) != nullptr); } } // Build function tables. building_function_tables_ = true; RECURSE(VisitStatements(fun->body())); building_function_tables_ = false; // Validate function bodies. for (int i = 0; i < decls->length(); ++i) { FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration(); if (decl != nullptr) { RECURSE(VisitWithExpectation(decl->fun(), Type::Any(), "UNREACHABLE")); if (!computed_type_->IsFunction()) { FAIL(decl->fun(), "function literal expected to be a function"); } } } // Validate exports. visiting_exports_ = true; ReturnStatement* stmt = fun->body()->last()->AsReturnStatement(); if (stmt == nullptr) { FAIL(fun->body()->last(), "last statement in module is not a return"); } RECURSE(VisitWithExpectation(stmt->expression(), Type::Object(), "expected object export")); } void AsmTyper::VisitVariableDeclaration(VariableDeclaration* decl) { Variable* var = decl->proxy()->var(); if (var->location() != VariableLocation::PARAMETER) { if (GetType(var) == nullptr) { SetType(var, Type::Any()); } else { DCHECK(!GetType(var)->IsFunction()); } } DCHECK(GetType(var) != nullptr); intish_ = 0; } void AsmTyper::VisitFunctionDeclaration(FunctionDeclaration* decl) { if (in_function_) { FAIL(decl, "function declared inside another"); } // Set function type so global references to functions have some type // (so they can give a more useful error). Variable* var = decl->proxy()->var(); if (GetVariableInfo(var)) { // Detect previously-seen functions. FAIL(decl->fun(), "function repeated in module"); } SetType(var, Type::Function()); } void AsmTyper::VisitFunctionAnnotation(FunctionLiteral* fun) { // Extract result type. ZoneList<Statement*>* body = fun->body(); Type* result_type = Type::Undefined(); if (body->length() > 0) { ReturnStatement* stmt = body->last()->AsReturnStatement(); if (stmt != nullptr) { Literal* literal = stmt->expression()->AsLiteral(); Type* old_expected = expected_type_; expected_type_ = Type::Any(); if (literal) { RECURSE(VisitLiteral(literal, true)); } else { RECURSE(VisitExpressionAnnotation(stmt->expression(), nullptr, true)); } expected_type_ = old_expected; result_type = computed_type_; } } Type* type = Type::Function(result_type, Type::Any(), fun->parameter_count(), zone()); // Extract parameter types. bool good = true; for (int i = 0; i < fun->parameter_count(); ++i) { good = false; if (i >= body->length()) break; ExpressionStatement* stmt = body->at(i)->AsExpressionStatement(); if (stmt == nullptr) break; Assignment* expr = stmt->expression()->AsAssignment(); if (expr == nullptr || expr->is_compound()) break; VariableProxy* proxy = expr->target()->AsVariableProxy(); if (proxy == nullptr) break; Variable* var = proxy->var(); if (var->location() != VariableLocation::PARAMETER || var->index() != i) break; RECURSE(VisitExpressionAnnotation(expr->value(), var, false)); if (property_info_ != nullptr) { SetVariableInfo(var, property_info_); property_info_ = nullptr; } SetType(var, computed_type_); type->AsFunction()->InitParameter(i, computed_type_); good = true; } if (!good) FAIL(fun, "missing parameter type annotations"); SetResult(fun, type); } void AsmTyper::VisitExpressionAnnotation(Expression* expr, Variable* var, bool is_return) { // Normal +x or x|0 annotations. BinaryOperation* bin = expr->AsBinaryOperation(); if (bin != nullptr) { if (var != nullptr) { VariableProxy* proxy = bin->left()->AsVariableProxy(); if (proxy == nullptr) { FAIL(bin->left(), "expected variable for type annotation"); } if (proxy->var() != var) { FAIL(proxy, "annotation source doesn't match destination"); } } Literal* right = bin->right()->AsLiteral(); if (right != nullptr) { switch (bin->op()) { case Token::MUL: // We encode +x as x*1.0 if (right->raw_value()->ContainsDot() && right->raw_value()->AsNumber() == 1.0) { SetResult(expr, cache_.kAsmDouble); return; } break; case Token::BIT_OR: if (!right->raw_value()->ContainsDot() && right->raw_value()->AsNumber() == 0.0) { if (is_return) { SetResult(expr, cache_.kAsmSigned); } else { SetResult(expr, cache_.kAsmInt); } return; } break; default: break; } } FAIL(expr, "invalid type annotation on binary op"); } // Numbers or the undefined literal (for empty returns). if (expr->IsLiteral()) { RECURSE(VisitWithExpectation(expr, Type::Any(), "invalid literal")); return; } Call* call = expr->AsCall(); if (call != nullptr) { VariableProxy* proxy = call->expression()->AsVariableProxy(); if (proxy != nullptr) { VariableInfo* info = GetVariableInfo(proxy->var()); if (!info || (!info->is_check_function && !info->is_constructor_function)) { if (allow_simd_) { FAIL(call->expression(), "only fround/SIMD.checks allowed on expression annotations"); } else { FAIL(call->expression(), "only fround allowed on expression annotations"); } } Type* type = info->type; DCHECK(type->IsFunction()); if (info->is_check_function) { DCHECK(type->AsFunction()->Arity() == 1); } if (call->arguments()->length() != type->AsFunction()->Arity()) { FAIL(call, "invalid argument count calling function"); } SetResult(expr, type->AsFunction()->Result()); return; } } FAIL(expr, "invalid type annotation"); } void AsmTyper::VisitStatements(ZoneList<Statement*>* stmts) { for (int i = 0; i < stmts->length(); ++i) { Statement* stmt = stmts->at(i); RECURSE(Visit(stmt)); } } void AsmTyper::VisitBlock(Block* stmt) { RECURSE(VisitStatements(stmt->statements())); } void AsmTyper::VisitExpressionStatement(ExpressionStatement* stmt) { RECURSE(VisitWithExpectation(stmt->expression(), Type::Any(), "expression statement expected to be any")); } void AsmTyper::VisitEmptyStatement(EmptyStatement* stmt) {} void AsmTyper::VisitSloppyBlockFunctionStatement( SloppyBlockFunctionStatement* stmt) { Visit(stmt->statement()); } void AsmTyper::VisitEmptyParentheses(EmptyParentheses* expr) { UNREACHABLE(); } void AsmTyper::VisitIfStatement(IfStatement* stmt) { if (!in_function_) { FAIL(stmt, "if statement inside module body"); } RECURSE(VisitWithExpectation(stmt->condition(), cache_.kAsmSigned, "if condition expected to be integer")); RECURSE(Visit(stmt->then_statement())); RECURSE(Visit(stmt->else_statement())); } void AsmTyper::VisitContinueStatement(ContinueStatement* stmt) { if (!in_function_) { FAIL(stmt, "continue statement inside module body"); } } void AsmTyper::VisitBreakStatement(BreakStatement* stmt) { if (!in_function_) { FAIL(stmt, "continue statement inside module body"); } } void AsmTyper::VisitReturnStatement(ReturnStatement* stmt) { // Handle module return statement in VisitAsmModule. if (!in_function_) { return; } Literal* literal = stmt->expression()->AsLiteral(); if (literal) { VisitLiteral(literal, true); } else { RECURSE( VisitWithExpectation(stmt->expression(), Type::Any(), "return expression expected to have return type")); } if (!computed_type_->Is(return_type_) || !return_type_->Is(computed_type_)) { FAIL(stmt->expression(), "return type does not match function signature"); } } void AsmTyper::VisitWithStatement(WithStatement* stmt) { FAIL(stmt, "bad with statement"); } void AsmTyper::VisitSwitchStatement(SwitchStatement* stmt) { if (!in_function_) { FAIL(stmt, "switch statement inside module body"); } RECURSE(VisitWithExpectation(stmt->tag(), cache_.kAsmSigned, "switch expression non-integer")); ZoneList<CaseClause*>* clauses = stmt->cases(); ZoneSet<int32_t> cases(zone()); for (int i = 0; i < clauses->length(); ++i) { CaseClause* clause = clauses->at(i); if (clause->is_default()) { if (i != clauses->length() - 1) { FAIL(clause, "default case out of order"); } } else { Expression* label = clause->label(); RECURSE(VisitWithExpectation(label, cache_.kAsmSigned, "case label non-integer")); if (!label->IsLiteral()) FAIL(label, "non-literal case label"); Handle<Object> value = label->AsLiteral()->value(); int32_t value32; if (!value->ToInt32(&value32)) FAIL(label, "illegal case label value"); if (cases.find(value32) != cases.end()) { FAIL(label, "duplicate case value"); } cases.insert(value32); } // TODO(bradnelson): Detect duplicates. ZoneList<Statement*>* stmts = clause->statements(); RECURSE(VisitStatements(stmts)); } if (cases.size() > 0) { int64_t min_case = *cases.begin(); int64_t max_case = *cases.rbegin(); if (max_case - min_case > std::numeric_limits<int32_t>::max()) { FAIL(stmt, "case range too large"); } } } void AsmTyper::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); } void AsmTyper::VisitDoWhileStatement(DoWhileStatement* stmt) { if (!in_function_) { FAIL(stmt, "do statement inside module body"); } RECURSE(Visit(stmt->body())); RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned, "do condition expected to be integer")); } void AsmTyper::VisitWhileStatement(WhileStatement* stmt) { if (!in_function_) { FAIL(stmt, "while statement inside module body"); } RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned, "while condition expected to be integer")); RECURSE(Visit(stmt->body())); } void AsmTyper::VisitForStatement(ForStatement* stmt) { if (!in_function_) { FAIL(stmt, "for statement inside module body"); } if (stmt->init() != nullptr) { RECURSE(Visit(stmt->init())); } if (stmt->cond() != nullptr) { RECURSE(VisitWithExpectation(stmt->cond(), cache_.kAsmSigned, "for condition expected to be integer")); } if (stmt->next() != nullptr) { RECURSE(Visit(stmt->next())); } RECURSE(Visit(stmt->body())); } void AsmTyper::VisitForInStatement(ForInStatement* stmt) { FAIL(stmt, "for-in statement encountered"); } void AsmTyper::VisitForOfStatement(ForOfStatement* stmt) { FAIL(stmt, "for-of statement encountered"); } void AsmTyper::VisitTryCatchStatement(TryCatchStatement* stmt) { FAIL(stmt, "try statement encountered"); } void AsmTyper::VisitTryFinallyStatement(TryFinallyStatement* stmt) { FAIL(stmt, "try statement encountered"); } void AsmTyper::VisitDebuggerStatement(DebuggerStatement* stmt) { FAIL(stmt, "debugger statement encountered"); } void AsmTyper::VisitFunctionLiteral(FunctionLiteral* expr) { if (in_function_) { FAIL(expr, "invalid nested function"); } Scope* scope = expr->scope(); DCHECK(scope->is_function_scope()); if (!bounds_.get(expr).upper->IsFunction()) { FAIL(expr, "invalid function literal"); } Type* type = bounds_.get(expr).upper; Type* save_return_type = return_type_; return_type_ = type->AsFunction()->Result(); in_function_ = true; local_variable_type_.Clear(); RECURSE(VisitDeclarations(scope->declarations())); RECURSE(VisitStatements(expr->body())); in_function_ = false; return_type_ = save_return_type; RECURSE(IntersectResult(expr, type)); } void AsmTyper::VisitNativeFunctionLiteral(NativeFunctionLiteral* expr) { FAIL(expr, "function info literal encountered"); } void AsmTyper::VisitDoExpression(DoExpression* expr) { FAIL(expr, "do-expression encountered"); } void AsmTyper::VisitConditional(Conditional* expr) { if (!in_function_) { FAIL(expr, "ternary operator inside module body"); } RECURSE(VisitWithExpectation(expr->condition(), Type::Number(), "condition expected to be integer")); if (!computed_type_->Is(cache_.kAsmInt)) { FAIL(expr->condition(), "condition must be of type int"); } RECURSE(VisitWithExpectation( expr->then_expression(), expected_type_, "conditional then branch type mismatch with enclosing expression")); Type* then_type = StorageType(computed_type_); if (intish_ != 0 || !then_type->Is(cache_.kAsmComparable)) { FAIL(expr->then_expression(), "invalid type in ? then expression"); } RECURSE(VisitWithExpectation( expr->else_expression(), expected_type_, "conditional else branch type mismatch with enclosing expression")); Type* else_type = StorageType(computed_type_); if (intish_ != 0 || !else_type->Is(cache_.kAsmComparable)) { FAIL(expr->else_expression(), "invalid type in ? else expression"); } if (!then_type->Is(else_type) || !else_type->Is(then_type)) { FAIL(expr, "then and else expressions in ? must have the same type"); } RECURSE(IntersectResult(expr, then_type)); } void AsmTyper::VisitVariableProxy(VariableProxy* expr) { Variable* var = expr->var(); VariableInfo* info = GetVariableInfo(var); if (!in_function_ && !building_function_tables_ && !visiting_exports_) { if (var->location() != VariableLocation::PARAMETER || var->index() >= 3) { FAIL(expr, "illegal variable reference in module body"); } } if (info == nullptr || info->type == nullptr) { if (var->mode() == TEMPORARY) { SetType(var, Type::Any()); info = GetVariableInfo(var); } else { FAIL(expr, "unbound variable"); } } if (property_info_ != nullptr) { SetVariableInfo(var, property_info_); property_info_ = nullptr; } Type* type = Type::Intersect(info->type, expected_type_, zone()); if (type->Is(cache_.kAsmInt)) type = cache_.kAsmInt; intish_ = 0; RECURSE(IntersectResult(expr, type)); } void AsmTyper::VisitLiteral(Literal* expr, bool is_return) { intish_ = 0; Handle<Object> value = expr->value(); if (value->IsNumber()) { int32_t i; uint32_t u; if (expr->raw_value()->ContainsDot()) { RECURSE(IntersectResult(expr, cache_.kAsmDouble)); } else if (!is_return && value->ToUint32(&u)) { if (u <= 0x7fffffff) { RECURSE(IntersectResult(expr, cache_.kAsmFixnum)); } else { RECURSE(IntersectResult(expr, cache_.kAsmUnsigned)); } } else if (value->ToInt32(&i)) { RECURSE(IntersectResult(expr, cache_.kAsmSigned)); } else { FAIL(expr, "illegal number"); } } else if (!is_return && value->IsString()) { RECURSE(IntersectResult(expr, Type::String())); } else if (value->IsUndefined(isolate_)) { RECURSE(IntersectResult(expr, Type::Undefined())); } else { FAIL(expr, "illegal literal"); } } void AsmTyper::VisitLiteral(Literal* expr) { VisitLiteral(expr, false); } void AsmTyper::VisitRegExpLiteral(RegExpLiteral* expr) { FAIL(expr, "regular expression encountered"); } void AsmTyper::VisitObjectLiteral(ObjectLiteral* expr) { if (in_function_) { FAIL(expr, "object literal in function"); } // Allowed for asm module's export declaration. ZoneList<ObjectLiteralProperty*>* props = expr->properties(); for (int i = 0; i < props->length(); ++i) { ObjectLiteralProperty* prop = props->at(i); RECURSE(VisitWithExpectation(prop->value(), Type::Any(), "object property expected to be a function")); if (!computed_type_->IsFunction()) { FAIL(prop->value(), "non-function in function table"); } } RECURSE(IntersectResult(expr, Type::Object())); } void AsmTyper::VisitArrayLiteral(ArrayLiteral* expr) { if (in_function_) { FAIL(expr, "array literal inside a function"); } // Allowed for function tables. ZoneList<Expression*>* values = expr->values(); Type* elem_type = Type::None(); for (int i = 0; i < values->length(); ++i) { Expression* value = values->at(i); RECURSE(VisitWithExpectation(value, Type::Any(), "UNREACHABLE")); if (!computed_type_->IsFunction()) { FAIL(value, "array component expected to be a function"); } elem_type = Type::Union(elem_type, computed_type_, zone()); } array_size_ = values->length(); RECURSE(IntersectResult(expr, Type::Array(elem_type, zone()))); } void AsmTyper::VisitAssignment(Assignment* expr) { // Handle function tables and everything else in different passes. if (!in_function_) { if (expr->value()->IsArrayLiteral()) { if (!building_function_tables_) { return; } } else { if (building_function_tables_) { return; } } } if (expr->is_compound()) FAIL(expr, "compound assignment encountered"); Type* type = expected_type_; RECURSE(VisitWithExpectation( expr->value(), type, "assignment value expected to match surrounding")); Type* target_type = StorageType(computed_type_); if (expr->target()->IsVariableProxy()) { // Assignment to a local or context variable. VariableProxy* proxy = expr->target()->AsVariableProxy(); if (intish_ != 0) { FAIL(expr, "intish or floatish assignment"); } if (in_function_ && target_type->IsArray()) { FAIL(expr, "assignment to array variable"); } expected_type_ = target_type; Variable* var = proxy->var(); VariableInfo* info = GetVariableInfo(var); if (info == nullptr || info->type == nullptr) { if (var->mode() == TEMPORARY) { SetType(var, Type::Any()); info = GetVariableInfo(var); } else { FAIL(proxy, "unbound variable"); } } if (property_info_ != nullptr) { SetVariableInfo(var, property_info_); property_info_ = nullptr; } Type* type = Type::Intersect(info->type, expected_type_, zone()); if (type->Is(cache_.kAsmInt)) type = cache_.kAsmInt; info->type = type; intish_ = 0; RECURSE(IntersectResult(proxy, type)); } else if (expr->target()->IsProperty()) { // Assignment to a property: should be a heap assignment {H[x] = y}. int32_t value_intish = intish_; Property* property = expr->target()->AsProperty(); RECURSE(VisitWithExpectation(property->obj(), Type::Any(), "bad propety object")); if (!computed_type_->IsArray()) { FAIL(property->obj(), "array expected"); } if (value_intish != 0 && computed_type_->Is(cache_.kFloat64Array)) { FAIL(expr, "floatish assignment to double array"); } VisitHeapAccess(property, true, target_type); } RECURSE(IntersectResult(expr, target_type)); } void AsmTyper::VisitYield(Yield* expr) { FAIL(expr, "yield expression encountered"); } void AsmTyper::VisitThrow(Throw* expr) { FAIL(expr, "throw statement encountered"); } int AsmTyper::ElementShiftSize(Type* type) { if (type->Is(cache_.kAsmSize8)) return 0; if (type->Is(cache_.kAsmSize16)) return 1; if (type->Is(cache_.kAsmSize32)) return 2; if (type->Is(cache_.kAsmSize64)) return 3; return -1; } Type* AsmTyper::StorageType(Type* type) { if (type->Is(cache_.kAsmInt)) { return cache_.kAsmInt; } else { return type; } } void AsmTyper::VisitHeapAccess(Property* expr, bool assigning, Type* assignment_type) { ArrayType* array_type = computed_type_->AsArray(); // size_t size = array_size_; Type* type = array_type->Element(); if (type->IsFunction()) { if (assigning) { FAIL(expr, "assigning to function table is illegal"); } // TODO(bradnelson): Fix the parser and then un-comment this part // BinaryOperation* bin = expr->key()->AsBinaryOperation(); // if (bin == nullptr || bin->op() != Token::BIT_AND) { // FAIL(expr->key(), "expected & in call"); // } // RECURSE(VisitWithExpectation(bin->left(), cache_.kAsmSigned, // "array index expected to be integer")); // Literal* right = bin->right()->AsLiteral(); // if (right == nullptr || right->raw_value()->ContainsDot()) { // FAIL(right, "call mask must be integer"); // } // RECURSE(VisitWithExpectation(bin->right(), cache_.kAsmSigned, // "call mask expected to be integer")); // if (static_cast<size_t>(right->raw_value()->AsNumber()) != size - 1) { // FAIL(right, "call mask must match function table"); // } // bin->set_bounds(Bounds(cache_.kAsmSigned)); RECURSE(VisitWithExpectation(expr->key(), cache_.kAsmSigned, "must be integer")); RECURSE(IntersectResult(expr, type)); } else { Literal* literal = expr->key()->AsLiteral(); if (literal) { RECURSE(VisitWithExpectation(literal, cache_.kAsmSigned, "array index expected to be integer")); } else { int expected_shift = ElementShiftSize(type); if (expected_shift == 0) { RECURSE(Visit(expr->key())); } else { BinaryOperation* bin = expr->key()->AsBinaryOperation(); if (bin == nullptr || bin->op() != Token::SAR) { FAIL(expr->key(), "expected >> in heap access"); } RECURSE(VisitWithExpectation(bin->left(), cache_.kAsmSigned, "array index expected to be integer")); Literal* right = bin->right()->AsLiteral(); if (right == nullptr || right->raw_value()->ContainsDot()) { FAIL(bin->right(), "heap access shift must be integer"); } RECURSE(VisitWithExpectation(bin->right(), cache_.kAsmSigned, "array shift expected to be integer")); int n = static_cast<int>(right->raw_value()->AsNumber()); if (expected_shift < 0 || n != expected_shift) { FAIL(right, "heap access shift must match element size"); } } bounds_.set(expr->key(), Bounds(cache_.kAsmSigned)); } Type* result_type; if (type->Is(cache_.kAsmIntArrayElement)) { result_type = cache_.kAsmIntQ; intish_ = kMaxUncombinedAdditiveSteps; } else if (type->Is(cache_.kAsmFloat)) { if (assigning) { result_type = cache_.kAsmFloatDoubleQ; } else { result_type = cache_.kAsmFloatQ; } intish_ = 0; } else if (type->Is(cache_.kAsmDouble)) { if (assigning) { result_type = cache_.kAsmFloatDoubleQ; if (intish_ != 0) { FAIL(expr, "Assignment of floatish to Float64Array"); } } else { result_type = cache_.kAsmDoubleQ; } intish_ = 0; } else { UNREACHABLE(); } if (assigning) { if (!assignment_type->Is(result_type)) { FAIL(expr, "illegal type in assignment"); } } else { RECURSE(IntersectResult(expr, expected_type_)); RECURSE(IntersectResult(expr, result_type)); } } } bool AsmTyper::IsStdlibObject(Expression* expr) { VariableProxy* proxy = expr->AsVariableProxy(); if (proxy == nullptr) { return false; } Variable* var = proxy->var(); VariableInfo* info = GetVariableInfo(var); if (info) { if (info->standard_member == kStdlib) return true; } if (var->location() != VariableLocation::PARAMETER || var->index() != 0) { return false; } info = MakeVariableInfo(var); info->type = Type::Object(); info->standard_member = kStdlib; return true; } Expression* AsmTyper::GetReceiverOfPropertyAccess(Expression* expr, const char* name) { Property* property = expr->AsProperty(); if (property == nullptr) { return nullptr; } Literal* key = property->key()->AsLiteral(); if (key == nullptr || !key->IsPropertyName() || !key->AsPropertyName()->IsUtf8EqualTo(CStrVector(name))) { return nullptr; } return property->obj(); } bool AsmTyper::IsMathObject(Expression* expr) { Expression* obj = GetReceiverOfPropertyAccess(expr, "Math"); return obj && IsStdlibObject(obj); } bool AsmTyper::IsSIMDObject(Expression* expr) { Expression* obj = GetReceiverOfPropertyAccess(expr, "SIMD"); return obj && IsStdlibObject(obj); } bool AsmTyper::IsSIMDTypeObject(Expression* expr, const char* name) { Expression* obj = GetReceiverOfPropertyAccess(expr, name); return obj && IsSIMDObject(obj); } void AsmTyper::VisitProperty(Property* expr) { if (IsMathObject(expr->obj())) { VisitLibraryAccess(&stdlib_math_types_, expr); return; } #define V(NAME, Name, name, lane_count, lane_type) \ if (IsSIMDTypeObject(expr->obj(), #Name)) { \ VisitLibraryAccess(&stdlib_simd_##name##_types_, expr); \ return; \ } \ if (IsSIMDTypeObject(expr, #Name)) { \ VariableInfo* info = stdlib_simd_##name##_constructor_type_; \ SetResult(expr, info->type); \ property_info_ = info; \ return; \ } SIMD128_TYPES(V) #undef V if (IsStdlibObject(expr->obj())) { VisitLibraryAccess(&stdlib_types_, expr); return; } property_info_ = nullptr; // Only recurse at this point so that we avoid needing // stdlib.Math to have a real type. RECURSE( VisitWithExpectation(expr->obj(), Type::Any(), "bad property object")); // For heap view or function table access. if (computed_type_->IsArray()) { VisitHeapAccess(expr, false, nullptr); return; } VariableProxy* proxy = expr->obj()->AsVariableProxy(); if (proxy != nullptr) { Variable* var = proxy->var(); if (var->location() == VariableLocation::PARAMETER && var->index() == 1) { // foreign.x - Function represent as () -> Any if (Type::Any()->Is(expected_type_)) { SetResult(expr, Type::Function(Type::Any(), zone())); } else { SetResult(expr, expected_type_); } return; } } FAIL(expr, "invalid property access"); } void AsmTyper::CheckPolymorphicStdlibArguments( enum StandardMember standard_member, ZoneList<Expression*>* args) { if (args->length() == 0) { return; } // Handle polymorphic stdlib functions specially. Expression* arg0 = args->at(0); Type* arg0_type = bounds_.get(arg0).upper; switch (standard_member) { case kMathFround: { if (!arg0_type->Is(cache_.kAsmFloat) && !arg0_type->Is(cache_.kAsmDouble) && !arg0_type->Is(cache_.kAsmSigned) && !arg0_type->Is(cache_.kAsmUnsigned)) { FAIL(arg0, "illegal function argument type"); } break; } case kMathCeil: case kMathFloor: case kMathSqrt: { if (!arg0_type->Is(cache_.kAsmFloat) && !arg0_type->Is(cache_.kAsmDouble)) { FAIL(arg0, "illegal function argument type"); } break; } case kMathAbs: case kMathMin: case kMathMax: { if (!arg0_type->Is(cache_.kAsmFloat) && !arg0_type->Is(cache_.kAsmDouble) && !arg0_type->Is(cache_.kAsmSigned)) { FAIL(arg0, "illegal function argument type"); } if (args->length() > 1) { Type* other = Type::Intersect(bounds_.get(args->at(0)).upper, bounds_.get(args->at(1)).upper, zone()); if (!other->Is(cache_.kAsmFloat) && !other->Is(cache_.kAsmDouble) && !other->Is(cache_.kAsmSigned)) { FAIL(arg0, "function arguments types don't match"); } } break; } default: { break; } } } void AsmTyper::VisitCall(Call* expr) { Type* expected_type = expected_type_; RECURSE(VisitWithExpectation(expr->expression(), Type::Any(), "callee expected to be any")); StandardMember standard_member = kNone; VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (proxy) { standard_member = VariableAsStandardMember(proxy->var()); } if (!in_function_ && (proxy == nullptr || standard_member != kMathFround)) { FAIL(expr, "calls forbidden outside function bodies"); } if (proxy == nullptr && !expr->expression()->IsProperty()) { FAIL(expr, "calls must be to bound variables or function tables"); } if (computed_type_->IsFunction()) { FunctionType* fun_type = computed_type_->AsFunction(); Type* result_type = fun_type->Result(); ZoneList<Expression*>* args = expr->arguments(); if (Type::Any()->Is(result_type)) { // For foreign calls. for (int i = 0; i < args->length(); ++i) { Expression* arg = args->at(i); RECURSE(VisitWithExpectation( arg, Type::Any(), "foreign call argument expected to be any")); // Checking for asm extern types explicitly, as the type system // doesn't correctly check their inheritance relationship. if (!computed_type_->Is(cache_.kAsmSigned) && !computed_type_->Is(cache_.kAsmFixnum) && !computed_type_->Is(cache_.kAsmDouble)) { FAIL(arg, "foreign call argument expected to be int, double, or fixnum"); } } intish_ = 0; bounds_.set(expr->expression(), Bounds(Type::Function(Type::Any(), zone()))); RECURSE(IntersectResult(expr, expected_type)); } else { if (fun_type->Arity() != args->length()) { FAIL(expr, "call with wrong arity"); } for (int i = 0; i < args->length(); ++i) { Expression* arg = args->at(i); RECURSE(VisitWithExpectation( arg, fun_type->Parameter(i), "call argument expected to match callee parameter")); if (standard_member != kNone && standard_member != kMathFround && i == 0) { result_type = computed_type_; } } RECURSE(CheckPolymorphicStdlibArguments(standard_member, args)); intish_ = 0; RECURSE(IntersectResult(expr, result_type)); } } else { FAIL(expr, "invalid callee"); } } void AsmTyper::VisitCallNew(CallNew* expr) { if (in_function_) { FAIL(expr, "new not allowed in module function"); } RECURSE(VisitWithExpectation(expr->expression(), Type::Any(), "expected stdlib function")); if (computed_type_->IsFunction()) { FunctionType* fun_type = computed_type_->AsFunction(); ZoneList<Expression*>* args = expr->arguments(); if (fun_type->Arity() != args->length()) FAIL(expr, "call with wrong arity"); for (int i = 0; i < args->length(); ++i) { Expression* arg = args->at(i); RECURSE(VisitWithExpectation( arg, fun_type->Parameter(i), "constructor argument expected to match callee parameter")); } RECURSE(IntersectResult(expr, fun_type->Result())); return; } FAIL(expr, "ill-typed new operator"); } void AsmTyper::VisitCallRuntime(CallRuntime* expr) { FAIL(expr, "runtime call not allowed"); } void AsmTyper::VisitUnaryOperation(UnaryOperation* expr) { if (!in_function_) { FAIL(expr, "unary operator inside module body"); } switch (expr->op()) { case Token::NOT: // Used to encode != and !== RECURSE(VisitWithExpectation(expr->expression(), cache_.kAsmInt, "operand expected to be integer")); RECURSE(IntersectResult(expr, cache_.kAsmSigned)); return; case Token::DELETE: FAIL(expr, "delete operator encountered"); case Token::VOID: FAIL(expr, "void operator encountered"); case Token::TYPEOF: FAIL(expr, "typeof operator encountered"); default: UNREACHABLE(); } } void AsmTyper::VisitCountOperation(CountOperation* expr) { FAIL(expr, "increment or decrement operator encountered"); } void AsmTyper::VisitIntegerBitwiseOperator(BinaryOperation* expr, Type* left_expected, Type* right_expected, Type* result_type, bool conversion) { RECURSE(VisitWithExpectation(expr->left(), Type::Number(), "left bitwise operand expected to be a number")); int32_t left_intish = intish_; Type* left_type = computed_type_; if (!left_type->Is(left_expected)) { FAIL(expr->left(), "left bitwise operand expected to be an integer"); } if (left_intish > kMaxUncombinedAdditiveSteps) { FAIL(expr->left(), "too many consecutive additive ops"); } RECURSE( VisitWithExpectation(expr->right(), Type::Number(), "right bitwise operand expected to be a number")); int32_t right_intish = intish_; Type* right_type = computed_type_; if (!right_type->Is(right_expected)) { FAIL(expr->right(), "right bitwise operand expected to be an integer"); } if (right_intish > kMaxUncombinedAdditiveSteps) { FAIL(expr->right(), "too many consecutive additive ops"); } intish_ = 0; if (left_type->Is(cache_.kAsmFixnum) && right_type->Is(cache_.kAsmInt)) { left_type = right_type; } if (right_type->Is(cache_.kAsmFixnum) && left_type->Is(cache_.kAsmInt)) { right_type = left_type; } if (!conversion) { if (!left_type->Is(cache_.kAsmIntQ) || !right_type->Is(cache_.kAsmIntQ)) { FAIL(expr, "ill-typed bitwise operation"); } } RECURSE(IntersectResult(expr, result_type)); } void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) { if (!in_function_) { if (expr->op() != Token::BIT_OR && expr->op() != Token::MUL) { FAIL(expr, "illegal binary operator inside module body"); } if (!(expr->left()->IsProperty() || expr->left()->IsVariableProxy()) || !expr->right()->IsLiteral()) { FAIL(expr, "illegal computation inside module body"); } DCHECK(expr->right()->AsLiteral() != nullptr); const AstValue* right_value = expr->right()->AsLiteral()->raw_value(); if (expr->op() == Token::BIT_OR) { if (right_value->AsNumber() != 0.0 || right_value->ContainsDot()) { FAIL(expr, "illegal integer annotation value"); } } if (expr->op() == Token::MUL) { if (right_value->AsNumber() != 1.0 && right_value->ContainsDot()) { FAIL(expr, "illegal double annotation value"); } } } switch (expr->op()) { case Token::COMMA: { RECURSE(VisitWithExpectation(expr->left(), Type::Any(), "left comma operand expected to be any")); RECURSE(VisitWithExpectation(expr->right(), Type::Any(), "right comma operand expected to be any")); RECURSE(IntersectResult(expr, computed_type_)); return; } case Token::OR: case Token::AND: FAIL(expr, "illegal logical operator"); case Token::BIT_OR: { // BIT_OR allows Any since it is used as a type coercion. RECURSE(VisitIntegerBitwiseOperator(expr, Type::Any(), cache_.kAsmIntQ, cache_.kAsmSigned, true)); if (expr->left()->IsCall() && expr->op() == Token::BIT_OR && Type::Number()->Is(bounds_.get(expr->left()).upper)) { // Force the return types of foreign functions. bounds_.set(expr->left(), Bounds(cache_.kAsmSigned)); } if (in_function_ && !bounds_.get(expr->left()).upper->Is(cache_.kAsmIntQ)) { FAIL(expr->left(), "intish required"); } return; } case Token::BIT_XOR: { // Handle booleans specially to handle de-sugared ! Literal* left = expr->left()->AsLiteral(); if (left && left->value()->IsBoolean()) { if (left->ToBooleanIsTrue()) { bounds_.set(left, Bounds(cache_.kSingletonOne)); RECURSE(VisitWithExpectation(expr->right(), cache_.kAsmIntQ, "not operator expects an integer")); RECURSE(IntersectResult(expr, cache_.kAsmSigned)); return; } else { FAIL(left, "unexpected false"); } } // BIT_XOR allows Any since it is used as a type coercion (via ~~). RECURSE(VisitIntegerBitwiseOperator(expr, Type::Any(), cache_.kAsmIntQ, cache_.kAsmSigned, true)); return; } case Token::SHR: { RECURSE(VisitIntegerBitwiseOperator( expr, cache_.kAsmIntQ, cache_.kAsmIntQ, cache_.kAsmUnsigned, false)); return; } case Token::SHL: case Token::SAR: case Token::BIT_AND: { RECURSE(VisitIntegerBitwiseOperator( expr, cache_.kAsmIntQ, cache_.kAsmIntQ, cache_.kAsmSigned, false)); return; } case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: { RECURSE(VisitWithExpectation( expr->left(), Type::Number(), "left arithmetic operand expected to be number")); Type* left_type = computed_type_; int32_t left_intish = intish_; RECURSE(VisitWithExpectation( expr->right(), Type::Number(), "right arithmetic operand expected to be number")); Type* right_type = computed_type_; int32_t right_intish = intish_; Type* type = Type::Union(left_type, right_type, zone()); if (type->Is(cache_.kAsmInt)) { if (expr->op() == Token::MUL) { int32_t i; Literal* left = expr->left()->AsLiteral(); Literal* right = expr->right()->AsLiteral(); if (left != nullptr && left->value()->IsNumber() && left->value()->ToInt32(&i)) { if (right_intish != 0) { FAIL(expr, "intish not allowed in multiply"); } } else if (right != nullptr && right->value()->IsNumber() && right->value()->ToInt32(&i)) { if (left_intish != 0) { FAIL(expr, "intish not allowed in multiply"); } } else { FAIL(expr, "multiply must be by an integer literal"); } i = abs(i); if (i >= (1 << 20)) { FAIL(expr, "multiply must be by value in -2^20 < n < 2^20"); } intish_ = i; RECURSE(IntersectResult(expr, cache_.kAsmInt)); return; } else { intish_ = left_intish + right_intish + 1; if (expr->op() == Token::ADD || expr->op() == Token::SUB) { if (intish_ > kMaxUncombinedAdditiveSteps) { FAIL(expr, "too many consecutive additive ops"); } } else { if (intish_ > kMaxUncombinedMultiplicativeSteps) { FAIL(expr, "too many consecutive multiplicative ops"); } } RECURSE(IntersectResult(expr, cache_.kAsmInt)); return; } } else if (expr->op() == Token::MUL && expr->right()->IsLiteral() && right_type->Is(cache_.kAsmDouble) && expr->right()->AsLiteral()->raw_value()->ContainsDot() && expr->right()->AsLiteral()->raw_value()->AsNumber() == 1.0) { // For unary +, expressed as x * 1.0 if (expr->left()->IsCall() && Type::Number()->Is(bounds_.get(expr->left()).upper)) { // Force the return types of foreign functions. bounds_.set(expr->left(), Bounds(cache_.kAsmDouble)); left_type = bounds_.get(expr->left()).upper; } if (!(expr->left()->IsProperty() && Type::Number()->Is(bounds_.get(expr->left()).upper))) { if (!left_type->Is(cache_.kAsmSigned) && !left_type->Is(cache_.kAsmUnsigned) && !left_type->Is(cache_.kAsmFixnum) && !left_type->Is(cache_.kAsmFloatQ) && !left_type->Is(cache_.kAsmDoubleQ)) { FAIL( expr->left(), "unary + only allowed on signed, unsigned, float?, or double?"); } } RECURSE(IntersectResult(expr, cache_.kAsmDouble)); return; } else if (expr->op() == Token::MUL && left_type->Is(cache_.kAsmDouble) && expr->right()->IsLiteral() && !expr->right()->AsLiteral()->raw_value()->ContainsDot() && expr->right()->AsLiteral()->raw_value()->AsNumber() == -1.0) { // For unary -, expressed as x * -1 bounds_.set(expr->right(), Bounds(cache_.kAsmDouble)); RECURSE(IntersectResult(expr, cache_.kAsmDouble)); return; } else if (type->Is(cache_.kAsmFloat) && expr->op() != Token::MOD) { if (left_intish != 0 || right_intish != 0) { FAIL(expr, "float operation before required fround"); } RECURSE(IntersectResult(expr, cache_.kAsmFloat)); intish_ = 1; return; } else if (type->Is(cache_.kAsmDouble)) { RECURSE(IntersectResult(expr, cache_.kAsmDouble)); return; } else { FAIL(expr, "ill-typed arithmetic operation"); } } default: UNREACHABLE(); } } void AsmTyper::VisitCompareOperation(CompareOperation* expr) { if (!in_function_) { FAIL(expr, "comparison inside module body"); } Token::Value op = expr->op(); if (op != Token::EQ && op != Token::NE && op != Token::LT && op != Token::LTE && op != Token::GT && op != Token::GTE) { FAIL(expr, "illegal comparison operator"); } RECURSE( VisitWithExpectation(expr->left(), Type::Number(), "left comparison operand expected to be number")); Type* left_type = computed_type_; if (!left_type->Is(cache_.kAsmComparable)) { FAIL(expr->left(), "bad type on left side of comparison"); } RECURSE( VisitWithExpectation(expr->right(), Type::Number(), "right comparison operand expected to be number")); Type* right_type = computed_type_; if (!right_type->Is(cache_.kAsmComparable)) { FAIL(expr->right(), "bad type on right side of comparison"); } if (!left_type->Is(right_type) && !right_type->Is(left_type)) { FAIL(expr, "left and right side of comparison must match"); } RECURSE(IntersectResult(expr, cache_.kAsmSigned)); } void AsmTyper::VisitThisFunction(ThisFunction* expr) { FAIL(expr, "this function not allowed"); } void AsmTyper::VisitDeclarations(ZoneList<Declaration*>* decls) { for (int i = 0; i < decls->length(); ++i) { Declaration* decl = decls->at(i); RECURSE(Visit(decl)); } } void AsmTyper::VisitImportDeclaration(ImportDeclaration* decl) { FAIL(decl, "import declaration encountered"); } void AsmTyper::VisitExportDeclaration(ExportDeclaration* decl) { FAIL(decl, "export declaration encountered"); } void AsmTyper::VisitClassLiteral(ClassLiteral* expr) { FAIL(expr, "class literal not allowed"); } void AsmTyper::VisitSpread(Spread* expr) { FAIL(expr, "spread not allowed"); } void AsmTyper::VisitSuperPropertyReference(SuperPropertyReference* expr) { FAIL(expr, "super property reference not allowed"); } void AsmTyper::VisitSuperCallReference(SuperCallReference* expr) { FAIL(expr, "call reference not allowed"); } void AsmTyper::InitializeStdlibSIMD() { #define V(NAME, Name, name, lane_count, lane_type) \ { \ Type* type = Type::Function(Type::Name(isolate_, zone()), Type::Any(), \ lane_count, zone()); \ for (int i = 0; i < lane_count; ++i) { \ type->AsFunction()->InitParameter(i, Type::Number()); \ } \ stdlib_simd_##name##_constructor_type_ = new (zone()) VariableInfo(type); \ stdlib_simd_##name##_constructor_type_->is_constructor_function = true; \ } SIMD128_TYPES(V) #undef V } void AsmTyper::InitializeStdlib() { if (allow_simd_) { InitializeStdlibSIMD(); } Type* number_type = Type::Number(); Type* double_type = cache_.kAsmDouble; Type* double_fn1_type = Type::Function(double_type, double_type, zone()); Type* double_fn2_type = Type::Function(double_type, double_type, double_type, zone()); Type* fround_type = Type::Function(cache_.kAsmFloat, number_type, zone()); Type* imul_type = Type::Function(cache_.kAsmSigned, cache_.kAsmInt, cache_.kAsmInt, zone()); // TODO(bradnelson): currently only approximating the proper intersection type // (which we cannot currently represent). Type* number_fn1_type = Type::Function(number_type, number_type, zone()); Type* number_fn2_type = Type::Function(number_type, number_type, number_type, zone()); struct Assignment { const char* name; StandardMember standard_member; Type* type; }; const Assignment math[] = {{"PI", kMathPI, double_type}, {"E", kMathE, double_type}, {"LN2", kMathLN2, double_type}, {"LN10", kMathLN10, double_type}, {"LOG2E", kMathLOG2E, double_type}, {"LOG10E", kMathLOG10E, double_type}, {"SQRT2", kMathSQRT2, double_type}, {"SQRT1_2", kMathSQRT1_2, double_type}, {"imul", kMathImul, imul_type}, {"abs", kMathAbs, number_fn1_type}, {"ceil", kMathCeil, number_fn1_type}, {"floor", kMathFloor, number_fn1_type}, {"fround", kMathFround, fround_type}, {"pow", kMathPow, double_fn2_type}, {"exp", kMathExp, double_fn1_type}, {"log", kMathLog, double_fn1_type}, {"min", kMathMin, number_fn2_type}, {"max", kMathMax, number_fn2_type}, {"sqrt", kMathSqrt, number_fn1_type}, {"cos", kMathCos, double_fn1_type}, {"sin", kMathSin, double_fn1_type}, {"tan", kMathTan, double_fn1_type}, {"acos", kMathAcos, double_fn1_type}, {"asin", kMathAsin, double_fn1_type}, {"atan", kMathAtan, double_fn1_type}, {"atan2", kMathAtan2, double_fn2_type}}; for (unsigned i = 0; i < arraysize(math); ++i) { stdlib_math_types_[math[i].name] = new (zone()) VariableInfo(math[i].type); stdlib_math_types_[math[i].name]->standard_member = math[i].standard_member; } stdlib_math_types_["fround"]->is_check_function = true; stdlib_types_["Infinity"] = new (zone()) VariableInfo(double_type); stdlib_types_["Infinity"]->standard_member = kInfinity; stdlib_types_["NaN"] = new (zone()) VariableInfo(double_type); stdlib_types_["NaN"]->standard_member = kNaN; Type* buffer_type = Type::Any(); #define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \ stdlib_types_[#TypeName "Array"] = new (zone()) VariableInfo( \ Type::Function(cache_.k##TypeName##Array, buffer_type, zone())); TYPED_ARRAYS(TYPED_ARRAY) #undef TYPED_ARRAY #define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \ stdlib_heap_types_[#TypeName "Array"] = new (zone()) VariableInfo( \ Type::Function(cache_.k##TypeName##Array, buffer_type, zone())); TYPED_ARRAYS(TYPED_ARRAY) #undef TYPED_ARRAY } void AsmTyper::VisitLibraryAccess(ObjectTypeMap* map, Property* expr) { Literal* key = expr->key()->AsLiteral(); if (key == nullptr || !key->IsPropertyName()) FAIL(expr, "invalid key used on stdlib member"); Handle<String> name = key->AsPropertyName(); VariableInfo* info = LibType(map, name); if (info == nullptr || info->type == nullptr) FAIL(expr, "unknown stdlib function"); SetResult(expr, info->type); property_info_ = info; } AsmTyper::VariableInfo* AsmTyper::LibType(ObjectTypeMap* map, Handle<String> name) { base::SmartArrayPointer<char> aname = name->ToCString(); ObjectTypeMap::iterator i = map->find(std::string(aname.get())); if (i == map->end()) { return nullptr; } return i->second; } void AsmTyper::SetType(Variable* variable, Type* type) { VariableInfo* info = MakeVariableInfo(variable); info->type = type; } Type* AsmTyper::GetType(Variable* variable) { VariableInfo* info = GetVariableInfo(variable); if (!info) return nullptr; return info->type; } AsmTyper::VariableInfo* AsmTyper::GetVariableInfo(Variable* variable) { ZoneHashMap* map = in_function_ ? &local_variable_type_ : &global_variable_type_; ZoneHashMap::Entry* entry = map->Lookup(variable, ComputePointerHash(variable)); if (!entry && in_function_) { entry = global_variable_type_.Lookup(variable, ComputePointerHash(variable)); } return entry ? reinterpret_cast<VariableInfo*>(entry->value) : nullptr; } AsmTyper::VariableInfo* AsmTyper::MakeVariableInfo(Variable* variable) { ZoneHashMap* map = in_function_ ? &local_variable_type_ : &global_variable_type_; ZoneHashMap::Entry* entry = map->LookupOrInsert( variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone())); if (!entry->value) entry->value = new (zone()) VariableInfo; return reinterpret_cast<VariableInfo*>(entry->value); } void AsmTyper::SetVariableInfo(Variable* variable, const VariableInfo* info) { VariableInfo* dest = MakeVariableInfo(variable); dest->type = info->type; dest->is_check_function = info->is_check_function; dest->is_constructor_function = info->is_constructor_function; dest->standard_member = info->standard_member; } AsmTyper::StandardMember AsmTyper::VariableAsStandardMember( Variable* variable) { VariableInfo* info = GetVariableInfo(variable); if (!info) return kNone; return info->standard_member; } void AsmTyper::SetResult(Expression* expr, Type* type) { computed_type_ = type; bounds_.set(expr, Bounds(computed_type_)); } void AsmTyper::IntersectResult(Expression* expr, Type* type) { computed_type_ = type; Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone()); if (Type::Representation(bounded_type, zone())->Is(Type::None())) { #ifdef DEBUG PrintF("Computed type: "); computed_type_->Print(); PrintF("Expected type: "); expected_type_->Print(); #endif FAIL(expr, "type mismatch"); } bounds_.set(expr, Bounds(bounded_type)); } void AsmTyper::VisitWithExpectation(Expression* expr, Type* expected_type, const char* msg) { Type* save = expected_type_; expected_type_ = expected_type; RECURSE(Visit(expr)); Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone()); if (Type::Representation(bounded_type, zone())->Is(Type::None())) { #ifdef DEBUG PrintF("Computed type: "); computed_type_->Print(); PrintF("Expected type: "); expected_type_->Print(); #endif FAIL(expr, msg); } expected_type_ = save; } void AsmTyper::VisitRewritableExpression(RewritableExpression* expr) { RECURSE(Visit(expr->expression())); } } // namespace internal } // namespace v8