// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/runtime/runtime-utils.h" #include "src/arguments.h" #include "src/base/macros.h" #include "src/conversions.h" #include "src/factory.h" #include "src/objects-inl.h" // Implement Single Instruction Multiple Data (SIMD) operations as defined in // the SIMD.js draft spec: // http://littledan.github.io/simd.html namespace v8 { namespace internal { namespace { // Functions to convert Numbers to SIMD component types. template <typename T, typename F> static bool CanCast(F from) { // A float can't represent 2^31 - 1 or 2^32 - 1 exactly, so promote the limits // to double. Otherwise, the limit is truncated and numbers like 2^31 or 2^32 // get through, causing any static_cast to be undefined. from = trunc(from); return from >= static_cast<double>(std::numeric_limits<T>::min()) && from <= static_cast<double>(std::numeric_limits<T>::max()); } // Explicitly specialize for conversions to float, which always succeed. template <> bool CanCast<float>(int32_t from) { return true; } template <> bool CanCast<float>(uint32_t from) { return true; } template <typename T> static T ConvertNumber(double number); template <> float ConvertNumber<float>(double number) { return DoubleToFloat32(number); } template <> int32_t ConvertNumber<int32_t>(double number) { return DoubleToInt32(number); } template <> uint32_t ConvertNumber<uint32_t>(double number) { return DoubleToUint32(number); } template <> int16_t ConvertNumber<int16_t>(double number) { return static_cast<int16_t>(DoubleToInt32(number)); } template <> uint16_t ConvertNumber<uint16_t>(double number) { return static_cast<uint16_t>(DoubleToUint32(number)); } template <> int8_t ConvertNumber<int8_t>(double number) { return static_cast<int8_t>(DoubleToInt32(number)); } template <> uint8_t ConvertNumber<uint8_t>(double number) { return static_cast<uint8_t>(DoubleToUint32(number)); } // TODO(bbudge): Make this consistent with SIMD instruction results. inline float RecipApprox(float a) { return 1.0f / a; } // TODO(bbudge): Make this consistent with SIMD instruction results. inline float RecipSqrtApprox(float a) { return 1.0f / std::sqrt(a); } // Saturating addition for int16_t and int8_t. template <typename T> inline T AddSaturate(T a, T b) { const T max = std::numeric_limits<T>::max(); const T min = std::numeric_limits<T>::min(); int32_t result = a + b; if (result > max) return max; if (result < min) return min; return result; } // Saturating subtraction for int16_t and int8_t. template <typename T> inline T SubSaturate(T a, T b) { const T max = std::numeric_limits<T>::max(); const T min = std::numeric_limits<T>::min(); int32_t result = a - b; if (result > max) return max; if (result < min) return min; return result; } inline float Min(float a, float b) { if (a < b) return a; if (a > b) return b; if (a == b) return std::signbit(a) ? a : b; return std::numeric_limits<float>::quiet_NaN(); } inline float Max(float a, float b) { if (a > b) return a; if (a < b) return b; if (a == b) return std::signbit(b) ? a : b; return std::numeric_limits<float>::quiet_NaN(); } inline float MinNumber(float a, float b) { if (std::isnan(a)) return b; if (std::isnan(b)) return a; return Min(a, b); } inline float MaxNumber(float a, float b) { if (std::isnan(a)) return b; if (std::isnan(b)) return a; return Max(a, b); } } // namespace //------------------------------------------------------------------- // SIMD helper functions. RUNTIME_FUNCTION(Runtime_IsSimdValue) { HandleScope scope(isolate); DCHECK(args.length() == 1); return isolate->heap()->ToBoolean(args[0]->IsSimd128Value()); } //------------------------------------------------------------------- // Utility macros. // TODO(gdeepti): Fix to use ToNumber conversion once polyfill is updated. #define CONVERT_SIMD_LANE_ARG_CHECKED(name, index, lanes) \ Handle<Object> name_object = args.at<Object>(index); \ if (!name_object->IsNumber()) { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewTypeError(MessageTemplate::kInvalidSimdIndex)); \ } \ double number = name_object->Number(); \ if (number < 0 || number >= lanes || !IsInt32Double(number)) { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewRangeError(MessageTemplate::kInvalidSimdIndex)); \ } \ uint32_t name = static_cast<uint32_t>(number); #define CONVERT_SIMD_ARG_HANDLE_THROW(Type, name, index) \ Handle<Type> name; \ if (args[index]->Is##Type()) { \ name = args.at<Type>(index); \ } else { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewTypeError(MessageTemplate::kInvalidSimdOperation)); \ } #define SIMD_UNARY_OP(type, lane_type, lane_count, op, result) \ static const int kLaneCount = lane_count; \ DCHECK(args.length() == 1); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = op(a->get_lane(i)); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); #define SIMD_BINARY_OP(type, lane_type, lane_count, op, result) \ static const int kLaneCount = lane_count; \ DCHECK(args.length() == 2); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 1); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = op(a->get_lane(i), b->get_lane(i)); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); #define SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, op, result) \ static const int kLaneCount = lane_count; \ DCHECK(args.length() == 2); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 1); \ bool lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = a->get_lane(i) op b->get_lane(i); \ } \ Handle<bool_type> result = isolate->factory()->New##bool_type(lanes); //------------------------------------------------------------------- // Common functions. #define GET_NUMERIC_ARG(lane_type, name, index) \ Handle<Object> a; \ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( \ isolate, a, Object::ToNumber(args.at<Object>(index))); \ name = ConvertNumber<lane_type>(a->Number()); #define GET_BOOLEAN_ARG(lane_type, name, index) \ name = args[index]->BooleanValue(); #define SIMD_ALL_TYPES(FUNCTION) \ FUNCTION(Float32x4, float, 4, NewNumber, GET_NUMERIC_ARG) \ FUNCTION(Int32x4, int32_t, 4, NewNumber, GET_NUMERIC_ARG) \ FUNCTION(Uint32x4, uint32_t, 4, NewNumber, GET_NUMERIC_ARG) \ FUNCTION(Bool32x4, bool, 4, ToBoolean, GET_BOOLEAN_ARG) \ FUNCTION(Int16x8, int16_t, 8, NewNumber, GET_NUMERIC_ARG) \ FUNCTION(Uint16x8, uint16_t, 8, NewNumber, GET_NUMERIC_ARG) \ FUNCTION(Bool16x8, bool, 8, ToBoolean, GET_BOOLEAN_ARG) \ FUNCTION(Int8x16, int8_t, 16, NewNumber, GET_NUMERIC_ARG) \ FUNCTION(Uint8x16, uint8_t, 16, NewNumber, GET_NUMERIC_ARG) \ FUNCTION(Bool8x16, bool, 16, ToBoolean, GET_BOOLEAN_ARG) #define SIMD_CREATE_FUNCTION(type, lane_type, lane_count, extract, replace) \ RUNTIME_FUNCTION(Runtime_Create##type) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == kLaneCount); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ replace(lane_type, lanes[i], i) \ } \ return *isolate->factory()->New##type(lanes); \ } #define SIMD_EXTRACT_FUNCTION(type, lane_type, lane_count, extract, replace) \ RUNTIME_FUNCTION(Runtime_##type##ExtractLane) { \ HandleScope scope(isolate); \ DCHECK(args.length() == 2); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ CONVERT_SIMD_LANE_ARG_CHECKED(lane, 1, lane_count); \ return *isolate->factory()->extract(a->get_lane(lane)); \ } #define SIMD_REPLACE_FUNCTION(type, lane_type, lane_count, extract, replace) \ RUNTIME_FUNCTION(Runtime_##type##ReplaceLane) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 3); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, simd, 0); \ CONVERT_SIMD_LANE_ARG_CHECKED(lane, 1, kLaneCount); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = simd->get_lane(i); \ } \ replace(lane_type, lanes[lane], 2); \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } #define SIMD_CHECK_FUNCTION(type, lane_type, lane_count, extract, replace) \ RUNTIME_FUNCTION(Runtime_##type##Check) { \ HandleScope scope(isolate); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ return *a; \ } #define SIMD_SWIZZLE_FUNCTION(type, lane_type, lane_count, extract, replace) \ RUNTIME_FUNCTION(Runtime_##type##Swizzle) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 1 + kLaneCount); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ CONVERT_SIMD_LANE_ARG_CHECKED(index, i + 1, kLaneCount); \ lanes[i] = a->get_lane(index); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } #define SIMD_SHUFFLE_FUNCTION(type, lane_type, lane_count, extract, replace) \ RUNTIME_FUNCTION(Runtime_##type##Shuffle) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 2 + kLaneCount); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 1); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ CONVERT_SIMD_LANE_ARG_CHECKED(index, i + 2, kLaneCount * 2); \ lanes[i] = index < kLaneCount ? a->get_lane(index) \ : b->get_lane(index - kLaneCount); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } SIMD_ALL_TYPES(SIMD_CREATE_FUNCTION) SIMD_ALL_TYPES(SIMD_EXTRACT_FUNCTION) SIMD_ALL_TYPES(SIMD_REPLACE_FUNCTION) SIMD_ALL_TYPES(SIMD_CHECK_FUNCTION) SIMD_ALL_TYPES(SIMD_SWIZZLE_FUNCTION) SIMD_ALL_TYPES(SIMD_SHUFFLE_FUNCTION) //------------------------------------------------------------------- // Float-only functions. #define SIMD_ABS_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Abs) { \ HandleScope scope(isolate); \ SIMD_UNARY_OP(type, lane_type, lane_count, std::abs, result); \ return *result; \ } #define SIMD_SQRT_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Sqrt) { \ HandleScope scope(isolate); \ SIMD_UNARY_OP(type, lane_type, lane_count, std::sqrt, result); \ return *result; \ } #define SIMD_RECIP_APPROX_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##RecipApprox) { \ HandleScope scope(isolate); \ SIMD_UNARY_OP(type, lane_type, lane_count, RecipApprox, result); \ return *result; \ } #define SIMD_RECIP_SQRT_APPROX_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##RecipSqrtApprox) { \ HandleScope scope(isolate); \ SIMD_UNARY_OP(type, lane_type, lane_count, RecipSqrtApprox, result); \ return *result; \ } #define BINARY_DIV(a, b) (a) / (b) #define SIMD_DIV_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Div) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_DIV, result); \ return *result; \ } #define SIMD_MINNUM_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##MinNum) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, MinNumber, result); \ return *result; \ } #define SIMD_MAXNUM_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##MaxNum) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, MaxNumber, result); \ return *result; \ } SIMD_ABS_FUNCTION(Float32x4, float, 4) SIMD_SQRT_FUNCTION(Float32x4, float, 4) SIMD_RECIP_APPROX_FUNCTION(Float32x4, float, 4) SIMD_RECIP_SQRT_APPROX_FUNCTION(Float32x4, float, 4) SIMD_DIV_FUNCTION(Float32x4, float, 4) SIMD_MINNUM_FUNCTION(Float32x4, float, 4) SIMD_MAXNUM_FUNCTION(Float32x4, float, 4) //------------------------------------------------------------------- // Int-only functions. #define SIMD_INT_TYPES(FUNCTION) \ FUNCTION(Int32x4, int32_t, 32, 4) \ FUNCTION(Int16x8, int16_t, 16, 8) \ FUNCTION(Int8x16, int8_t, 8, 16) #define SIMD_UINT_TYPES(FUNCTION) \ FUNCTION(Uint32x4, uint32_t, 32, 4) \ FUNCTION(Uint16x8, uint16_t, 16, 8) \ FUNCTION(Uint8x16, uint8_t, 8, 16) #define CONVERT_SHIFT_ARG_CHECKED(name, index) \ Handle<Object> name_object = args.at<Object>(index); \ if (!name_object->IsNumber()) { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewTypeError(MessageTemplate::kInvalidSimdOperation)); \ } \ int32_t signed_shift = 0; \ args[index]->ToInt32(&signed_shift); \ uint32_t name = bit_cast<uint32_t>(signed_shift); #define SIMD_LSL_FUNCTION(type, lane_type, lane_bits, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##ShiftLeftByScalar) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 2); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ CONVERT_SHIFT_ARG_CHECKED(shift, 1); \ lane_type lanes[kLaneCount] = {0}; \ shift &= lane_bits - 1; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = a->get_lane(i) << shift; \ } \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } #define SIMD_LSR_FUNCTION(type, lane_type, lane_bits, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##ShiftRightByScalar) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 2); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ CONVERT_SHIFT_ARG_CHECKED(shift, 1); \ lane_type lanes[kLaneCount] = {0}; \ shift &= lane_bits - 1; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = static_cast<lane_type>(bit_cast<lane_type>(a->get_lane(i)) >> \ shift); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } #define SIMD_ASR_FUNCTION(type, lane_type, lane_bits, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##ShiftRightByScalar) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 2); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ CONVERT_SHIFT_ARG_CHECKED(shift, 1); \ shift &= lane_bits - 1; \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ int64_t shifted = static_cast<int64_t>(a->get_lane(i)) >> shift; \ lanes[i] = static_cast<lane_type>(shifted); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } SIMD_INT_TYPES(SIMD_LSL_FUNCTION) SIMD_UINT_TYPES(SIMD_LSL_FUNCTION) SIMD_INT_TYPES(SIMD_ASR_FUNCTION) SIMD_UINT_TYPES(SIMD_LSR_FUNCTION) //------------------------------------------------------------------- // Bool-only functions. #define SIMD_BOOL_TYPES(FUNCTION) \ FUNCTION(Bool32x4, 4) \ FUNCTION(Bool16x8, 8) \ FUNCTION(Bool8x16, 16) #define SIMD_ANY_FUNCTION(type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##AnyTrue) { \ HandleScope scope(isolate); \ DCHECK(args.length() == 1); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ bool result = false; \ for (int i = 0; i < lane_count; i++) { \ if (a->get_lane(i)) { \ result = true; \ break; \ } \ } \ return isolate->heap()->ToBoolean(result); \ } #define SIMD_ALL_FUNCTION(type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##AllTrue) { \ HandleScope scope(isolate); \ DCHECK(args.length() == 1); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 0); \ bool result = true; \ for (int i = 0; i < lane_count; i++) { \ if (!a->get_lane(i)) { \ result = false; \ break; \ } \ } \ return isolate->heap()->ToBoolean(result); \ } SIMD_BOOL_TYPES(SIMD_ANY_FUNCTION) SIMD_BOOL_TYPES(SIMD_ALL_FUNCTION) //------------------------------------------------------------------- // Small Int-only functions. #define SIMD_SMALL_INT_TYPES(FUNCTION) \ FUNCTION(Int16x8, int16_t, 8) \ FUNCTION(Uint16x8, uint16_t, 8) \ FUNCTION(Int8x16, int8_t, 16) \ FUNCTION(Uint8x16, uint8_t, 16) #define SIMD_ADD_SATURATE_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##AddSaturate) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, AddSaturate, result); \ return *result; \ } #define BINARY_SUB(a, b) (a) - (b) #define SIMD_SUB_SATURATE_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##SubSaturate) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, SubSaturate, result); \ return *result; \ } SIMD_SMALL_INT_TYPES(SIMD_ADD_SATURATE_FUNCTION) SIMD_SMALL_INT_TYPES(SIMD_SUB_SATURATE_FUNCTION) //------------------------------------------------------------------- // Numeric functions. #define SIMD_NUMERIC_TYPES(FUNCTION) \ FUNCTION(Float32x4, float, 4) \ FUNCTION(Int32x4, int32_t, 4) \ FUNCTION(Uint32x4, uint32_t, 4) \ FUNCTION(Int16x8, int16_t, 8) \ FUNCTION(Uint16x8, uint16_t, 8) \ FUNCTION(Int8x16, int8_t, 16) \ FUNCTION(Uint8x16, uint8_t, 16) #define BINARY_ADD(a, b) (a) + (b) #define SIMD_ADD_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Add) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_ADD, result); \ return *result; \ } #define BINARY_SUB(a, b) (a) - (b) #define SIMD_SUB_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Sub) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_SUB, result); \ return *result; \ } #define BINARY_MUL(a, b) (a) * (b) #define SIMD_MUL_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Mul) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_MUL, result); \ return *result; \ } #define SIMD_MIN_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Min) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, Min, result); \ return *result; \ } #define SIMD_MAX_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Max) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, Max, result); \ return *result; \ } SIMD_NUMERIC_TYPES(SIMD_ADD_FUNCTION) SIMD_NUMERIC_TYPES(SIMD_SUB_FUNCTION) SIMD_NUMERIC_TYPES(SIMD_MUL_FUNCTION) SIMD_NUMERIC_TYPES(SIMD_MIN_FUNCTION) SIMD_NUMERIC_TYPES(SIMD_MAX_FUNCTION) //------------------------------------------------------------------- // Relational functions. #define SIMD_RELATIONAL_TYPES(FUNCTION) \ FUNCTION(Float32x4, Bool32x4, 4) \ FUNCTION(Int32x4, Bool32x4, 4) \ FUNCTION(Uint32x4, Bool32x4, 4) \ FUNCTION(Int16x8, Bool16x8, 8) \ FUNCTION(Uint16x8, Bool16x8, 8) \ FUNCTION(Int8x16, Bool8x16, 16) \ FUNCTION(Uint8x16, Bool8x16, 16) #define SIMD_EQUALITY_TYPES(FUNCTION) \ SIMD_RELATIONAL_TYPES(FUNCTION) \ FUNCTION(Bool32x4, Bool32x4, 4) \ FUNCTION(Bool16x8, Bool16x8, 8) \ FUNCTION(Bool8x16, Bool8x16, 16) #define SIMD_EQUAL_FUNCTION(type, bool_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Equal) { \ HandleScope scope(isolate); \ SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, ==, result); \ return *result; \ } #define SIMD_NOT_EQUAL_FUNCTION(type, bool_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##NotEqual) { \ HandleScope scope(isolate); \ SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, !=, result); \ return *result; \ } SIMD_EQUALITY_TYPES(SIMD_EQUAL_FUNCTION) SIMD_EQUALITY_TYPES(SIMD_NOT_EQUAL_FUNCTION) #define SIMD_LESS_THAN_FUNCTION(type, bool_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##LessThan) { \ HandleScope scope(isolate); \ SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, <, result); \ return *result; \ } #define SIMD_LESS_THAN_OR_EQUAL_FUNCTION(type, bool_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##LessThanOrEqual) { \ HandleScope scope(isolate); \ SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, <=, result); \ return *result; \ } #define SIMD_GREATER_THAN_FUNCTION(type, bool_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##GreaterThan) { \ HandleScope scope(isolate); \ SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, >, result); \ return *result; \ } #define SIMD_GREATER_THAN_OR_EQUAL_FUNCTION(type, bool_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##GreaterThanOrEqual) { \ HandleScope scope(isolate); \ SIMD_RELATIONAL_OP(type, bool_type, lane_count, a, b, >=, result); \ return *result; \ } SIMD_RELATIONAL_TYPES(SIMD_LESS_THAN_FUNCTION) SIMD_RELATIONAL_TYPES(SIMD_LESS_THAN_OR_EQUAL_FUNCTION) SIMD_RELATIONAL_TYPES(SIMD_GREATER_THAN_FUNCTION) SIMD_RELATIONAL_TYPES(SIMD_GREATER_THAN_OR_EQUAL_FUNCTION) //------------------------------------------------------------------- // Logical functions. #define SIMD_LOGICAL_TYPES(FUNCTION) \ FUNCTION(Int32x4, int32_t, 4, _INT) \ FUNCTION(Uint32x4, uint32_t, 4, _INT) \ FUNCTION(Int16x8, int16_t, 8, _INT) \ FUNCTION(Uint16x8, uint16_t, 8, _INT) \ FUNCTION(Int8x16, int8_t, 16, _INT) \ FUNCTION(Uint8x16, uint8_t, 16, _INT) \ FUNCTION(Bool32x4, bool, 4, _BOOL) \ FUNCTION(Bool16x8, bool, 8, _BOOL) \ FUNCTION(Bool8x16, bool, 16, _BOOL) #define BINARY_AND_INT(a, b) (a) & (b) #define BINARY_AND_BOOL(a, b) (a) && (b) #define SIMD_AND_FUNCTION(type, lane_type, lane_count, op) \ RUNTIME_FUNCTION(Runtime_##type##And) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_AND##op, result); \ return *result; \ } #define BINARY_OR_INT(a, b) (a) | (b) #define BINARY_OR_BOOL(a, b) (a) || (b) #define SIMD_OR_FUNCTION(type, lane_type, lane_count, op) \ RUNTIME_FUNCTION(Runtime_##type##Or) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_OR##op, result); \ return *result; \ } #define BINARY_XOR_INT(a, b) (a) ^ (b) #define BINARY_XOR_BOOL(a, b) (a) != (b) #define SIMD_XOR_FUNCTION(type, lane_type, lane_count, op) \ RUNTIME_FUNCTION(Runtime_##type##Xor) { \ HandleScope scope(isolate); \ SIMD_BINARY_OP(type, lane_type, lane_count, BINARY_XOR##op, result); \ return *result; \ } #define UNARY_NOT_INT ~ #define UNARY_NOT_BOOL ! #define SIMD_NOT_FUNCTION(type, lane_type, lane_count, op) \ RUNTIME_FUNCTION(Runtime_##type##Not) { \ HandleScope scope(isolate); \ SIMD_UNARY_OP(type, lane_type, lane_count, UNARY_NOT##op, result); \ return *result; \ } SIMD_LOGICAL_TYPES(SIMD_AND_FUNCTION) SIMD_LOGICAL_TYPES(SIMD_OR_FUNCTION) SIMD_LOGICAL_TYPES(SIMD_XOR_FUNCTION) SIMD_LOGICAL_TYPES(SIMD_NOT_FUNCTION) //------------------------------------------------------------------- // Select functions. #define SIMD_SELECT_TYPES(FUNCTION) \ FUNCTION(Float32x4, float, Bool32x4, 4) \ FUNCTION(Int32x4, int32_t, Bool32x4, 4) \ FUNCTION(Uint32x4, uint32_t, Bool32x4, 4) \ FUNCTION(Int16x8, int16_t, Bool16x8, 8) \ FUNCTION(Uint16x8, uint16_t, Bool16x8, 8) \ FUNCTION(Int8x16, int8_t, Bool8x16, 16) \ FUNCTION(Uint8x16, uint8_t, Bool8x16, 16) #define SIMD_SELECT_FUNCTION(type, lane_type, bool_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Select) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 3); \ CONVERT_SIMD_ARG_HANDLE_THROW(bool_type, mask, 0); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 1); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, b, 2); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = mask->get_lane(i) ? a->get_lane(i) : b->get_lane(i); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } SIMD_SELECT_TYPES(SIMD_SELECT_FUNCTION) //------------------------------------------------------------------- // Signed / unsigned functions. #define SIMD_SIGNED_TYPES(FUNCTION) \ FUNCTION(Float32x4, float, 4) \ FUNCTION(Int32x4, int32_t, 4) \ FUNCTION(Int16x8, int16_t, 8) \ FUNCTION(Int8x16, int8_t, 16) #define SIMD_NEG_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Neg) { \ HandleScope scope(isolate); \ SIMD_UNARY_OP(type, lane_type, lane_count, -, result); \ return *result; \ } SIMD_SIGNED_TYPES(SIMD_NEG_FUNCTION) //------------------------------------------------------------------- // Casting functions. #define SIMD_FROM_TYPES(FUNCTION) \ FUNCTION(Float32x4, float, 4, Int32x4, int32_t) \ FUNCTION(Float32x4, float, 4, Uint32x4, uint32_t) \ FUNCTION(Int32x4, int32_t, 4, Float32x4, float) \ FUNCTION(Int32x4, int32_t, 4, Uint32x4, uint32_t) \ FUNCTION(Uint32x4, uint32_t, 4, Float32x4, float) \ FUNCTION(Uint32x4, uint32_t, 4, Int32x4, int32_t) \ FUNCTION(Int16x8, int16_t, 8, Uint16x8, uint16_t) \ FUNCTION(Uint16x8, uint16_t, 8, Int16x8, int16_t) \ FUNCTION(Int8x16, int8_t, 16, Uint8x16, uint8_t) \ FUNCTION(Uint8x16, uint8_t, 16, Int8x16, int8_t) #define SIMD_FROM_FUNCTION(type, lane_type, lane_count, from_type, from_ctype) \ RUNTIME_FUNCTION(Runtime_##type##From##from_type) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 1); \ CONVERT_SIMD_ARG_HANDLE_THROW(from_type, a, 0); \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ from_ctype a_value = a->get_lane(i); \ if (a_value != a_value || !CanCast<lane_type>(a_value)) { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewRangeError(MessageTemplate::kInvalidSimdLaneValue)); \ } \ lanes[i] = static_cast<lane_type>(a_value); \ } \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } SIMD_FROM_TYPES(SIMD_FROM_FUNCTION) #define SIMD_FROM_BITS_TYPES(FUNCTION) \ FUNCTION(Float32x4, float, 4, Int32x4) \ FUNCTION(Float32x4, float, 4, Uint32x4) \ FUNCTION(Float32x4, float, 4, Int16x8) \ FUNCTION(Float32x4, float, 4, Uint16x8) \ FUNCTION(Float32x4, float, 4, Int8x16) \ FUNCTION(Float32x4, float, 4, Uint8x16) \ FUNCTION(Int32x4, int32_t, 4, Float32x4) \ FUNCTION(Int32x4, int32_t, 4, Uint32x4) \ FUNCTION(Int32x4, int32_t, 4, Int16x8) \ FUNCTION(Int32x4, int32_t, 4, Uint16x8) \ FUNCTION(Int32x4, int32_t, 4, Int8x16) \ FUNCTION(Int32x4, int32_t, 4, Uint8x16) \ FUNCTION(Uint32x4, uint32_t, 4, Float32x4) \ FUNCTION(Uint32x4, uint32_t, 4, Int32x4) \ FUNCTION(Uint32x4, uint32_t, 4, Int16x8) \ FUNCTION(Uint32x4, uint32_t, 4, Uint16x8) \ FUNCTION(Uint32x4, uint32_t, 4, Int8x16) \ FUNCTION(Uint32x4, uint32_t, 4, Uint8x16) \ FUNCTION(Int16x8, int16_t, 8, Float32x4) \ FUNCTION(Int16x8, int16_t, 8, Int32x4) \ FUNCTION(Int16x8, int16_t, 8, Uint32x4) \ FUNCTION(Int16x8, int16_t, 8, Uint16x8) \ FUNCTION(Int16x8, int16_t, 8, Int8x16) \ FUNCTION(Int16x8, int16_t, 8, Uint8x16) \ FUNCTION(Uint16x8, uint16_t, 8, Float32x4) \ FUNCTION(Uint16x8, uint16_t, 8, Int32x4) \ FUNCTION(Uint16x8, uint16_t, 8, Uint32x4) \ FUNCTION(Uint16x8, uint16_t, 8, Int16x8) \ FUNCTION(Uint16x8, uint16_t, 8, Int8x16) \ FUNCTION(Uint16x8, uint16_t, 8, Uint8x16) \ FUNCTION(Int8x16, int8_t, 16, Float32x4) \ FUNCTION(Int8x16, int8_t, 16, Int32x4) \ FUNCTION(Int8x16, int8_t, 16, Uint32x4) \ FUNCTION(Int8x16, int8_t, 16, Int16x8) \ FUNCTION(Int8x16, int8_t, 16, Uint16x8) \ FUNCTION(Int8x16, int8_t, 16, Uint8x16) \ FUNCTION(Uint8x16, uint8_t, 16, Float32x4) \ FUNCTION(Uint8x16, uint8_t, 16, Int32x4) \ FUNCTION(Uint8x16, uint8_t, 16, Uint32x4) \ FUNCTION(Uint8x16, uint8_t, 16, Int16x8) \ FUNCTION(Uint8x16, uint8_t, 16, Uint16x8) \ FUNCTION(Uint8x16, uint8_t, 16, Int8x16) #define SIMD_FROM_BITS_FUNCTION(type, lane_type, lane_count, from_type) \ RUNTIME_FUNCTION(Runtime_##type##From##from_type##Bits) { \ static const int kLaneCount = lane_count; \ HandleScope scope(isolate); \ DCHECK(args.length() == 1); \ CONVERT_SIMD_ARG_HANDLE_THROW(from_type, a, 0); \ lane_type lanes[kLaneCount]; \ a->CopyBits(lanes); \ Handle<type> result = isolate->factory()->New##type(lanes); \ return *result; \ } SIMD_FROM_BITS_TYPES(SIMD_FROM_BITS_FUNCTION) //------------------------------------------------------------------- // Load and Store functions. #define SIMD_LOADN_STOREN_TYPES(FUNCTION) \ FUNCTION(Float32x4, float, 4) \ FUNCTION(Int32x4, int32_t, 4) \ FUNCTION(Uint32x4, uint32_t, 4) #define SIMD_COERCE_INDEX(name, i) \ Handle<Object> length_object, number_object; \ ASSIGN_RETURN_FAILURE_ON_EXCEPTION( \ isolate, length_object, Object::ToLength(isolate, args.at<Object>(i))); \ ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_object, \ Object::ToNumber(args.at<Object>(i))); \ if (number_object->Number() != length_object->Number()) { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewTypeError(MessageTemplate::kInvalidSimdIndex)); \ } \ int32_t name = number_object->Number(); // Common Load and Store Functions #define SIMD_LOAD(type, lane_type, lane_count, count, result) \ static const int kLaneCount = lane_count; \ DCHECK(args.length() == 2); \ CONVERT_SIMD_ARG_HANDLE_THROW(JSTypedArray, tarray, 0); \ SIMD_COERCE_INDEX(index, 1); \ size_t bpe = tarray->element_size(); \ uint32_t bytes = count * sizeof(lane_type); \ size_t byte_length = NumberToSize(isolate, tarray->byte_length()); \ if (index < 0 || index * bpe + bytes > byte_length) { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewRangeError(MessageTemplate::kInvalidSimdIndex)); \ } \ size_t tarray_offset = NumberToSize(isolate, tarray->byte_offset()); \ uint8_t* tarray_base = \ static_cast<uint8_t*>(tarray->GetBuffer()->backing_store()) + \ tarray_offset; \ lane_type lanes[kLaneCount] = {0}; \ memcpy(lanes, tarray_base + index * bpe, bytes); \ Handle<type> result = isolate->factory()->New##type(lanes); #define SIMD_STORE(type, lane_type, lane_count, count, a) \ static const int kLaneCount = lane_count; \ DCHECK(args.length() == 3); \ CONVERT_SIMD_ARG_HANDLE_THROW(JSTypedArray, tarray, 0); \ CONVERT_SIMD_ARG_HANDLE_THROW(type, a, 2); \ SIMD_COERCE_INDEX(index, 1); \ size_t bpe = tarray->element_size(); \ uint32_t bytes = count * sizeof(lane_type); \ size_t byte_length = NumberToSize(isolate, tarray->byte_length()); \ if (index < 0 || byte_length < index * bpe + bytes) { \ THROW_NEW_ERROR_RETURN_FAILURE( \ isolate, NewRangeError(MessageTemplate::kInvalidSimdIndex)); \ } \ size_t tarray_offset = NumberToSize(isolate, tarray->byte_offset()); \ uint8_t* tarray_base = \ static_cast<uint8_t*>(tarray->GetBuffer()->backing_store()) + \ tarray_offset; \ lane_type lanes[kLaneCount]; \ for (int i = 0; i < kLaneCount; i++) { \ lanes[i] = a->get_lane(i); \ } \ memcpy(tarray_base + index * bpe, lanes, bytes); #define SIMD_LOAD_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Load) { \ HandleScope scope(isolate); \ SIMD_LOAD(type, lane_type, lane_count, lane_count, result); \ return *result; \ } #define SIMD_LOAD1_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Load1) { \ HandleScope scope(isolate); \ SIMD_LOAD(type, lane_type, lane_count, 1, result); \ return *result; \ } #define SIMD_LOAD2_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Load2) { \ HandleScope scope(isolate); \ SIMD_LOAD(type, lane_type, lane_count, 2, result); \ return *result; \ } #define SIMD_LOAD3_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Load3) { \ HandleScope scope(isolate); \ SIMD_LOAD(type, lane_type, lane_count, 3, result); \ return *result; \ } #define SIMD_STORE_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Store) { \ HandleScope scope(isolate); \ SIMD_STORE(type, lane_type, lane_count, lane_count, a); \ return *a; \ } #define SIMD_STORE1_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Store1) { \ HandleScope scope(isolate); \ SIMD_STORE(type, lane_type, lane_count, 1, a); \ return *a; \ } #define SIMD_STORE2_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Store2) { \ HandleScope scope(isolate); \ SIMD_STORE(type, lane_type, lane_count, 2, a); \ return *a; \ } #define SIMD_STORE3_FUNCTION(type, lane_type, lane_count) \ RUNTIME_FUNCTION(Runtime_##type##Store3) { \ HandleScope scope(isolate); \ SIMD_STORE(type, lane_type, lane_count, 3, a); \ return *a; \ } SIMD_NUMERIC_TYPES(SIMD_LOAD_FUNCTION) SIMD_LOADN_STOREN_TYPES(SIMD_LOAD1_FUNCTION) SIMD_LOADN_STOREN_TYPES(SIMD_LOAD2_FUNCTION) SIMD_LOADN_STOREN_TYPES(SIMD_LOAD3_FUNCTION) SIMD_NUMERIC_TYPES(SIMD_STORE_FUNCTION) SIMD_LOADN_STOREN_TYPES(SIMD_STORE1_FUNCTION) SIMD_LOADN_STOREN_TYPES(SIMD_STORE2_FUNCTION) SIMD_LOADN_STOREN_TYPES(SIMD_STORE3_FUNCTION) //------------------------------------------------------------------- } // namespace internal } // namespace v8