// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/type-info.h"

#include "src/ast/ast.h"
#include "src/code-stubs.h"
#include "src/compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/objects-inl.h"

namespace v8 {
namespace internal {


TypeFeedbackOracle::TypeFeedbackOracle(
    Isolate* isolate, Zone* zone, Handle<Code> code,
    Handle<TypeFeedbackVector> feedback_vector, Handle<Context> native_context)
    : native_context_(native_context), isolate_(isolate), zone_(zone) {
  BuildDictionary(code);
  DCHECK(dictionary_->IsDictionary());
  // We make a copy of the feedback vector because a GC could clear
  // the type feedback info contained therein.
  // TODO(mvstanton): revisit the decision to copy when we weakly
  // traverse the feedback vector at GC time.
  feedback_vector_ = TypeFeedbackVector::Copy(isolate, feedback_vector);
}


static uint32_t IdToKey(TypeFeedbackId ast_id) {
  return static_cast<uint32_t>(ast_id.ToInt());
}


Handle<Object> TypeFeedbackOracle::GetInfo(TypeFeedbackId ast_id) {
  int entry = dictionary_->FindEntry(IdToKey(ast_id));
  if (entry != UnseededNumberDictionary::kNotFound) {
    Object* value = dictionary_->ValueAt(entry);
    if (value->IsCell()) {
      Cell* cell = Cell::cast(value);
      return Handle<Object>(cell->value(), isolate());
    } else {
      return Handle<Object>(value, isolate());
    }
  }
  return Handle<Object>::cast(isolate()->factory()->undefined_value());
}


Handle<Object> TypeFeedbackOracle::GetInfo(FeedbackVectorSlot slot) {
  DCHECK(slot.ToInt() >= 0 && slot.ToInt() < feedback_vector_->length());
  Handle<Object> undefined =
      Handle<Object>::cast(isolate()->factory()->undefined_value());
  Object* obj = feedback_vector_->Get(slot);

  // Slots do not embed direct pointers to maps, functions. Instead
  // a WeakCell is always used.
  if (obj->IsWeakCell()) {
    WeakCell* cell = WeakCell::cast(obj);
    if (cell->cleared()) return undefined;
    obj = cell->value();
  }

  if (obj->IsJSFunction() || obj->IsAllocationSite() || obj->IsSymbol() ||
      obj->IsSimd128Value()) {
    return Handle<Object>(obj, isolate());
  }

  return undefined;
}


InlineCacheState TypeFeedbackOracle::LoadInlineCacheState(
    FeedbackVectorSlot slot) {
  if (!slot.IsInvalid()) {
    FeedbackVectorSlotKind kind = feedback_vector_->GetKind(slot);
    if (kind == FeedbackVectorSlotKind::LOAD_IC) {
      LoadICNexus nexus(feedback_vector_, slot);
      return nexus.StateFromFeedback();
    } else if (kind == FeedbackVectorSlotKind::KEYED_LOAD_IC) {
      KeyedLoadICNexus nexus(feedback_vector_, slot);
      return nexus.StateFromFeedback();
    }
  }

  // If we can't find an IC, assume we've seen *something*, but we don't know
  // what. PREMONOMORPHIC roughly encodes this meaning.
  return PREMONOMORPHIC;
}


bool TypeFeedbackOracle::StoreIsUninitialized(FeedbackVectorSlot slot) {
  if (!slot.IsInvalid()) {
    FeedbackVectorSlotKind kind = feedback_vector_->GetKind(slot);
    if (kind == FeedbackVectorSlotKind::STORE_IC) {
      StoreICNexus nexus(feedback_vector_, slot);
      return nexus.StateFromFeedback() == UNINITIALIZED;
    } else if (kind == FeedbackVectorSlotKind::KEYED_STORE_IC) {
      KeyedStoreICNexus nexus(feedback_vector_, slot);
      return nexus.StateFromFeedback() == UNINITIALIZED;
    }
  }
  return true;
}


bool TypeFeedbackOracle::CallIsUninitialized(FeedbackVectorSlot slot) {
  Handle<Object> value = GetInfo(slot);
  return value->IsUndefined(isolate()) ||
         value.is_identical_to(
             TypeFeedbackVector::UninitializedSentinel(isolate()));
}


bool TypeFeedbackOracle::CallIsMonomorphic(FeedbackVectorSlot slot) {
  Handle<Object> value = GetInfo(slot);
  return value->IsAllocationSite() || value->IsJSFunction();
}


bool TypeFeedbackOracle::CallNewIsMonomorphic(FeedbackVectorSlot slot) {
  Handle<Object> info = GetInfo(slot);
  return info->IsAllocationSite() || info->IsJSFunction();
}


byte TypeFeedbackOracle::ForInType(FeedbackVectorSlot feedback_vector_slot) {
  Handle<Object> value = GetInfo(feedback_vector_slot);
  return value.is_identical_to(
             TypeFeedbackVector::UninitializedSentinel(isolate()))
             ? ForInStatement::FAST_FOR_IN
             : ForInStatement::SLOW_FOR_IN;
}


void TypeFeedbackOracle::GetStoreModeAndKeyType(
    FeedbackVectorSlot slot, KeyedAccessStoreMode* store_mode,
    IcCheckType* key_type) {
  if (!slot.IsInvalid() &&
      feedback_vector_->GetKind(slot) ==
          FeedbackVectorSlotKind::KEYED_STORE_IC) {
    KeyedStoreICNexus nexus(feedback_vector_, slot);
    *store_mode = nexus.GetKeyedAccessStoreMode();
    *key_type = nexus.GetKeyType();
  } else {
    *store_mode = STANDARD_STORE;
    *key_type = ELEMENT;
  }
}


Handle<JSFunction> TypeFeedbackOracle::GetCallTarget(FeedbackVectorSlot slot) {
  Handle<Object> info = GetInfo(slot);
  if (info->IsAllocationSite()) {
    return Handle<JSFunction>(isolate()->native_context()->array_function());
  }

  return Handle<JSFunction>::cast(info);
}


Handle<JSFunction> TypeFeedbackOracle::GetCallNewTarget(
    FeedbackVectorSlot slot) {
  Handle<Object> info = GetInfo(slot);
  if (info->IsJSFunction()) {
    return Handle<JSFunction>::cast(info);
  }

  DCHECK(info->IsAllocationSite());
  return Handle<JSFunction>(isolate()->native_context()->array_function());
}


Handle<AllocationSite> TypeFeedbackOracle::GetCallAllocationSite(
    FeedbackVectorSlot slot) {
  Handle<Object> info = GetInfo(slot);
  if (info->IsAllocationSite()) {
    return Handle<AllocationSite>::cast(info);
  }
  return Handle<AllocationSite>::null();
}


Handle<AllocationSite> TypeFeedbackOracle::GetCallNewAllocationSite(
    FeedbackVectorSlot slot) {
  Handle<Object> info = GetInfo(slot);
  if (info->IsAllocationSite()) {
    return Handle<AllocationSite>::cast(info);
  }
  return Handle<AllocationSite>::null();
}


void TypeFeedbackOracle::CompareType(TypeFeedbackId id,
                                     Type** left_type,
                                     Type** right_type,
                                     Type** combined_type) {
  Handle<Object> info = GetInfo(id);
  if (!info->IsCode()) {
    // For some comparisons we don't have ICs, e.g. LiteralCompareTypeof.
    *left_type = *right_type = *combined_type = Type::None();
    return;
  }
  Handle<Code> code = Handle<Code>::cast(info);

  Handle<Map> map;
  Map* raw_map = code->FindFirstMap();
  if (raw_map != NULL) Map::TryUpdate(handle(raw_map)).ToHandle(&map);

  if (code->is_compare_ic_stub()) {
    CompareICStub stub(code->stub_key(), isolate());
    *left_type = CompareICState::StateToType(zone(), stub.left());
    *right_type = CompareICState::StateToType(zone(), stub.right());
    *combined_type = CompareICState::StateToType(zone(), stub.state(), map);
  }
}


void TypeFeedbackOracle::BinaryType(TypeFeedbackId id,
                                    Type** left,
                                    Type** right,
                                    Type** result,
                                    Maybe<int>* fixed_right_arg,
                                    Handle<AllocationSite>* allocation_site,
                                    Token::Value op) {
  Handle<Object> object = GetInfo(id);
  if (!object->IsCode()) {
    // For some binary ops we don't have ICs, e.g. Token::COMMA, but for the
    // operations covered by the BinaryOpIC we should always have them.
    DCHECK(op < BinaryOpICState::FIRST_TOKEN ||
           op > BinaryOpICState::LAST_TOKEN);
    *left = *right = *result = Type::None();
    *fixed_right_arg = Nothing<int>();
    *allocation_site = Handle<AllocationSite>::null();
    return;
  }
  Handle<Code> code = Handle<Code>::cast(object);
  DCHECK_EQ(Code::BINARY_OP_IC, code->kind());
  BinaryOpICState state(isolate(), code->extra_ic_state());
  DCHECK_EQ(op, state.op());

  *left = state.GetLeftType();
  *right = state.GetRightType();
  *result = state.GetResultType();
  *fixed_right_arg = state.fixed_right_arg();

  AllocationSite* first_allocation_site = code->FindFirstAllocationSite();
  if (first_allocation_site != NULL) {
    *allocation_site = handle(first_allocation_site);
  } else {
    *allocation_site = Handle<AllocationSite>::null();
  }
}


Type* TypeFeedbackOracle::CountType(TypeFeedbackId id) {
  Handle<Object> object = GetInfo(id);
  if (!object->IsCode()) return Type::None();
  Handle<Code> code = Handle<Code>::cast(object);
  DCHECK_EQ(Code::BINARY_OP_IC, code->kind());
  BinaryOpICState state(isolate(), code->extra_ic_state());
  return state.GetLeftType();
}


bool TypeFeedbackOracle::HasOnlyStringMaps(SmallMapList* receiver_types) {
  bool all_strings = receiver_types->length() > 0;
  for (int i = 0; i < receiver_types->length(); i++) {
    all_strings &= receiver_types->at(i)->IsStringMap();
  }
  return all_strings;
}


void TypeFeedbackOracle::PropertyReceiverTypes(FeedbackVectorSlot slot,
                                               Handle<Name> name,
                                               SmallMapList* receiver_types) {
  receiver_types->Clear();
  if (!slot.IsInvalid()) {
    LoadICNexus nexus(feedback_vector_, slot);
    Code::Flags flags = Code::ComputeHandlerFlags(Code::LOAD_IC);
    CollectReceiverTypes(&nexus, name, flags, receiver_types);
  }
}


void TypeFeedbackOracle::KeyedPropertyReceiverTypes(
    FeedbackVectorSlot slot, SmallMapList* receiver_types, bool* is_string,
    IcCheckType* key_type) {
  receiver_types->Clear();
  if (slot.IsInvalid()) {
    *is_string = false;
    *key_type = ELEMENT;
  } else {
    KeyedLoadICNexus nexus(feedback_vector_, slot);
    CollectReceiverTypes(&nexus, receiver_types);
    *is_string = HasOnlyStringMaps(receiver_types);
    *key_type = nexus.GetKeyType();
  }
}


void TypeFeedbackOracle::AssignmentReceiverTypes(FeedbackVectorSlot slot,
                                                 Handle<Name> name,
                                                 SmallMapList* receiver_types) {
  receiver_types->Clear();
  Code::Flags flags = Code::ComputeHandlerFlags(Code::STORE_IC);
  CollectReceiverTypes(slot, name, flags, receiver_types);
}


void TypeFeedbackOracle::KeyedAssignmentReceiverTypes(
    FeedbackVectorSlot slot, SmallMapList* receiver_types,
    KeyedAccessStoreMode* store_mode, IcCheckType* key_type) {
  receiver_types->Clear();
  CollectReceiverTypes(slot, receiver_types);
  GetStoreModeAndKeyType(slot, store_mode, key_type);
}


void TypeFeedbackOracle::CountReceiverTypes(FeedbackVectorSlot slot,
                                            SmallMapList* receiver_types) {
  receiver_types->Clear();
  if (!slot.IsInvalid()) CollectReceiverTypes(slot, receiver_types);
}


void TypeFeedbackOracle::CollectReceiverTypes(FeedbackVectorSlot slot,
                                              Handle<Name> name,
                                              Code::Flags flags,
                                              SmallMapList* types) {
  StoreICNexus nexus(feedback_vector_, slot);
  CollectReceiverTypes(&nexus, name, flags, types);
}

void TypeFeedbackOracle::CollectReceiverTypes(FeedbackNexus* nexus,
                                              Handle<Name> name,
                                              Code::Flags flags,
                                              SmallMapList* types) {
  if (FLAG_collect_megamorphic_maps_from_stub_cache &&
      nexus->ic_state() == MEGAMORPHIC) {
    types->Reserve(4, zone());
    isolate()->stub_cache()->CollectMatchingMaps(
        types, name, flags, native_context_, zone());
  } else {
    CollectReceiverTypes(nexus, types);
  }
}


void TypeFeedbackOracle::CollectReceiverTypes(FeedbackVectorSlot slot,
                                              SmallMapList* types) {
  FeedbackVectorSlotKind kind = feedback_vector_->GetKind(slot);
  if (kind == FeedbackVectorSlotKind::STORE_IC) {
    StoreICNexus nexus(feedback_vector_, slot);
    CollectReceiverTypes(&nexus, types);
  } else {
    DCHECK_EQ(FeedbackVectorSlotKind::KEYED_STORE_IC, kind);
    KeyedStoreICNexus nexus(feedback_vector_, slot);
    CollectReceiverTypes(&nexus, types);
  }
}

void TypeFeedbackOracle::CollectReceiverTypes(FeedbackNexus* nexus,
                                              SmallMapList* types) {
  MapHandleList maps;
  if (nexus->ic_state() == MONOMORPHIC) {
    Map* map = nexus->FindFirstMap();
    if (map != NULL) maps.Add(handle(map));
  } else if (nexus->ic_state() == POLYMORPHIC) {
    nexus->FindAllMaps(&maps);
  } else {
    return;
  }
  types->Reserve(maps.length(), zone());
  for (int i = 0; i < maps.length(); i++) {
    Handle<Map> map(maps.at(i));
    if (IsRelevantFeedback(*map, *native_context_)) {
      types->AddMapIfMissing(maps.at(i), zone());
    }
  }
}


uint16_t TypeFeedbackOracle::ToBooleanTypes(TypeFeedbackId id) {
  Handle<Object> object = GetInfo(id);
  return object->IsCode() ? Handle<Code>::cast(object)->to_boolean_state() : 0;
}


// Things are a bit tricky here: The iterator for the RelocInfos and the infos
// themselves are not GC-safe, so we first get all infos, then we create the
// dictionary (possibly triggering GC), and finally we relocate the collected
// infos before we process them.
void TypeFeedbackOracle::BuildDictionary(Handle<Code> code) {
  DisallowHeapAllocation no_allocation;
  ZoneList<RelocInfo> infos(16, zone());
  HandleScope scope(isolate());
  GetRelocInfos(code, &infos);
  CreateDictionary(code, &infos);
  ProcessRelocInfos(&infos);
  // Allocate handle in the parent scope.
  dictionary_ = scope.CloseAndEscape(dictionary_);
}


void TypeFeedbackOracle::GetRelocInfos(Handle<Code> code,
                                       ZoneList<RelocInfo>* infos) {
  int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID);
  for (RelocIterator it(*code, mask); !it.done(); it.next()) {
    infos->Add(*it.rinfo(), zone());
  }
}


void TypeFeedbackOracle::CreateDictionary(Handle<Code> code,
                                          ZoneList<RelocInfo>* infos) {
  AllowHeapAllocation allocation_allowed;
  Code* old_code = *code;
  dictionary_ = UnseededNumberDictionary::New(isolate(), infos->length());
  RelocateRelocInfos(infos, old_code, *code);
}


void TypeFeedbackOracle::RelocateRelocInfos(ZoneList<RelocInfo>* infos,
                                            Code* old_code,
                                            Code* new_code) {
  for (int i = 0; i < infos->length(); i++) {
    RelocInfo* info = &(*infos)[i];
    info->set_host(new_code);
    info->set_pc(new_code->instruction_start() +
                 (info->pc() - old_code->instruction_start()));
  }
}


void TypeFeedbackOracle::ProcessRelocInfos(ZoneList<RelocInfo>* infos) {
  for (int i = 0; i < infos->length(); i++) {
    RelocInfo reloc_entry = (*infos)[i];
    Address target_address = reloc_entry.target_address();
    TypeFeedbackId ast_id =
        TypeFeedbackId(static_cast<unsigned>((*infos)[i].data()));
    Code* target = Code::GetCodeFromTargetAddress(target_address);
    switch (target->kind()) {
      case Code::LOAD_IC:
      case Code::STORE_IC:
      case Code::KEYED_LOAD_IC:
      case Code::KEYED_STORE_IC:
      case Code::BINARY_OP_IC:
      case Code::COMPARE_IC:
      case Code::TO_BOOLEAN_IC:
        SetInfo(ast_id, target);
        break;

      default:
        break;
    }
  }
}


void TypeFeedbackOracle::SetInfo(TypeFeedbackId ast_id, Object* target) {
  DCHECK(dictionary_->FindEntry(IdToKey(ast_id)) ==
         UnseededNumberDictionary::kNotFound);
  // Dictionary has been allocated with sufficient size for all elements.
  DisallowHeapAllocation no_need_to_resize_dictionary;
  HandleScope scope(isolate());
  USE(UnseededNumberDictionary::AtNumberPut(
      dictionary_, IdToKey(ast_id), handle(target, isolate())));
}


}  // namespace internal
}  // namespace v8