// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/regexp/jsregexp.h" #include "src/ast/ast.h" #include "src/base/platform/platform.h" #include "src/compilation-cache.h" #include "src/compiler.h" #include "src/execution.h" #include "src/factory.h" #include "src/isolate-inl.h" #include "src/messages.h" #include "src/ostreams.h" #include "src/regexp/interpreter-irregexp.h" #include "src/regexp/jsregexp-inl.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/regexp/regexp-macro-assembler-irregexp.h" #include "src/regexp/regexp-macro-assembler-tracer.h" #include "src/regexp/regexp-parser.h" #include "src/regexp/regexp-stack.h" #include "src/runtime/runtime.h" #include "src/splay-tree-inl.h" #include "src/string-search.h" #include "src/unicode-decoder.h" #ifdef V8_I18N_SUPPORT #include "unicode/uset.h" #include "unicode/utypes.h" #endif // V8_I18N_SUPPORT #ifndef V8_INTERPRETED_REGEXP #if V8_TARGET_ARCH_IA32 #include "src/regexp/ia32/regexp-macro-assembler-ia32.h" #elif V8_TARGET_ARCH_X64 #include "src/regexp/x64/regexp-macro-assembler-x64.h" #elif V8_TARGET_ARCH_ARM64 #include "src/regexp/arm64/regexp-macro-assembler-arm64.h" #elif V8_TARGET_ARCH_ARM #include "src/regexp/arm/regexp-macro-assembler-arm.h" #elif V8_TARGET_ARCH_PPC #include "src/regexp/ppc/regexp-macro-assembler-ppc.h" #elif V8_TARGET_ARCH_S390 #include "src/regexp/s390/regexp-macro-assembler-s390.h" #elif V8_TARGET_ARCH_MIPS #include "src/regexp/mips/regexp-macro-assembler-mips.h" #elif V8_TARGET_ARCH_MIPS64 #include "src/regexp/mips64/regexp-macro-assembler-mips64.h" #elif V8_TARGET_ARCH_X87 #include "src/regexp/x87/regexp-macro-assembler-x87.h" #else #error Unsupported target architecture. #endif #endif namespace v8 { namespace internal { MUST_USE_RESULT static inline MaybeHandle<Object> ThrowRegExpException( Handle<JSRegExp> re, Handle<String> pattern, Handle<String> error_text) { Isolate* isolate = re->GetIsolate(); THROW_NEW_ERROR(isolate, NewSyntaxError(MessageTemplate::kMalformedRegExp, pattern, error_text), Object); } inline void ThrowRegExpException(Handle<JSRegExp> re, Handle<String> error_text) { USE(ThrowRegExpException(re, Handle<String>(re->Pattern()), error_text)); } ContainedInLattice AddRange(ContainedInLattice containment, const int* ranges, int ranges_length, Interval new_range) { DCHECK((ranges_length & 1) == 1); DCHECK(ranges[ranges_length - 1] == String::kMaxCodePoint + 1); if (containment == kLatticeUnknown) return containment; bool inside = false; int last = 0; for (int i = 0; i < ranges_length; inside = !inside, last = ranges[i], i++) { // Consider the range from last to ranges[i]. // We haven't got to the new range yet. if (ranges[i] <= new_range.from()) continue; // New range is wholly inside last-ranges[i]. Note that new_range.to() is // inclusive, but the values in ranges are not. if (last <= new_range.from() && new_range.to() < ranges[i]) { return Combine(containment, inside ? kLatticeIn : kLatticeOut); } return kLatticeUnknown; } return containment; } // More makes code generation slower, less makes V8 benchmark score lower. const int kMaxLookaheadForBoyerMoore = 8; // In a 3-character pattern you can maximally step forwards 3 characters // at a time, which is not always enough to pay for the extra logic. const int kPatternTooShortForBoyerMoore = 2; // Identifies the sort of regexps where the regexp engine is faster // than the code used for atom matches. static bool HasFewDifferentCharacters(Handle<String> pattern) { int length = Min(kMaxLookaheadForBoyerMoore, pattern->length()); if (length <= kPatternTooShortForBoyerMoore) return false; const int kMod = 128; bool character_found[kMod]; int different = 0; memset(&character_found[0], 0, sizeof(character_found)); for (int i = 0; i < length; i++) { int ch = (pattern->Get(i) & (kMod - 1)); if (!character_found[ch]) { character_found[ch] = true; different++; // We declare a regexp low-alphabet if it has at least 3 times as many // characters as it has different characters. if (different * 3 > length) return false; } } return true; } // Generic RegExp methods. Dispatches to implementation specific methods. MaybeHandle<Object> RegExpImpl::Compile(Handle<JSRegExp> re, Handle<String> pattern, JSRegExp::Flags flags) { Isolate* isolate = re->GetIsolate(); Zone zone(isolate->allocator()); CompilationCache* compilation_cache = isolate->compilation_cache(); MaybeHandle<FixedArray> maybe_cached = compilation_cache->LookupRegExp(pattern, flags); Handle<FixedArray> cached; bool in_cache = maybe_cached.ToHandle(&cached); LOG(isolate, RegExpCompileEvent(re, in_cache)); Handle<Object> result; if (in_cache) { re->set_data(*cached); return re; } pattern = String::Flatten(pattern); PostponeInterruptsScope postpone(isolate); RegExpCompileData parse_result; FlatStringReader reader(isolate, pattern); if (!RegExpParser::ParseRegExp(re->GetIsolate(), &zone, &reader, flags, &parse_result)) { // Throw an exception if we fail to parse the pattern. return ThrowRegExpException(re, pattern, parse_result.error); } bool has_been_compiled = false; if (parse_result.simple && !(flags & JSRegExp::kIgnoreCase) && !(flags & JSRegExp::kSticky) && !HasFewDifferentCharacters(pattern)) { // Parse-tree is a single atom that is equal to the pattern. AtomCompile(re, pattern, flags, pattern); has_been_compiled = true; } else if (parse_result.tree->IsAtom() && !(flags & JSRegExp::kIgnoreCase) && !(flags & JSRegExp::kSticky) && parse_result.capture_count == 0) { RegExpAtom* atom = parse_result.tree->AsAtom(); Vector<const uc16> atom_pattern = atom->data(); Handle<String> atom_string; ASSIGN_RETURN_ON_EXCEPTION( isolate, atom_string, isolate->factory()->NewStringFromTwoByte(atom_pattern), Object); if (!HasFewDifferentCharacters(atom_string)) { AtomCompile(re, pattern, flags, atom_string); has_been_compiled = true; } } if (!has_been_compiled) { IrregexpInitialize(re, pattern, flags, parse_result.capture_count); } DCHECK(re->data()->IsFixedArray()); // Compilation succeeded so the data is set on the regexp // and we can store it in the cache. Handle<FixedArray> data(FixedArray::cast(re->data())); compilation_cache->PutRegExp(pattern, flags, data); return re; } MaybeHandle<Object> RegExpImpl::Exec(Handle<JSRegExp> regexp, Handle<String> subject, int index, Handle<JSArray> last_match_info) { switch (regexp->TypeTag()) { case JSRegExp::ATOM: return AtomExec(regexp, subject, index, last_match_info); case JSRegExp::IRREGEXP: { return IrregexpExec(regexp, subject, index, last_match_info); } default: UNREACHABLE(); return MaybeHandle<Object>(); } } // RegExp Atom implementation: Simple string search using indexOf. void RegExpImpl::AtomCompile(Handle<JSRegExp> re, Handle<String> pattern, JSRegExp::Flags flags, Handle<String> match_pattern) { re->GetIsolate()->factory()->SetRegExpAtomData(re, JSRegExp::ATOM, pattern, flags, match_pattern); } static void SetAtomLastCapture(FixedArray* array, String* subject, int from, int to) { SealHandleScope shs(array->GetIsolate()); RegExpImpl::SetLastCaptureCount(array, 2); RegExpImpl::SetLastSubject(array, subject); RegExpImpl::SetLastInput(array, subject); RegExpImpl::SetCapture(array, 0, from); RegExpImpl::SetCapture(array, 1, to); } int RegExpImpl::AtomExecRaw(Handle<JSRegExp> regexp, Handle<String> subject, int index, int32_t* output, int output_size) { Isolate* isolate = regexp->GetIsolate(); DCHECK(0 <= index); DCHECK(index <= subject->length()); subject = String::Flatten(subject); DisallowHeapAllocation no_gc; // ensure vectors stay valid String* needle = String::cast(regexp->DataAt(JSRegExp::kAtomPatternIndex)); int needle_len = needle->length(); DCHECK(needle->IsFlat()); DCHECK_LT(0, needle_len); if (index + needle_len > subject->length()) { return RegExpImpl::RE_FAILURE; } for (int i = 0; i < output_size; i += 2) { String::FlatContent needle_content = needle->GetFlatContent(); String::FlatContent subject_content = subject->GetFlatContent(); DCHECK(needle_content.IsFlat()); DCHECK(subject_content.IsFlat()); // dispatch on type of strings index = (needle_content.IsOneByte() ? (subject_content.IsOneByte() ? SearchString(isolate, subject_content.ToOneByteVector(), needle_content.ToOneByteVector(), index) : SearchString(isolate, subject_content.ToUC16Vector(), needle_content.ToOneByteVector(), index)) : (subject_content.IsOneByte() ? SearchString(isolate, subject_content.ToOneByteVector(), needle_content.ToUC16Vector(), index) : SearchString(isolate, subject_content.ToUC16Vector(), needle_content.ToUC16Vector(), index))); if (index == -1) { return i / 2; // Return number of matches. } else { output[i] = index; output[i+1] = index + needle_len; index += needle_len; } } return output_size / 2; } Handle<Object> RegExpImpl::AtomExec(Handle<JSRegExp> re, Handle<String> subject, int index, Handle<JSArray> last_match_info) { Isolate* isolate = re->GetIsolate(); static const int kNumRegisters = 2; STATIC_ASSERT(kNumRegisters <= Isolate::kJSRegexpStaticOffsetsVectorSize); int32_t* output_registers = isolate->jsregexp_static_offsets_vector(); int res = AtomExecRaw(re, subject, index, output_registers, kNumRegisters); if (res == RegExpImpl::RE_FAILURE) return isolate->factory()->null_value(); DCHECK_EQ(res, RegExpImpl::RE_SUCCESS); SealHandleScope shs(isolate); FixedArray* array = FixedArray::cast(last_match_info->elements()); SetAtomLastCapture(array, *subject, output_registers[0], output_registers[1]); return last_match_info; } // Irregexp implementation. // Ensures that the regexp object contains a compiled version of the // source for either one-byte or two-byte subject strings. // If the compiled version doesn't already exist, it is compiled // from the source pattern. // If compilation fails, an exception is thrown and this function // returns false. bool RegExpImpl::EnsureCompiledIrregexp(Handle<JSRegExp> re, Handle<String> sample_subject, bool is_one_byte) { Object* compiled_code = re->DataAt(JSRegExp::code_index(is_one_byte)); #ifdef V8_INTERPRETED_REGEXP if (compiled_code->IsByteArray()) return true; #else // V8_INTERPRETED_REGEXP (RegExp native code) if (compiled_code->IsCode()) return true; #endif // We could potentially have marked this as flushable, but have kept // a saved version if we did not flush it yet. Object* saved_code = re->DataAt(JSRegExp::saved_code_index(is_one_byte)); if (saved_code->IsCode()) { // Reinstate the code in the original place. re->SetDataAt(JSRegExp::code_index(is_one_byte), saved_code); DCHECK(compiled_code->IsSmi()); return true; } return CompileIrregexp(re, sample_subject, is_one_byte); } bool RegExpImpl::CompileIrregexp(Handle<JSRegExp> re, Handle<String> sample_subject, bool is_one_byte) { // Compile the RegExp. Isolate* isolate = re->GetIsolate(); Zone zone(isolate->allocator()); PostponeInterruptsScope postpone(isolate); // If we had a compilation error the last time this is saved at the // saved code index. Object* entry = re->DataAt(JSRegExp::code_index(is_one_byte)); // When arriving here entry can only be a smi, either representing an // uncompiled regexp, a previous compilation error, or code that has // been flushed. DCHECK(entry->IsSmi()); int entry_value = Smi::cast(entry)->value(); DCHECK(entry_value == JSRegExp::kUninitializedValue || entry_value == JSRegExp::kCompilationErrorValue || (entry_value < JSRegExp::kCodeAgeMask && entry_value >= 0)); if (entry_value == JSRegExp::kCompilationErrorValue) { // A previous compilation failed and threw an error which we store in // the saved code index (we store the error message, not the actual // error). Recreate the error object and throw it. Object* error_string = re->DataAt(JSRegExp::saved_code_index(is_one_byte)); DCHECK(error_string->IsString()); Handle<String> error_message(String::cast(error_string)); ThrowRegExpException(re, error_message); return false; } JSRegExp::Flags flags = re->GetFlags(); Handle<String> pattern(re->Pattern()); pattern = String::Flatten(pattern); RegExpCompileData compile_data; FlatStringReader reader(isolate, pattern); if (!RegExpParser::ParseRegExp(isolate, &zone, &reader, flags, &compile_data)) { // Throw an exception if we fail to parse the pattern. // THIS SHOULD NOT HAPPEN. We already pre-parsed it successfully once. USE(ThrowRegExpException(re, pattern, compile_data.error)); return false; } RegExpEngine::CompilationResult result = RegExpEngine::Compile(isolate, &zone, &compile_data, flags, pattern, sample_subject, is_one_byte); if (result.error_message != NULL) { // Unable to compile regexp. Handle<String> error_message = isolate->factory()->NewStringFromUtf8( CStrVector(result.error_message)).ToHandleChecked(); ThrowRegExpException(re, error_message); return false; } Handle<FixedArray> data = Handle<FixedArray>(FixedArray::cast(re->data())); data->set(JSRegExp::code_index(is_one_byte), result.code); SetIrregexpCaptureNameMap(*data, compile_data.capture_name_map); int register_max = IrregexpMaxRegisterCount(*data); if (result.num_registers > register_max) { SetIrregexpMaxRegisterCount(*data, result.num_registers); } return true; } int RegExpImpl::IrregexpMaxRegisterCount(FixedArray* re) { return Smi::cast( re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); } void RegExpImpl::SetIrregexpMaxRegisterCount(FixedArray* re, int value) { re->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(value)); } void RegExpImpl::SetIrregexpCaptureNameMap(FixedArray* re, Handle<FixedArray> value) { if (value.is_null()) { re->set(JSRegExp::kIrregexpCaptureNameMapIndex, Smi::FromInt(0)); } else { re->set(JSRegExp::kIrregexpCaptureNameMapIndex, *value); } } int RegExpImpl::IrregexpNumberOfCaptures(FixedArray* re) { return Smi::cast(re->get(JSRegExp::kIrregexpCaptureCountIndex))->value(); } int RegExpImpl::IrregexpNumberOfRegisters(FixedArray* re) { return Smi::cast(re->get(JSRegExp::kIrregexpMaxRegisterCountIndex))->value(); } ByteArray* RegExpImpl::IrregexpByteCode(FixedArray* re, bool is_one_byte) { return ByteArray::cast(re->get(JSRegExp::code_index(is_one_byte))); } Code* RegExpImpl::IrregexpNativeCode(FixedArray* re, bool is_one_byte) { return Code::cast(re->get(JSRegExp::code_index(is_one_byte))); } void RegExpImpl::IrregexpInitialize(Handle<JSRegExp> re, Handle<String> pattern, JSRegExp::Flags flags, int capture_count) { // Initialize compiled code entries to null. re->GetIsolate()->factory()->SetRegExpIrregexpData(re, JSRegExp::IRREGEXP, pattern, flags, capture_count); } int RegExpImpl::IrregexpPrepare(Handle<JSRegExp> regexp, Handle<String> subject) { subject = String::Flatten(subject); // Check representation of the underlying storage. bool is_one_byte = subject->IsOneByteRepresentationUnderneath(); if (!EnsureCompiledIrregexp(regexp, subject, is_one_byte)) return -1; #ifdef V8_INTERPRETED_REGEXP // Byte-code regexp needs space allocated for all its registers. // The result captures are copied to the start of the registers array // if the match succeeds. This way those registers are not clobbered // when we set the last match info from last successful match. return IrregexpNumberOfRegisters(FixedArray::cast(regexp->data())) + (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2; #else // V8_INTERPRETED_REGEXP // Native regexp only needs room to output captures. Registers are handled // internally. return (IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())) + 1) * 2; #endif // V8_INTERPRETED_REGEXP } int RegExpImpl::IrregexpExecRaw(Handle<JSRegExp> regexp, Handle<String> subject, int index, int32_t* output, int output_size) { Isolate* isolate = regexp->GetIsolate(); Handle<FixedArray> irregexp(FixedArray::cast(regexp->data()), isolate); DCHECK(index >= 0); DCHECK(index <= subject->length()); DCHECK(subject->IsFlat()); bool is_one_byte = subject->IsOneByteRepresentationUnderneath(); #ifndef V8_INTERPRETED_REGEXP DCHECK(output_size >= (IrregexpNumberOfCaptures(*irregexp) + 1) * 2); do { EnsureCompiledIrregexp(regexp, subject, is_one_byte); Handle<Code> code(IrregexpNativeCode(*irregexp, is_one_byte), isolate); // The stack is used to allocate registers for the compiled regexp code. // This means that in case of failure, the output registers array is left // untouched and contains the capture results from the previous successful // match. We can use that to set the last match info lazily. NativeRegExpMacroAssembler::Result res = NativeRegExpMacroAssembler::Match(code, subject, output, output_size, index, isolate); if (res != NativeRegExpMacroAssembler::RETRY) { DCHECK(res != NativeRegExpMacroAssembler::EXCEPTION || isolate->has_pending_exception()); STATIC_ASSERT( static_cast<int>(NativeRegExpMacroAssembler::SUCCESS) == RE_SUCCESS); STATIC_ASSERT( static_cast<int>(NativeRegExpMacroAssembler::FAILURE) == RE_FAILURE); STATIC_ASSERT(static_cast<int>(NativeRegExpMacroAssembler::EXCEPTION) == RE_EXCEPTION); return static_cast<IrregexpResult>(res); } // If result is RETRY, the string has changed representation, and we // must restart from scratch. // In this case, it means we must make sure we are prepared to handle // the, potentially, different subject (the string can switch between // being internal and external, and even between being Latin1 and UC16, // but the characters are always the same). IrregexpPrepare(regexp, subject); is_one_byte = subject->IsOneByteRepresentationUnderneath(); } while (true); UNREACHABLE(); return RE_EXCEPTION; #else // V8_INTERPRETED_REGEXP DCHECK(output_size >= IrregexpNumberOfRegisters(*irregexp)); // We must have done EnsureCompiledIrregexp, so we can get the number of // registers. int number_of_capture_registers = (IrregexpNumberOfCaptures(*irregexp) + 1) * 2; int32_t* raw_output = &output[number_of_capture_registers]; // We do not touch the actual capture result registers until we know there // has been a match so that we can use those capture results to set the // last match info. for (int i = number_of_capture_registers - 1; i >= 0; i--) { raw_output[i] = -1; } Handle<ByteArray> byte_codes(IrregexpByteCode(*irregexp, is_one_byte), isolate); IrregexpResult result = IrregexpInterpreter::Match(isolate, byte_codes, subject, raw_output, index); if (result == RE_SUCCESS) { // Copy capture results to the start of the registers array. MemCopy(output, raw_output, number_of_capture_registers * sizeof(int32_t)); } if (result == RE_EXCEPTION) { DCHECK(!isolate->has_pending_exception()); isolate->StackOverflow(); } return result; #endif // V8_INTERPRETED_REGEXP } MaybeHandle<Object> RegExpImpl::IrregexpExec(Handle<JSRegExp> regexp, Handle<String> subject, int previous_index, Handle<JSArray> last_match_info) { Isolate* isolate = regexp->GetIsolate(); DCHECK_EQ(regexp->TypeTag(), JSRegExp::IRREGEXP); // Prepare space for the return values. #if defined(V8_INTERPRETED_REGEXP) && defined(DEBUG) if (FLAG_trace_regexp_bytecodes) { String* pattern = regexp->Pattern(); PrintF("\n\nRegexp match: /%s/\n\n", pattern->ToCString().get()); PrintF("\n\nSubject string: '%s'\n\n", subject->ToCString().get()); } #endif int required_registers = RegExpImpl::IrregexpPrepare(regexp, subject); if (required_registers < 0) { // Compiling failed with an exception. DCHECK(isolate->has_pending_exception()); return MaybeHandle<Object>(); } int32_t* output_registers = NULL; if (required_registers > Isolate::kJSRegexpStaticOffsetsVectorSize) { output_registers = NewArray<int32_t>(required_registers); } base::SmartArrayPointer<int32_t> auto_release(output_registers); if (output_registers == NULL) { output_registers = isolate->jsregexp_static_offsets_vector(); } int res = RegExpImpl::IrregexpExecRaw( regexp, subject, previous_index, output_registers, required_registers); if (res == RE_SUCCESS) { int capture_count = IrregexpNumberOfCaptures(FixedArray::cast(regexp->data())); return SetLastMatchInfo( last_match_info, subject, capture_count, output_registers); } if (res == RE_EXCEPTION) { DCHECK(isolate->has_pending_exception()); return MaybeHandle<Object>(); } DCHECK(res == RE_FAILURE); return isolate->factory()->null_value(); } static void EnsureSize(Handle<JSArray> array, uint32_t minimum_size) { if (static_cast<uint32_t>(array->elements()->length()) < minimum_size) { JSArray::SetLength(array, minimum_size); } } Handle<JSArray> RegExpImpl::SetLastMatchInfo(Handle<JSArray> last_match_info, Handle<String> subject, int capture_count, int32_t* match) { DCHECK(last_match_info->HasFastObjectElements()); int capture_register_count = (capture_count + 1) * 2; EnsureSize(last_match_info, capture_register_count + kLastMatchOverhead); DisallowHeapAllocation no_allocation; FixedArray* array = FixedArray::cast(last_match_info->elements()); if (match != NULL) { for (int i = 0; i < capture_register_count; i += 2) { SetCapture(array, i, match[i]); SetCapture(array, i + 1, match[i + 1]); } } SetLastCaptureCount(array, capture_register_count); SetLastSubject(array, *subject); SetLastInput(array, *subject); return last_match_info; } RegExpImpl::GlobalCache::GlobalCache(Handle<JSRegExp> regexp, Handle<String> subject, Isolate* isolate) : register_array_(NULL), register_array_size_(0), regexp_(regexp), subject_(subject) { #ifdef V8_INTERPRETED_REGEXP bool interpreted = true; #else bool interpreted = false; #endif // V8_INTERPRETED_REGEXP if (regexp_->TypeTag() == JSRegExp::ATOM) { static const int kAtomRegistersPerMatch = 2; registers_per_match_ = kAtomRegistersPerMatch; // There is no distinction between interpreted and native for atom regexps. interpreted = false; } else { registers_per_match_ = RegExpImpl::IrregexpPrepare(regexp_, subject_); if (registers_per_match_ < 0) { num_matches_ = -1; // Signal exception. return; } } DCHECK_NE(0, regexp->GetFlags() & JSRegExp::kGlobal); if (!interpreted) { register_array_size_ = Max(registers_per_match_, Isolate::kJSRegexpStaticOffsetsVectorSize); max_matches_ = register_array_size_ / registers_per_match_; } else { // Global loop in interpreted regexp is not implemented. We choose // the size of the offsets vector so that it can only store one match. register_array_size_ = registers_per_match_; max_matches_ = 1; } if (register_array_size_ > Isolate::kJSRegexpStaticOffsetsVectorSize) { register_array_ = NewArray<int32_t>(register_array_size_); } else { register_array_ = isolate->jsregexp_static_offsets_vector(); } // Set state so that fetching the results the first time triggers a call // to the compiled regexp. current_match_index_ = max_matches_ - 1; num_matches_ = max_matches_; DCHECK(registers_per_match_ >= 2); // Each match has at least one capture. DCHECK_GE(register_array_size_, registers_per_match_); int32_t* last_match = ®ister_array_[current_match_index_ * registers_per_match_]; last_match[0] = -1; last_match[1] = 0; } int RegExpImpl::GlobalCache::AdvanceZeroLength(int last_index) { if ((regexp_->GetFlags() & JSRegExp::kUnicode) != 0 && last_index + 1 < subject_->length() && unibrow::Utf16::IsLeadSurrogate(subject_->Get(last_index)) && unibrow::Utf16::IsTrailSurrogate(subject_->Get(last_index + 1))) { // Advance over the surrogate pair. return last_index + 2; } return last_index + 1; } // ------------------------------------------------------------------- // Implementation of the Irregexp regular expression engine. // // The Irregexp regular expression engine is intended to be a complete // implementation of ECMAScript regular expressions. It generates either // bytecodes or native code. // The Irregexp regexp engine is structured in three steps. // 1) The parser generates an abstract syntax tree. See ast.cc. // 2) From the AST a node network is created. The nodes are all // subclasses of RegExpNode. The nodes represent states when // executing a regular expression. Several optimizations are // performed on the node network. // 3) From the nodes we generate either byte codes or native code // that can actually execute the regular expression (perform // the search). The code generation step is described in more // detail below. // Code generation. // // The nodes are divided into four main categories. // * Choice nodes // These represent places where the regular expression can // match in more than one way. For example on entry to an // alternation (foo|bar) or a repetition (*, +, ? or {}). // * Action nodes // These represent places where some action should be // performed. Examples include recording the current position // in the input string to a register (in order to implement // captures) or other actions on register for example in order // to implement the counters needed for {} repetitions. // * Matching nodes // These attempt to match some element part of the input string. // Examples of elements include character classes, plain strings // or back references. // * End nodes // These are used to implement the actions required on finding // a successful match or failing to find a match. // // The code generated (whether as byte codes or native code) maintains // some state as it runs. This consists of the following elements: // // * The capture registers. Used for string captures. // * Other registers. Used for counters etc. // * The current position. // * The stack of backtracking information. Used when a matching node // fails to find a match and needs to try an alternative. // // Conceptual regular expression execution model: // // There is a simple conceptual model of regular expression execution // which will be presented first. The actual code generated is a more // efficient simulation of the simple conceptual model: // // * Choice nodes are implemented as follows: // For each choice except the last { // push current position // push backtrack code location // <generate code to test for choice> // backtrack code location: // pop current position // } // <generate code to test for last choice> // // * Actions nodes are generated as follows // <push affected registers on backtrack stack> // <generate code to perform action> // push backtrack code location // <generate code to test for following nodes> // backtrack code location: // <pop affected registers to restore their state> // <pop backtrack location from stack and go to it> // // * Matching nodes are generated as follows: // if input string matches at current position // update current position // <generate code to test for following nodes> // else // <pop backtrack location from stack and go to it> // // Thus it can be seen that the current position is saved and restored // by the choice nodes, whereas the registers are saved and restored by // by the action nodes that manipulate them. // // The other interesting aspect of this model is that nodes are generated // at the point where they are needed by a recursive call to Emit(). If // the node has already been code generated then the Emit() call will // generate a jump to the previously generated code instead. In order to // limit recursion it is possible for the Emit() function to put the node // on a work list for later generation and instead generate a jump. The // destination of the jump is resolved later when the code is generated. // // Actual regular expression code generation. // // Code generation is actually more complicated than the above. In order // to improve the efficiency of the generated code some optimizations are // performed // // * Choice nodes have 1-character lookahead. // A choice node looks at the following character and eliminates some of // the choices immediately based on that character. This is not yet // implemented. // * Simple greedy loops store reduced backtracking information. // A quantifier like /.*foo/m will greedily match the whole input. It will // then need to backtrack to a point where it can match "foo". The naive // implementation of this would push each character position onto the // backtracking stack, then pop them off one by one. This would use space // proportional to the length of the input string. However since the "." // can only match in one way and always has a constant length (in this case // of 1) it suffices to store the current position on the top of the stack // once. Matching now becomes merely incrementing the current position and // backtracking becomes decrementing the current position and checking the // result against the stored current position. This is faster and saves // space. // * The current state is virtualized. // This is used to defer expensive operations until it is clear that they // are needed and to generate code for a node more than once, allowing // specialized an efficient versions of the code to be created. This is // explained in the section below. // // Execution state virtualization. // // Instead of emitting code, nodes that manipulate the state can record their // manipulation in an object called the Trace. The Trace object can record a // current position offset, an optional backtrack code location on the top of // the virtualized backtrack stack and some register changes. When a node is // to be emitted it can flush the Trace or update it. Flushing the Trace // will emit code to bring the actual state into line with the virtual state. // Avoiding flushing the state can postpone some work (e.g. updates of capture // registers). Postponing work can save time when executing the regular // expression since it may be found that the work never has to be done as a // failure to match can occur. In addition it is much faster to jump to a // known backtrack code location than it is to pop an unknown backtrack // location from the stack and jump there. // // The virtual state found in the Trace affects code generation. For example // the virtual state contains the difference between the actual current // position and the virtual current position, and matching code needs to use // this offset to attempt a match in the correct location of the input // string. Therefore code generated for a non-trivial trace is specialized // to that trace. The code generator therefore has the ability to generate // code for each node several times. In order to limit the size of the // generated code there is an arbitrary limit on how many specialized sets of // code may be generated for a given node. If the limit is reached, the // trace is flushed and a generic version of the code for a node is emitted. // This is subsequently used for that node. The code emitted for non-generic // trace is not recorded in the node and so it cannot currently be reused in // the event that code generation is requested for an identical trace. void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { UNREACHABLE(); } void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) { text->AddElement(TextElement::Atom(this), zone); } void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) { text->AddElement(TextElement::CharClass(this), zone); } void RegExpText::AppendToText(RegExpText* text, Zone* zone) { for (int i = 0; i < elements()->length(); i++) text->AddElement(elements()->at(i), zone); } TextElement TextElement::Atom(RegExpAtom* atom) { return TextElement(ATOM, atom); } TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { return TextElement(CHAR_CLASS, char_class); } int TextElement::length() const { switch (text_type()) { case ATOM: return atom()->length(); case CHAR_CLASS: return 1; } UNREACHABLE(); return 0; } DispatchTable* ChoiceNode::GetTable(bool ignore_case) { if (table_ == NULL) { table_ = new(zone()) DispatchTable(zone()); DispatchTableConstructor cons(table_, ignore_case, zone()); cons.BuildTable(this); } return table_; } class FrequencyCollator { public: FrequencyCollator() : total_samples_(0) { for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { frequencies_[i] = CharacterFrequency(i); } } void CountCharacter(int character) { int index = (character & RegExpMacroAssembler::kTableMask); frequencies_[index].Increment(); total_samples_++; } // Does not measure in percent, but rather per-128 (the table size from the // regexp macro assembler). int Frequency(int in_character) { DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character); if (total_samples_ < 1) return 1; // Division by zero. int freq_in_per128 = (frequencies_[in_character].counter() * 128) / total_samples_; return freq_in_per128; } private: class CharacterFrequency { public: CharacterFrequency() : counter_(0), character_(-1) { } explicit CharacterFrequency(int character) : counter_(0), character_(character) { } void Increment() { counter_++; } int counter() { return counter_; } int character() { return character_; } private: int counter_; int character_; }; private: CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; int total_samples_; }; class RegExpCompiler { public: RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count, JSRegExp::Flags flags, bool is_one_byte); int AllocateRegister() { if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { reg_exp_too_big_ = true; return next_register_; } return next_register_++; } // Lookarounds to match lone surrogates for unicode character class matches // are never nested. We can therefore reuse registers. int UnicodeLookaroundStackRegister() { if (unicode_lookaround_stack_register_ == kNoRegister) { unicode_lookaround_stack_register_ = AllocateRegister(); } return unicode_lookaround_stack_register_; } int UnicodeLookaroundPositionRegister() { if (unicode_lookaround_position_register_ == kNoRegister) { unicode_lookaround_position_register_ = AllocateRegister(); } return unicode_lookaround_position_register_; } RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler, RegExpNode* start, int capture_count, Handle<String> pattern); inline void AddWork(RegExpNode* node) { if (!node->on_work_list() && !node->label()->is_bound()) { node->set_on_work_list(true); work_list_->Add(node); } } static const int kImplementationOffset = 0; static const int kNumberOfRegistersOffset = 0; static const int kCodeOffset = 1; RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } EndNode* accept() { return accept_; } static const int kMaxRecursion = 100; inline int recursion_depth() { return recursion_depth_; } inline void IncrementRecursionDepth() { recursion_depth_++; } inline void DecrementRecursionDepth() { recursion_depth_--; } void SetRegExpTooBig() { reg_exp_too_big_ = true; } inline bool ignore_case() { return (flags_ & JSRegExp::kIgnoreCase) != 0; } inline bool unicode() { return (flags_ & JSRegExp::kUnicode) != 0; } inline bool one_byte() { return one_byte_; } inline bool optimize() { return optimize_; } inline void set_optimize(bool value) { optimize_ = value; } inline bool limiting_recursion() { return limiting_recursion_; } inline void set_limiting_recursion(bool value) { limiting_recursion_ = value; } bool read_backward() { return read_backward_; } void set_read_backward(bool value) { read_backward_ = value; } FrequencyCollator* frequency_collator() { return &frequency_collator_; } int current_expansion_factor() { return current_expansion_factor_; } void set_current_expansion_factor(int value) { current_expansion_factor_ = value; } Isolate* isolate() const { return isolate_; } Zone* zone() const { return zone_; } static const int kNoRegister = -1; private: EndNode* accept_; int next_register_; int unicode_lookaround_stack_register_; int unicode_lookaround_position_register_; List<RegExpNode*>* work_list_; int recursion_depth_; RegExpMacroAssembler* macro_assembler_; JSRegExp::Flags flags_; bool one_byte_; bool reg_exp_too_big_; bool limiting_recursion_; bool optimize_; bool read_backward_; int current_expansion_factor_; FrequencyCollator frequency_collator_; Isolate* isolate_; Zone* zone_; }; class RecursionCheck { public: explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { compiler->IncrementRecursionDepth(); } ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } private: RegExpCompiler* compiler_; }; static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) { return RegExpEngine::CompilationResult(isolate, "RegExp too big"); } // Attempts to compile the regexp using an Irregexp code generator. Returns // a fixed array or a null handle depending on whether it succeeded. RegExpCompiler::RegExpCompiler(Isolate* isolate, Zone* zone, int capture_count, JSRegExp::Flags flags, bool one_byte) : next_register_(2 * (capture_count + 1)), unicode_lookaround_stack_register_(kNoRegister), unicode_lookaround_position_register_(kNoRegister), work_list_(NULL), recursion_depth_(0), flags_(flags), one_byte_(one_byte), reg_exp_too_big_(false), limiting_recursion_(false), optimize_(FLAG_regexp_optimization), read_backward_(false), current_expansion_factor_(1), frequency_collator_(), isolate_(isolate), zone_(zone) { accept_ = new(zone) EndNode(EndNode::ACCEPT, zone); DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); } RegExpEngine::CompilationResult RegExpCompiler::Assemble( RegExpMacroAssembler* macro_assembler, RegExpNode* start, int capture_count, Handle<String> pattern) { Heap* heap = pattern->GetHeap(); #ifdef DEBUG if (FLAG_trace_regexp_assembler) macro_assembler_ = new RegExpMacroAssemblerTracer(isolate(), macro_assembler); else #endif macro_assembler_ = macro_assembler; List <RegExpNode*> work_list(0); work_list_ = &work_list; Label fail; macro_assembler_->PushBacktrack(&fail); Trace new_trace; start->Emit(this, &new_trace); macro_assembler_->Bind(&fail); macro_assembler_->Fail(); while (!work_list.is_empty()) { RegExpNode* node = work_list.RemoveLast(); node->set_on_work_list(false); if (!node->label()->is_bound()) node->Emit(this, &new_trace); } if (reg_exp_too_big_) { macro_assembler_->AbortedCodeGeneration(); return IrregexpRegExpTooBig(isolate_); } Handle<HeapObject> code = macro_assembler_->GetCode(pattern); heap->IncreaseTotalRegexpCodeGenerated(code->Size()); work_list_ = NULL; #ifdef ENABLE_DISASSEMBLER if (FLAG_print_code) { CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer()); OFStream os(trace_scope.file()); Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os); } #endif #ifdef DEBUG if (FLAG_trace_regexp_assembler) { delete macro_assembler_; } #endif return RegExpEngine::CompilationResult(*code, next_register_); } bool Trace::DeferredAction::Mentions(int that) { if (action_type() == ActionNode::CLEAR_CAPTURES) { Interval range = static_cast<DeferredClearCaptures*>(this)->range(); return range.Contains(that); } else { return reg() == that; } } bool Trace::mentions_reg(int reg) { for (DeferredAction* action = actions_; action != NULL; action = action->next()) { if (action->Mentions(reg)) return true; } return false; } bool Trace::GetStoredPosition(int reg, int* cp_offset) { DCHECK_EQ(0, *cp_offset); for (DeferredAction* action = actions_; action != NULL; action = action->next()) { if (action->Mentions(reg)) { if (action->action_type() == ActionNode::STORE_POSITION) { *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset(); return true; } else { return false; } } } return false; } int Trace::FindAffectedRegisters(OutSet* affected_registers, Zone* zone) { int max_register = RegExpCompiler::kNoRegister; for (DeferredAction* action = actions_; action != NULL; action = action->next()) { if (action->action_type() == ActionNode::CLEAR_CAPTURES) { Interval range = static_cast<DeferredClearCaptures*>(action)->range(); for (int i = range.from(); i <= range.to(); i++) affected_registers->Set(i, zone); if (range.to() > max_register) max_register = range.to(); } else { affected_registers->Set(action->reg(), zone); if (action->reg() > max_register) max_register = action->reg(); } } return max_register; } void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, int max_register, const OutSet& registers_to_pop, const OutSet& registers_to_clear) { for (int reg = max_register; reg >= 0; reg--) { if (registers_to_pop.Get(reg)) { assembler->PopRegister(reg); } else if (registers_to_clear.Get(reg)) { int clear_to = reg; while (reg > 0 && registers_to_clear.Get(reg - 1)) { reg--; } assembler->ClearRegisters(reg, clear_to); } } } void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, int max_register, const OutSet& affected_registers, OutSet* registers_to_pop, OutSet* registers_to_clear, Zone* zone) { // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. const int push_limit = (assembler->stack_limit_slack() + 1) / 2; // Count pushes performed to force a stack limit check occasionally. int pushes = 0; for (int reg = 0; reg <= max_register; reg++) { if (!affected_registers.Get(reg)) { continue; } // The chronologically first deferred action in the trace // is used to infer the action needed to restore a register // to its previous state (or not, if it's safe to ignore it). enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; DeferredActionUndoType undo_action = IGNORE; int value = 0; bool absolute = false; bool clear = false; static const int kNoStore = kMinInt; int store_position = kNoStore; // This is a little tricky because we are scanning the actions in reverse // historical order (newest first). for (DeferredAction* action = actions_; action != NULL; action = action->next()) { if (action->Mentions(reg)) { switch (action->action_type()) { case ActionNode::SET_REGISTER: { Trace::DeferredSetRegister* psr = static_cast<Trace::DeferredSetRegister*>(action); if (!absolute) { value += psr->value(); absolute = true; } // SET_REGISTER is currently only used for newly introduced loop // counters. They can have a significant previous value if they // occour in a loop. TODO(lrn): Propagate this information, so // we can set undo_action to IGNORE if we know there is no value to // restore. undo_action = RESTORE; DCHECK_EQ(store_position, kNoStore); DCHECK(!clear); break; } case ActionNode::INCREMENT_REGISTER: if (!absolute) { value++; } DCHECK_EQ(store_position, kNoStore); DCHECK(!clear); undo_action = RESTORE; break; case ActionNode::STORE_POSITION: { Trace::DeferredCapture* pc = static_cast<Trace::DeferredCapture*>(action); if (!clear && store_position == kNoStore) { store_position = pc->cp_offset(); } // For captures we know that stores and clears alternate. // Other register, are never cleared, and if the occur // inside a loop, they might be assigned more than once. if (reg <= 1) { // Registers zero and one, aka "capture zero", is // always set correctly if we succeed. There is no // need to undo a setting on backtrack, because we // will set it again or fail. undo_action = IGNORE; } else { undo_action = pc->is_capture() ? CLEAR : RESTORE; } DCHECK(!absolute); DCHECK_EQ(value, 0); break; } case ActionNode::CLEAR_CAPTURES: { // Since we're scanning in reverse order, if we've already // set the position we have to ignore historically earlier // clearing operations. if (store_position == kNoStore) { clear = true; } undo_action = RESTORE; DCHECK(!absolute); DCHECK_EQ(value, 0); break; } default: UNREACHABLE(); break; } } } // Prepare for the undo-action (e.g., push if it's going to be popped). if (undo_action == RESTORE) { pushes++; RegExpMacroAssembler::StackCheckFlag stack_check = RegExpMacroAssembler::kNoStackLimitCheck; if (pushes == push_limit) { stack_check = RegExpMacroAssembler::kCheckStackLimit; pushes = 0; } assembler->PushRegister(reg, stack_check); registers_to_pop->Set(reg, zone); } else if (undo_action == CLEAR) { registers_to_clear->Set(reg, zone); } // Perform the chronologically last action (or accumulated increment) // for the register. if (store_position != kNoStore) { assembler->WriteCurrentPositionToRegister(reg, store_position); } else if (clear) { assembler->ClearRegisters(reg, reg); } else if (absolute) { assembler->SetRegister(reg, value); } else if (value != 0) { assembler->AdvanceRegister(reg, value); } } } // This is called as we come into a loop choice node and some other tricky // nodes. It normalizes the state of the code generator to ensure we can // generate generic code. void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); DCHECK(!is_trivial()); if (actions_ == NULL && backtrack() == NULL) { // Here we just have some deferred cp advances to fix and we are back to // a normal situation. We may also have to forget some information gained // through a quick check that was already performed. if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); // Create a new trivial state and generate the node with that. Trace new_state; successor->Emit(compiler, &new_state); return; } // Generate deferred actions here along with code to undo them again. OutSet affected_registers; if (backtrack() != NULL) { // Here we have a concrete backtrack location. These are set up by choice // nodes and so they indicate that we have a deferred save of the current // position which we may need to emit here. assembler->PushCurrentPosition(); } int max_register = FindAffectedRegisters(&affected_registers, compiler->zone()); OutSet registers_to_pop; OutSet registers_to_clear; PerformDeferredActions(assembler, max_register, affected_registers, ®isters_to_pop, ®isters_to_clear, compiler->zone()); if (cp_offset_ != 0) { assembler->AdvanceCurrentPosition(cp_offset_); } // Create a new trivial state and generate the node with that. Label undo; assembler->PushBacktrack(&undo); if (successor->KeepRecursing(compiler)) { Trace new_state; successor->Emit(compiler, &new_state); } else { compiler->AddWork(successor); assembler->GoTo(successor->label()); } // On backtrack we need to restore state. assembler->Bind(&undo); RestoreAffectedRegisters(assembler, max_register, registers_to_pop, registers_to_clear); if (backtrack() == NULL) { assembler->Backtrack(); } else { assembler->PopCurrentPosition(); assembler->GoTo(backtrack()); } } void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); // Omit flushing the trace. We discard the entire stack frame anyway. if (!label()->is_bound()) { // We are completely independent of the trace, since we ignore it, // so this code can be used as the generic version. assembler->Bind(label()); } // Throw away everything on the backtrack stack since the start // of the negative submatch and restore the character position. assembler->ReadCurrentPositionFromRegister(current_position_register_); assembler->ReadStackPointerFromRegister(stack_pointer_register_); if (clear_capture_count_ > 0) { // Clear any captures that might have been performed during the success // of the body of the negative look-ahead. int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1; assembler->ClearRegisters(clear_capture_start_, clear_capture_end); } // Now that we have unwound the stack we find at the top of the stack the // backtrack that the BeginSubmatch node got. assembler->Backtrack(); } void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (!label()->is_bound()) { assembler->Bind(label()); } switch (action_) { case ACCEPT: assembler->Succeed(); return; case BACKTRACK: assembler->GoTo(trace->backtrack()); return; case NEGATIVE_SUBMATCH_SUCCESS: // This case is handled in a different virtual method. UNREACHABLE(); } UNIMPLEMENTED(); } void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { if (guards_ == NULL) guards_ = new(zone) ZoneList<Guard*>(1, zone); guards_->Add(guard, zone); } ActionNode* ActionNode::SetRegister(int reg, int val, RegExpNode* on_success) { ActionNode* result = new(on_success->zone()) ActionNode(SET_REGISTER, on_success); result->data_.u_store_register.reg = reg; result->data_.u_store_register.value = val; return result; } ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { ActionNode* result = new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); result->data_.u_increment_register.reg = reg; return result; } ActionNode* ActionNode::StorePosition(int reg, bool is_capture, RegExpNode* on_success) { ActionNode* result = new(on_success->zone()) ActionNode(STORE_POSITION, on_success); result->data_.u_position_register.reg = reg; result->data_.u_position_register.is_capture = is_capture; return result; } ActionNode* ActionNode::ClearCaptures(Interval range, RegExpNode* on_success) { ActionNode* result = new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); result->data_.u_clear_captures.range_from = range.from(); result->data_.u_clear_captures.range_to = range.to(); return result; } ActionNode* ActionNode::BeginSubmatch(int stack_reg, int position_reg, RegExpNode* on_success) { ActionNode* result = new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); result->data_.u_submatch.stack_pointer_register = stack_reg; result->data_.u_submatch.current_position_register = position_reg; return result; } ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, int position_reg, int clear_register_count, int clear_register_from, RegExpNode* on_success) { ActionNode* result = new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); result->data_.u_submatch.stack_pointer_register = stack_reg; result->data_.u_submatch.current_position_register = position_reg; result->data_.u_submatch.clear_register_count = clear_register_count; result->data_.u_submatch.clear_register_from = clear_register_from; return result; } ActionNode* ActionNode::EmptyMatchCheck(int start_register, int repetition_register, int repetition_limit, RegExpNode* on_success) { ActionNode* result = new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); result->data_.u_empty_match_check.start_register = start_register; result->data_.u_empty_match_check.repetition_register = repetition_register; result->data_.u_empty_match_check.repetition_limit = repetition_limit; return result; } #define DEFINE_ACCEPT(Type) \ void Type##Node::Accept(NodeVisitor* visitor) { \ visitor->Visit##Type(this); \ } FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) #undef DEFINE_ACCEPT void LoopChoiceNode::Accept(NodeVisitor* visitor) { visitor->VisitLoopChoice(this); } // ------------------------------------------------------------------- // Emit code. void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, Guard* guard, Trace* trace) { switch (guard->op()) { case Guard::LT: DCHECK(!trace->mentions_reg(guard->reg())); macro_assembler->IfRegisterGE(guard->reg(), guard->value(), trace->backtrack()); break; case Guard::GEQ: DCHECK(!trace->mentions_reg(guard->reg())); macro_assembler->IfRegisterLT(guard->reg(), guard->value(), trace->backtrack()); break; } } // Returns the number of characters in the equivalence class, omitting those // that cannot occur in the source string because it is Latin1. static int GetCaseIndependentLetters(Isolate* isolate, uc16 character, bool one_byte_subject, unibrow::uchar* letters) { int length = isolate->jsregexp_uncanonicalize()->get(character, '\0', letters); // Unibrow returns 0 or 1 for characters where case independence is // trivial. if (length == 0) { letters[0] = character; length = 1; } if (one_byte_subject) { int new_length = 0; for (int i = 0; i < length; i++) { if (letters[i] <= String::kMaxOneByteCharCode) { letters[new_length++] = letters[i]; } } length = new_length; } return length; } static inline bool EmitSimpleCharacter(Isolate* isolate, RegExpCompiler* compiler, uc16 c, Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); bool bound_checked = false; if (!preloaded) { assembler->LoadCurrentCharacter( cp_offset, on_failure, check); bound_checked = true; } assembler->CheckNotCharacter(c, on_failure); return bound_checked; } // Only emits non-letters (things that don't have case). Only used for case // independent matches. static inline bool EmitAtomNonLetter(Isolate* isolate, RegExpCompiler* compiler, uc16 c, Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); bool one_byte = compiler->one_byte(); unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); if (length < 1) { // This can't match. Must be an one-byte subject and a non-one-byte // character. We do not need to do anything since the one-byte pass // already handled this. return false; // Bounds not checked. } bool checked = false; // We handle the length > 1 case in a later pass. if (length == 1) { if (one_byte && c > String::kMaxOneByteCharCodeU) { // Can't match - see above. return false; // Bounds not checked. } if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); checked = check; } macro_assembler->CheckNotCharacter(c, on_failure); } return checked; } static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, bool one_byte, uc16 c1, uc16 c2, Label* on_failure) { uc16 char_mask; if (one_byte) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } uc16 exor = c1 ^ c2; // Check whether exor has only one bit set. if (((exor - 1) & exor) == 0) { // If c1 and c2 differ only by one bit. // Ecma262UnCanonicalize always gives the highest number last. DCHECK(c2 > c1); uc16 mask = char_mask ^ exor; macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); return true; } DCHECK(c2 > c1); uc16 diff = c2 - c1; if (((diff - 1) & diff) == 0 && c1 >= diff) { // If the characters differ by 2^n but don't differ by one bit then // subtract the difference from the found character, then do the or // trick. We avoid the theoretical case where negative numbers are // involved in order to simplify code generation. uc16 mask = char_mask ^ diff; macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, diff, mask, on_failure); return true; } return false; } typedef bool EmitCharacterFunction(Isolate* isolate, RegExpCompiler* compiler, uc16 c, Label* on_failure, int cp_offset, bool check, bool preloaded); // Only emits letters (things that have case). Only used for case independent // matches. static inline bool EmitAtomLetter(Isolate* isolate, RegExpCompiler* compiler, uc16 c, Label* on_failure, int cp_offset, bool check, bool preloaded) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); bool one_byte = compiler->one_byte(); unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); if (length <= 1) return false; // We may not need to check against the end of the input string // if this character lies before a character that matched. if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); } Label ok; DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); switch (length) { case 2: { if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0], chars[1], on_failure)) { } else { macro_assembler->CheckCharacter(chars[0], &ok); macro_assembler->CheckNotCharacter(chars[1], on_failure); macro_assembler->Bind(&ok); } break; } case 4: macro_assembler->CheckCharacter(chars[3], &ok); // Fall through! case 3: macro_assembler->CheckCharacter(chars[0], &ok); macro_assembler->CheckCharacter(chars[1], &ok); macro_assembler->CheckNotCharacter(chars[2], on_failure); macro_assembler->Bind(&ok); break; default: UNREACHABLE(); break; } return true; } static void EmitBoundaryTest(RegExpMacroAssembler* masm, int border, Label* fall_through, Label* above_or_equal, Label* below) { if (below != fall_through) { masm->CheckCharacterLT(border, below); if (above_or_equal != fall_through) masm->GoTo(above_or_equal); } else { masm->CheckCharacterGT(border - 1, above_or_equal); } } static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, int first, int last, Label* fall_through, Label* in_range, Label* out_of_range) { if (in_range == fall_through) { if (first == last) { masm->CheckNotCharacter(first, out_of_range); } else { masm->CheckCharacterNotInRange(first, last, out_of_range); } } else { if (first == last) { masm->CheckCharacter(first, in_range); } else { masm->CheckCharacterInRange(first, last, in_range); } if (out_of_range != fall_through) masm->GoTo(out_of_range); } } // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. static void EmitUseLookupTable( RegExpMacroAssembler* masm, ZoneList<int>* ranges, int start_index, int end_index, int min_char, Label* fall_through, Label* even_label, Label* odd_label) { static const int kSize = RegExpMacroAssembler::kTableSize; static const int kMask = RegExpMacroAssembler::kTableMask; int base = (min_char & ~kMask); USE(base); // Assert that everything is on one kTableSize page. for (int i = start_index; i <= end_index; i++) { DCHECK_EQ(ranges->at(i) & ~kMask, base); } DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base); char templ[kSize]; Label* on_bit_set; Label* on_bit_clear; int bit; if (even_label == fall_through) { on_bit_set = odd_label; on_bit_clear = even_label; bit = 1; } else { on_bit_set = even_label; on_bit_clear = odd_label; bit = 0; } for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) { templ[i] = bit; } int j = 0; bit ^= 1; for (int i = start_index; i < end_index; i++) { for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) { templ[j] = bit; } bit ^= 1; } for (int i = j; i < kSize; i++) { templ[i] = bit; } Factory* factory = masm->isolate()->factory(); // TODO(erikcorry): Cache these. Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED); for (int i = 0; i < kSize; i++) { ba->set(i, templ[i]); } masm->CheckBitInTable(ba, on_bit_set); if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); } static void CutOutRange(RegExpMacroAssembler* masm, ZoneList<int>* ranges, int start_index, int end_index, int cut_index, Label* even_label, Label* odd_label) { bool odd = (((cut_index - start_index) & 1) == 1); Label* in_range_label = odd ? odd_label : even_label; Label dummy; EmitDoubleBoundaryTest(masm, ranges->at(cut_index), ranges->at(cut_index + 1) - 1, &dummy, in_range_label, &dummy); DCHECK(!dummy.is_linked()); // Cut out the single range by rewriting the array. This creates a new // range that is a merger of the two ranges on either side of the one we // are cutting out. The oddity of the labels is preserved. for (int j = cut_index; j > start_index; j--) { ranges->at(j) = ranges->at(j - 1); } for (int j = cut_index + 1; j < end_index; j++) { ranges->at(j) = ranges->at(j + 1); } } // Unicode case. Split the search space into kSize spaces that are handled // with recursion. static void SplitSearchSpace(ZoneList<int>* ranges, int start_index, int end_index, int* new_start_index, int* new_end_index, int* border) { static const int kSize = RegExpMacroAssembler::kTableSize; static const int kMask = RegExpMacroAssembler::kTableMask; int first = ranges->at(start_index); int last = ranges->at(end_index) - 1; *new_start_index = start_index; *border = (ranges->at(start_index) & ~kMask) + kSize; while (*new_start_index < end_index) { if (ranges->at(*new_start_index) > *border) break; (*new_start_index)++; } // new_start_index is the index of the first edge that is beyond the // current kSize space. // For very large search spaces we do a binary chop search of the non-Latin1 // space instead of just going to the end of the current kSize space. The // heuristics are complicated a little by the fact that any 128-character // encoding space can be quickly tested with a table lookup, so we don't // wish to do binary chop search at a smaller granularity than that. A // 128-character space can take up a lot of space in the ranges array if, // for example, we only want to match every second character (eg. the lower // case characters on some Unicode pages). int binary_chop_index = (end_index + start_index) / 2; // The first test ensures that we get to the code that handles the Latin1 // range with a single not-taken branch, speeding up this important // character range (even non-Latin1 charset-based text has spaces and // punctuation). if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case. end_index - start_index > (*new_start_index - start_index) * 2 && last - first > kSize * 2 && binary_chop_index > *new_start_index && ranges->at(binary_chop_index) >= first + 2 * kSize) { int scan_forward_for_section_border = binary_chop_index;; int new_border = (ranges->at(binary_chop_index) | kMask) + 1; while (scan_forward_for_section_border < end_index) { if (ranges->at(scan_forward_for_section_border) > new_border) { *new_start_index = scan_forward_for_section_border; *border = new_border; break; } scan_forward_for_section_border++; } } DCHECK(*new_start_index > start_index); *new_end_index = *new_start_index - 1; if (ranges->at(*new_end_index) == *border) { (*new_end_index)--; } if (*border >= ranges->at(end_index)) { *border = ranges->at(end_index); *new_start_index = end_index; // Won't be used. *new_end_index = end_index - 1; } } // Gets a series of segment boundaries representing a character class. If the // character is in the range between an even and an odd boundary (counting from // start_index) then go to even_label, otherwise go to odd_label. We already // know that the character is in the range of min_char to max_char inclusive. // Either label can be NULL indicating backtracking. Either label can also be // equal to the fall_through label. static void GenerateBranches(RegExpMacroAssembler* masm, ZoneList<int>* ranges, int start_index, int end_index, uc32 min_char, uc32 max_char, Label* fall_through, Label* even_label, Label* odd_label) { DCHECK_LE(min_char, String::kMaxUtf16CodeUnit); DCHECK_LE(max_char, String::kMaxUtf16CodeUnit); int first = ranges->at(start_index); int last = ranges->at(end_index) - 1; DCHECK_LT(min_char, first); // Just need to test if the character is before or on-or-after // a particular character. if (start_index == end_index) { EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); return; } // Another almost trivial case: There is one interval in the middle that is // different from the end intervals. if (start_index + 1 == end_index) { EmitDoubleBoundaryTest( masm, first, last, fall_through, even_label, odd_label); return; } // It's not worth using table lookup if there are very few intervals in the // character class. if (end_index - start_index <= 6) { // It is faster to test for individual characters, so we look for those // first, then try arbitrary ranges in the second round. static int kNoCutIndex = -1; int cut = kNoCutIndex; for (int i = start_index; i < end_index; i++) { if (ranges->at(i) == ranges->at(i + 1) - 1) { cut = i; break; } } if (cut == kNoCutIndex) cut = start_index; CutOutRange( masm, ranges, start_index, end_index, cut, even_label, odd_label); DCHECK_GE(end_index - start_index, 2); GenerateBranches(masm, ranges, start_index + 1, end_index - 1, min_char, max_char, fall_through, even_label, odd_label); return; } // If there are a lot of intervals in the regexp, then we will use tables to // determine whether the character is inside or outside the character class. static const int kBits = RegExpMacroAssembler::kTableSizeBits; if ((max_char >> kBits) == (min_char >> kBits)) { EmitUseLookupTable(masm, ranges, start_index, end_index, min_char, fall_through, even_label, odd_label); return; } if ((min_char >> kBits) != (first >> kBits)) { masm->CheckCharacterLT(first, odd_label); GenerateBranches(masm, ranges, start_index + 1, end_index, first, max_char, fall_through, odd_label, even_label); return; } int new_start_index = 0; int new_end_index = 0; int border = 0; SplitSearchSpace(ranges, start_index, end_index, &new_start_index, &new_end_index, &border); Label handle_rest; Label* above = &handle_rest; if (border == last + 1) { // We didn't find any section that started after the limit, so everything // above the border is one of the terminal labels. above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; DCHECK(new_end_index == end_index - 1); } DCHECK_LE(start_index, new_end_index); DCHECK_LE(new_start_index, end_index); DCHECK_LT(start_index, new_start_index); DCHECK_LT(new_end_index, end_index); DCHECK(new_end_index + 1 == new_start_index || (new_end_index + 2 == new_start_index && border == ranges->at(new_end_index + 1))); DCHECK_LT(min_char, border - 1); DCHECK_LT(border, max_char); DCHECK_LT(ranges->at(new_end_index), border); DCHECK(border < ranges->at(new_start_index) || (border == ranges->at(new_start_index) && new_start_index == end_index && new_end_index == end_index - 1 && border == last + 1)); DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1)); masm->CheckCharacterGT(border - 1, above); Label dummy; GenerateBranches(masm, ranges, start_index, new_end_index, min_char, border - 1, &dummy, even_label, odd_label); if (handle_rest.is_linked()) { masm->Bind(&handle_rest); bool flip = (new_start_index & 1) != (start_index & 1); GenerateBranches(masm, ranges, new_start_index, end_index, border, max_char, &dummy, flip ? odd_label : even_label, flip ? even_label : odd_label); } } static void EmitCharClass(RegExpMacroAssembler* macro_assembler, RegExpCharacterClass* cc, bool one_byte, Label* on_failure, int cp_offset, bool check_offset, bool preloaded, Zone* zone) { ZoneList<CharacterRange>* ranges = cc->ranges(zone); CharacterRange::Canonicalize(ranges); int max_char; if (one_byte) { max_char = String::kMaxOneByteCharCode; } else { max_char = String::kMaxUtf16CodeUnit; } int range_count = ranges->length(); int last_valid_range = range_count - 1; while (last_valid_range >= 0) { CharacterRange& range = ranges->at(last_valid_range); if (range.from() <= max_char) { break; } last_valid_range--; } if (last_valid_range < 0) { if (!cc->is_negated()) { macro_assembler->GoTo(on_failure); } if (check_offset) { macro_assembler->CheckPosition(cp_offset, on_failure); } return; } if (last_valid_range == 0 && ranges->at(0).IsEverything(max_char)) { if (cc->is_negated()) { macro_assembler->GoTo(on_failure); } else { // This is a common case hit by non-anchored expressions. if (check_offset) { macro_assembler->CheckPosition(cp_offset, on_failure); } } return; } if (!preloaded) { macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); } if (cc->is_standard(zone) && macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), on_failure)) { return; } // A new list with ascending entries. Each entry is a code unit // where there is a boundary between code units that are part of // the class and code units that are not. Normally we insert an // entry at zero which goes to the failure label, but if there // was already one there we fall through for success on that entry. // Subsequent entries have alternating meaning (success/failure). ZoneList<int>* range_boundaries = new(zone) ZoneList<int>(last_valid_range, zone); bool zeroth_entry_is_failure = !cc->is_negated(); for (int i = 0; i <= last_valid_range; i++) { CharacterRange& range = ranges->at(i); if (range.from() == 0) { DCHECK_EQ(i, 0); zeroth_entry_is_failure = !zeroth_entry_is_failure; } else { range_boundaries->Add(range.from(), zone); } range_boundaries->Add(range.to() + 1, zone); } int end_index = range_boundaries->length() - 1; if (range_boundaries->at(end_index) > max_char) { end_index--; } Label fall_through; GenerateBranches(macro_assembler, range_boundaries, 0, // start_index. end_index, 0, // min_char. max_char, &fall_through, zeroth_entry_is_failure ? &fall_through : on_failure, zeroth_entry_is_failure ? on_failure : &fall_through); macro_assembler->Bind(&fall_through); } RegExpNode::~RegExpNode() { } RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, Trace* trace) { // If we are generating a greedy loop then don't stop and don't reuse code. if (trace->stop_node() != NULL) { return CONTINUE; } RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); if (trace->is_trivial()) { if (label_.is_bound() || on_work_list() || !KeepRecursing(compiler)) { // If a generic version is already scheduled to be generated or we have // recursed too deeply then just generate a jump to that code. macro_assembler->GoTo(&label_); // This will queue it up for generation of a generic version if it hasn't // already been queued. compiler->AddWork(this); return DONE; } // Generate generic version of the node and bind the label for later use. macro_assembler->Bind(&label_); return CONTINUE; } // We are being asked to make a non-generic version. Keep track of how many // non-generic versions we generate so as not to overdo it. trace_count_++; if (KeepRecursing(compiler) && compiler->optimize() && trace_count_ < kMaxCopiesCodeGenerated) { return CONTINUE; } // If we get here code has been generated for this node too many times or // recursion is too deep. Time to switch to a generic version. The code for // generic versions above can handle deep recursion properly. bool was_limiting = compiler->limiting_recursion(); compiler->set_limiting_recursion(true); trace->Flush(compiler, this); compiler->set_limiting_recursion(was_limiting); return DONE; } bool RegExpNode::KeepRecursing(RegExpCompiler* compiler) { return !compiler->limiting_recursion() && compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion; } int ActionNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (budget <= 0) return 0; if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); } void ActionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (action_type_ == BEGIN_SUBMATCH) { bm->SetRest(offset); } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) { on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); } SaveBMInfo(bm, not_at_start, offset); } int AssertionNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (budget <= 0) return 0; // If we know we are not at the start and we are asked "how many characters // will you match if you succeed?" then we can answer anything since false // implies false. So lets just return the max answer (still_to_find) since // that won't prevent us from preloading a lot of characters for the other // branches in the node graph. if (assertion_type() == AT_START && not_at_start) return still_to_find; return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); } void AssertionNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { // Match the behaviour of EatsAtLeast on this node. if (assertion_type() == AT_START && not_at_start) return; on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); SaveBMInfo(bm, not_at_start, offset); } int BackReferenceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (read_backward()) return 0; if (budget <= 0) return 0; return on_success()->EatsAtLeast(still_to_find, budget - 1, not_at_start); } int TextNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (read_backward()) return 0; int answer = Length(); if (answer >= still_to_find) return answer; if (budget <= 0) return answer; // We are not at start after this node so we set the last argument to 'true'. return answer + on_success()->EatsAtLeast(still_to_find - answer, budget - 1, true); } int NegativeLookaroundChoiceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { if (budget <= 0) return 0; // Alternative 0 is the negative lookahead, alternative 1 is what comes // afterwards. RegExpNode* node = alternatives_->at(1).node(); return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); } void NegativeLookaroundChoiceNode::GetQuickCheckDetails( QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { // Alternative 0 is the negative lookahead, alternative 1 is what comes // afterwards. RegExpNode* node = alternatives_->at(1).node(); return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); } int ChoiceNode::EatsAtLeastHelper(int still_to_find, int budget, RegExpNode* ignore_this_node, bool not_at_start) { if (budget <= 0) return 0; int min = 100; int choice_count = alternatives_->length(); budget = (budget - 1) / choice_count; for (int i = 0; i < choice_count; i++) { RegExpNode* node = alternatives_->at(i).node(); if (node == ignore_this_node) continue; int node_eats_at_least = node->EatsAtLeast(still_to_find, budget, not_at_start); if (node_eats_at_least < min) min = node_eats_at_least; if (min == 0) return 0; } return min; } int LoopChoiceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { return EatsAtLeastHelper(still_to_find, budget - 1, loop_node_, not_at_start); } int ChoiceNode::EatsAtLeast(int still_to_find, int budget, bool not_at_start) { return EatsAtLeastHelper(still_to_find, budget, NULL, not_at_start); } // Takes the left-most 1-bit and smears it out, setting all bits to its right. static inline uint32_t SmearBitsRight(uint32_t v) { v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return v; } bool QuickCheckDetails::Rationalize(bool asc) { bool found_useful_op = false; uint32_t char_mask; if (asc) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } mask_ = 0; value_ = 0; int char_shift = 0; for (int i = 0; i < characters_; i++) { Position* pos = &positions_[i]; if ((pos->mask & String::kMaxOneByteCharCode) != 0) { found_useful_op = true; } mask_ |= (pos->mask & char_mask) << char_shift; value_ |= (pos->value & char_mask) << char_shift; char_shift += asc ? 8 : 16; } return found_useful_op; } bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, Trace* bounds_check_trace, Trace* trace, bool preload_has_checked_bounds, Label* on_possible_success, QuickCheckDetails* details, bool fall_through_on_failure) { if (details->characters() == 0) return false; GetQuickCheckDetails( details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); if (details->cannot_match()) return false; if (!details->Rationalize(compiler->one_byte())) return false; DCHECK(details->characters() == 1 || compiler->macro_assembler()->CanReadUnaligned()); uint32_t mask = details->mask(); uint32_t value = details->value(); RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (trace->characters_preloaded() != details->characters()) { DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset()); // We are attempting to preload the minimum number of characters // any choice would eat, so if the bounds check fails, then none of the // choices can succeed, so we can just immediately backtrack, rather // than go to the next choice. assembler->LoadCurrentCharacter(trace->cp_offset(), bounds_check_trace->backtrack(), !preload_has_checked_bounds, details->characters()); } bool need_mask = true; if (details->characters() == 1) { // If number of characters preloaded is 1 then we used a byte or 16 bit // load so the value is already masked down. uint32_t char_mask; if (compiler->one_byte()) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } if ((mask & char_mask) == char_mask) need_mask = false; mask &= char_mask; } else { // For 2-character preloads in one-byte mode or 1-character preloads in // two-byte mode we also use a 16 bit load with zero extend. static const uint32_t kTwoByteMask = 0xffff; static const uint32_t kFourByteMask = 0xffffffff; if (details->characters() == 2 && compiler->one_byte()) { if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false; } else if (details->characters() == 1 && !compiler->one_byte()) { if ((mask & kTwoByteMask) == kTwoByteMask) need_mask = false; } else { if (mask == kFourByteMask) need_mask = false; } } if (fall_through_on_failure) { if (need_mask) { assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); } else { assembler->CheckCharacter(value, on_possible_success); } } else { if (need_mask) { assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); } else { assembler->CheckNotCharacter(value, trace->backtrack()); } } return true; } // Here is the meat of GetQuickCheckDetails (see also the comment on the // super-class in the .h file). // // We iterate along the text object, building up for each character a // mask and value that can be used to test for a quick failure to match. // The masks and values for the positions will be combined into a single // machine word for the current character width in order to be used in // generating a quick check. void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { // Do not collect any quick check details if the text node reads backward, // since it reads in the opposite direction than we use for quick checks. if (read_backward()) return; Isolate* isolate = compiler->macro_assembler()->isolate(); DCHECK(characters_filled_in < details->characters()); int characters = details->characters(); int char_mask; if (compiler->one_byte()) { char_mask = String::kMaxOneByteCharCode; } else { char_mask = String::kMaxUtf16CodeUnit; } for (int k = 0; k < elements()->length(); k++) { TextElement elm = elements()->at(k); if (elm.text_type() == TextElement::ATOM) { Vector<const uc16> quarks = elm.atom()->data(); for (int i = 0; i < characters && i < quarks.length(); i++) { QuickCheckDetails::Position* pos = details->positions(characters_filled_in); uc16 c = quarks[i]; if (compiler->ignore_case()) { unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length = GetCaseIndependentLetters(isolate, c, compiler->one_byte(), chars); if (length == 0) { // This can happen because all case variants are non-Latin1, but we // know the input is Latin1. details->set_cannot_match(); pos->determines_perfectly = false; return; } if (length == 1) { // This letter has no case equivalents, so it's nice and simple // and the mask-compare will determine definitely whether we have // a match at this character position. pos->mask = char_mask; pos->value = c; pos->determines_perfectly = true; } else { uint32_t common_bits = char_mask; uint32_t bits = chars[0]; for (int j = 1; j < length; j++) { uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); common_bits ^= differing_bits; bits &= common_bits; } // If length is 2 and common bits has only one zero in it then // our mask and compare instruction will determine definitely // whether we have a match at this character position. Otherwise // it can only be an approximate check. uint32_t one_zero = (common_bits | ~char_mask); if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { pos->determines_perfectly = true; } pos->mask = common_bits; pos->value = bits; } } else { // Don't ignore case. Nice simple case where the mask-compare will // determine definitely whether we have a match at this character // position. if (c > char_mask) { details->set_cannot_match(); pos->determines_perfectly = false; return; } pos->mask = char_mask; pos->value = c; pos->determines_perfectly = true; } characters_filled_in++; DCHECK(characters_filled_in <= details->characters()); if (characters_filled_in == details->characters()) { return; } } } else { QuickCheckDetails::Position* pos = details->positions(characters_filled_in); RegExpCharacterClass* tree = elm.char_class(); ZoneList<CharacterRange>* ranges = tree->ranges(zone()); if (tree->is_negated()) { // A quick check uses multi-character mask and compare. There is no // useful way to incorporate a negative char class into this scheme // so we just conservatively create a mask and value that will always // succeed. pos->mask = 0; pos->value = 0; } else { int first_range = 0; while (ranges->at(first_range).from() > char_mask) { first_range++; if (first_range == ranges->length()) { details->set_cannot_match(); pos->determines_perfectly = false; return; } } CharacterRange range = ranges->at(first_range); uc16 from = range.from(); uc16 to = range.to(); if (to > char_mask) { to = char_mask; } uint32_t differing_bits = (from ^ to); // A mask and compare is only perfect if the differing bits form a // number like 00011111 with one single block of trailing 1s. if ((differing_bits & (differing_bits + 1)) == 0 && from + differing_bits == to) { pos->determines_perfectly = true; } uint32_t common_bits = ~SmearBitsRight(differing_bits); uint32_t bits = (from & common_bits); for (int i = first_range + 1; i < ranges->length(); i++) { CharacterRange range = ranges->at(i); uc16 from = range.from(); uc16 to = range.to(); if (from > char_mask) continue; if (to > char_mask) to = char_mask; // Here we are combining more ranges into the mask and compare // value. With each new range the mask becomes more sparse and // so the chances of a false positive rise. A character class // with multiple ranges is assumed never to be equivalent to a // mask and compare operation. pos->determines_perfectly = false; uint32_t new_common_bits = (from ^ to); new_common_bits = ~SmearBitsRight(new_common_bits); common_bits &= new_common_bits; bits &= new_common_bits; uint32_t differing_bits = (from & common_bits) ^ bits; common_bits ^= differing_bits; bits &= common_bits; } pos->mask = common_bits; pos->value = bits; } characters_filled_in++; DCHECK(characters_filled_in <= details->characters()); if (characters_filled_in == details->characters()) { return; } } } DCHECK(characters_filled_in != details->characters()); if (!details->cannot_match()) { on_success()-> GetQuickCheckDetails(details, compiler, characters_filled_in, true); } } void QuickCheckDetails::Clear() { for (int i = 0; i < characters_; i++) { positions_[i].mask = 0; positions_[i].value = 0; positions_[i].determines_perfectly = false; } characters_ = 0; } void QuickCheckDetails::Advance(int by, bool one_byte) { if (by >= characters_ || by < 0) { DCHECK_IMPLIES(by < 0, characters_ == 0); Clear(); return; } DCHECK_LE(characters_ - by, 4); DCHECK_LE(characters_, 4); for (int i = 0; i < characters_ - by; i++) { positions_[i] = positions_[by + i]; } for (int i = characters_ - by; i < characters_; i++) { positions_[i].mask = 0; positions_[i].value = 0; positions_[i].determines_perfectly = false; } characters_ -= by; // We could change mask_ and value_ here but we would never advance unless // they had already been used in a check and they won't be used again because // it would gain us nothing. So there's no point. } void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { DCHECK(characters_ == other->characters_); if (other->cannot_match_) { return; } if (cannot_match_) { *this = *other; return; } for (int i = from_index; i < characters_; i++) { QuickCheckDetails::Position* pos = positions(i); QuickCheckDetails::Position* other_pos = other->positions(i); if (pos->mask != other_pos->mask || pos->value != other_pos->value || !other_pos->determines_perfectly) { // Our mask-compare operation will be approximate unless we have the // exact same operation on both sides of the alternation. pos->determines_perfectly = false; } pos->mask &= other_pos->mask; pos->value &= pos->mask; other_pos->value &= pos->mask; uc16 differing_bits = (pos->value ^ other_pos->value); pos->mask &= ~differing_bits; pos->value &= pos->mask; } } class VisitMarker { public: explicit VisitMarker(NodeInfo* info) : info_(info) { DCHECK(!info->visited); info->visited = true; } ~VisitMarker() { info_->visited = false; } private: NodeInfo* info_; }; RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; DCHECK(!info()->visited); VisitMarker marker(info()); return FilterSuccessor(depth - 1, ignore_case); } RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) { RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case); if (next == NULL) return set_replacement(NULL); on_success_ = next; return set_replacement(this); } // We need to check for the following characters: 0x39c 0x3bc 0x178. static inline bool RangeContainsLatin1Equivalents(CharacterRange range) { // TODO(dcarney): this could be a lot more efficient. return range.Contains(0x39c) || range.Contains(0x3bc) || range.Contains(0x178); } static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) { for (int i = 0; i < ranges->length(); i++) { // TODO(dcarney): this could be a lot more efficient. if (RangeContainsLatin1Equivalents(ranges->at(i))) return true; } return false; } RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; DCHECK(!info()->visited); VisitMarker marker(info()); int element_count = elements()->length(); for (int i = 0; i < element_count; i++) { TextElement elm = elements()->at(i); if (elm.text_type() == TextElement::ATOM) { Vector<const uc16> quarks = elm.atom()->data(); for (int j = 0; j < quarks.length(); j++) { uint16_t c = quarks[j]; if (c <= String::kMaxOneByteCharCode) continue; if (!ignore_case) return set_replacement(NULL); // Here, we need to check for characters whose upper and lower cases // are outside the Latin-1 range. uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c); // Character is outside Latin-1 completely if (converted == 0) return set_replacement(NULL); // Convert quark to Latin-1 in place. uint16_t* copy = const_cast<uint16_t*>(quarks.start()); copy[j] = converted; } } else { DCHECK(elm.text_type() == TextElement::CHAR_CLASS); RegExpCharacterClass* cc = elm.char_class(); ZoneList<CharacterRange>* ranges = cc->ranges(zone()); CharacterRange::Canonicalize(ranges); // Now they are in order so we only need to look at the first. int range_count = ranges->length(); if (cc->is_negated()) { if (range_count != 0 && ranges->at(0).from() == 0 && ranges->at(0).to() >= String::kMaxOneByteCharCode) { // This will be handled in a later filter. if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; return set_replacement(NULL); } } else { if (range_count == 0 || ranges->at(0).from() > String::kMaxOneByteCharCode) { // This will be handled in a later filter. if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; return set_replacement(NULL); } } } } return FilterSuccessor(depth - 1, ignore_case); } RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; { VisitMarker marker(info()); RegExpNode* continue_replacement = continue_node_->FilterOneByte(depth - 1, ignore_case); // If we can't continue after the loop then there is no sense in doing the // loop. if (continue_replacement == NULL) return set_replacement(NULL); } return ChoiceNode::FilterOneByte(depth - 1, ignore_case); } RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; VisitMarker marker(info()); int choice_count = alternatives_->length(); for (int i = 0; i < choice_count; i++) { GuardedAlternative alternative = alternatives_->at(i); if (alternative.guards() != NULL && alternative.guards()->length() != 0) { set_replacement(this); return this; } } int surviving = 0; RegExpNode* survivor = NULL; for (int i = 0; i < choice_count; i++) { GuardedAlternative alternative = alternatives_->at(i); RegExpNode* replacement = alternative.node()->FilterOneByte(depth - 1, ignore_case); DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK. if (replacement != NULL) { alternatives_->at(i).set_node(replacement); surviving++; survivor = replacement; } } if (surviving < 2) return set_replacement(survivor); set_replacement(this); if (surviving == choice_count) { return this; } // Only some of the nodes survived the filtering. We need to rebuild the // alternatives list. ZoneList<GuardedAlternative>* new_alternatives = new(zone()) ZoneList<GuardedAlternative>(surviving, zone()); for (int i = 0; i < choice_count; i++) { RegExpNode* replacement = alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case); if (replacement != NULL) { alternatives_->at(i).set_node(replacement); new_alternatives->Add(alternatives_->at(i), zone()); } } alternatives_ = new_alternatives; return this; } RegExpNode* NegativeLookaroundChoiceNode::FilterOneByte(int depth, bool ignore_case) { if (info()->replacement_calculated) return replacement(); if (depth < 0) return this; if (info()->visited) return this; VisitMarker marker(info()); // Alternative 0 is the negative lookahead, alternative 1 is what comes // afterwards. RegExpNode* node = alternatives_->at(1).node(); RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case); if (replacement == NULL) return set_replacement(NULL); alternatives_->at(1).set_node(replacement); RegExpNode* neg_node = alternatives_->at(0).node(); RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case); // If the negative lookahead is always going to fail then // we don't need to check it. if (neg_replacement == NULL) return set_replacement(replacement); alternatives_->at(0).set_node(neg_replacement); return set_replacement(this); } void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { if (body_can_be_zero_length_ || info()->visited) return; VisitMarker marker(info()); return ChoiceNode::GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); } void LoopChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (body_can_be_zero_length_ || budget <= 0) { bm->SetRest(offset); SaveBMInfo(bm, not_at_start, offset); return; } ChoiceNode::FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); SaveBMInfo(bm, not_at_start, offset); } void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int characters_filled_in, bool not_at_start) { not_at_start = (not_at_start || not_at_start_); int choice_count = alternatives_->length(); DCHECK(choice_count > 0); alternatives_->at(0).node()->GetQuickCheckDetails(details, compiler, characters_filled_in, not_at_start); for (int i = 1; i < choice_count; i++) { QuickCheckDetails new_details(details->characters()); RegExpNode* node = alternatives_->at(i).node(); node->GetQuickCheckDetails(&new_details, compiler, characters_filled_in, not_at_start); // Here we merge the quick match details of the two branches. details->Merge(&new_details, characters_filled_in); } } // Check for [0-9A-Z_a-z]. static void EmitWordCheck(RegExpMacroAssembler* assembler, Label* word, Label* non_word, bool fall_through_on_word) { if (assembler->CheckSpecialCharacterClass( fall_through_on_word ? 'w' : 'W', fall_through_on_word ? non_word : word)) { // Optimized implementation available. return; } assembler->CheckCharacterGT('z', non_word); assembler->CheckCharacterLT('0', non_word); assembler->CheckCharacterGT('a' - 1, word); assembler->CheckCharacterLT('9' + 1, word); assembler->CheckCharacterLT('A', non_word); assembler->CheckCharacterLT('Z' + 1, word); if (fall_through_on_word) { assembler->CheckNotCharacter('_', non_word); } else { assembler->CheckCharacter('_', word); } } // Emit the code to check for a ^ in multiline mode (1-character lookbehind // that matches newline or the start of input). static void EmitHat(RegExpCompiler* compiler, RegExpNode* on_success, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); // We will be loading the previous character into the current character // register. Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); Label ok; if (new_trace.cp_offset() == 0) { // The start of input counts as a newline in this context, so skip to // ok if we are at the start. assembler->CheckAtStart(&ok); } // We already checked that we are not at the start of input so it must be // OK to load the previous character. assembler->LoadCurrentCharacter(new_trace.cp_offset() -1, new_trace.backtrack(), false); if (!assembler->CheckSpecialCharacterClass('n', new_trace.backtrack())) { // Newline means \n, \r, 0x2028 or 0x2029. if (!compiler->one_byte()) { assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok); } assembler->CheckCharacter('\n', &ok); assembler->CheckNotCharacter('\r', new_trace.backtrack()); } assembler->Bind(&ok); on_success->Emit(compiler, &new_trace); } // Emit the code to handle \b and \B (word-boundary or non-word-boundary). void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Isolate* isolate = assembler->isolate(); Trace::TriBool next_is_word_character = Trace::UNKNOWN; bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); BoyerMooreLookahead* lookahead = bm_info(not_at_start); if (lookahead == NULL) { int eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget, not_at_start)); if (eats_at_least >= 1) { BoyerMooreLookahead* bm = new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); FillInBMInfo(isolate, 0, kRecursionBudget, bm, not_at_start); if (bm->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; } } else { if (lookahead->at(0)->is_non_word()) next_is_word_character = Trace::FALSE_VALUE; if (lookahead->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; } bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); if (next_is_word_character == Trace::UNKNOWN) { Label before_non_word; Label before_word; if (trace->characters_preloaded() != 1) { assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); } // Fall through on non-word. EmitWordCheck(assembler, &before_word, &before_non_word, false); // Next character is not a word character. assembler->Bind(&before_non_word); Label ok; BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); assembler->GoTo(&ok); assembler->Bind(&before_word); BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); assembler->Bind(&ok); } else if (next_is_word_character == Trace::TRUE_VALUE) { BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); } else { DCHECK(next_is_word_character == Trace::FALSE_VALUE); BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); } } void AssertionNode::BacktrackIfPrevious( RegExpCompiler* compiler, Trace* trace, AssertionNode::IfPrevious backtrack_if_previous) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Trace new_trace(*trace); new_trace.InvalidateCurrentCharacter(); Label fall_through, dummy; Label* non_word = backtrack_if_previous == kIsNonWord ? new_trace.backtrack() : &fall_through; Label* word = backtrack_if_previous == kIsNonWord ? &fall_through : new_trace.backtrack(); if (new_trace.cp_offset() == 0) { // The start of input counts as a non-word character, so the question is // decided if we are at the start. assembler->CheckAtStart(non_word); } // We already checked that we are not at the start of input so it must be // OK to load the previous character. assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); assembler->Bind(&fall_through); on_success()->Emit(compiler, &new_trace); } void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, RegExpCompiler* compiler, int filled_in, bool not_at_start) { if (assertion_type_ == AT_START && not_at_start) { details->set_cannot_match(); return; } return on_success()->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); } void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); switch (assertion_type_) { case AT_END: { Label ok; assembler->CheckPosition(trace->cp_offset(), &ok); assembler->GoTo(trace->backtrack()); assembler->Bind(&ok); break; } case AT_START: { if (trace->at_start() == Trace::FALSE_VALUE) { assembler->GoTo(trace->backtrack()); return; } if (trace->at_start() == Trace::UNKNOWN) { assembler->CheckNotAtStart(trace->cp_offset(), trace->backtrack()); Trace at_start_trace = *trace; at_start_trace.set_at_start(Trace::TRUE_VALUE); on_success()->Emit(compiler, &at_start_trace); return; } } break; case AFTER_NEWLINE: EmitHat(compiler, on_success(), trace); return; case AT_BOUNDARY: case AT_NON_BOUNDARY: { EmitBoundaryCheck(compiler, trace); return; } } on_success()->Emit(compiler, trace); } static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { if (quick_check == NULL) return false; if (offset >= quick_check->characters()) return false; return quick_check->positions(offset)->determines_perfectly; } static void UpdateBoundsCheck(int index, int* checked_up_to) { if (index > *checked_up_to) { *checked_up_to = index; } } // We call this repeatedly to generate code for each pass over the text node. // The passes are in increasing order of difficulty because we hope one // of the first passes will fail in which case we are saved the work of the // later passes. for example for the case independent regexp /%[asdfghjkl]a/ // we will check the '%' in the first pass, the case independent 'a' in the // second pass and the character class in the last pass. // // The passes are done from right to left, so for example to test for /bar/ // we will first test for an 'r' with offset 2, then an 'a' with offset 1 // and then a 'b' with offset 0. This means we can avoid the end-of-input // bounds check most of the time. In the example we only need to check for // end-of-input when loading the putative 'r'. // // A slight complication involves the fact that the first character may already // be fetched into a register by the previous node. In this case we want to // do the test for that character first. We do this in separate passes. The // 'preloaded' argument indicates that we are doing such a 'pass'. If such a // pass has been performed then subsequent passes will have true in // first_element_checked to indicate that that character does not need to be // checked again. // // In addition to all this we are passed a Trace, which can // contain an AlternativeGeneration object. In this AlternativeGeneration // object we can see details of any quick check that was already passed in // order to get to the code we are now generating. The quick check can involve // loading characters, which means we do not need to recheck the bounds // up to the limit the quick check already checked. In addition the quick // check can have involved a mask and compare operation which may simplify // or obviate the need for further checks at some character positions. void TextNode::TextEmitPass(RegExpCompiler* compiler, TextEmitPassType pass, bool preloaded, Trace* trace, bool first_element_checked, int* checked_up_to) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); Isolate* isolate = assembler->isolate(); bool one_byte = compiler->one_byte(); Label* backtrack = trace->backtrack(); QuickCheckDetails* quick_check = trace->quick_check_performed(); int element_count = elements()->length(); int backward_offset = read_backward() ? -Length() : 0; for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { TextElement elm = elements()->at(i); int cp_offset = trace->cp_offset() + elm.cp_offset() + backward_offset; if (elm.text_type() == TextElement::ATOM) { Vector<const uc16> quarks = elm.atom()->data(); for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { if (first_element_checked && i == 0 && j == 0) continue; if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; EmitCharacterFunction* emit_function = NULL; switch (pass) { case NON_LATIN1_MATCH: DCHECK(one_byte); if (quarks[j] > String::kMaxOneByteCharCode) { assembler->GoTo(backtrack); return; } break; case NON_LETTER_CHARACTER_MATCH: emit_function = &EmitAtomNonLetter; break; case SIMPLE_CHARACTER_MATCH: emit_function = &EmitSimpleCharacter; break; case CASE_CHARACTER_MATCH: emit_function = &EmitAtomLetter; break; default: break; } if (emit_function != NULL) { bool bounds_check = *checked_up_to < cp_offset + j || read_backward(); bool bound_checked = emit_function(isolate, compiler, quarks[j], backtrack, cp_offset + j, bounds_check, preloaded); if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); } } } else { DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type()); if (pass == CHARACTER_CLASS_MATCH) { if (first_element_checked && i == 0) continue; if (DeterminedAlready(quick_check, elm.cp_offset())) continue; RegExpCharacterClass* cc = elm.char_class(); bool bounds_check = *checked_up_to < cp_offset || read_backward(); EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset, bounds_check, preloaded, zone()); UpdateBoundsCheck(cp_offset, checked_up_to); } } } } int TextNode::Length() { TextElement elm = elements()->last(); DCHECK(elm.cp_offset() >= 0); return elm.cp_offset() + elm.length(); } bool TextNode::SkipPass(int int_pass, bool ignore_case) { TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass); if (ignore_case) { return pass == SIMPLE_CHARACTER_MATCH; } else { return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH; } } TextNode* TextNode::CreateForCharacterRanges(Zone* zone, ZoneList<CharacterRange>* ranges, bool read_backward, RegExpNode* on_success) { DCHECK_NOT_NULL(ranges); ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(1, zone); elms->Add( TextElement::CharClass(new (zone) RegExpCharacterClass(ranges, false)), zone); return new (zone) TextNode(elms, read_backward, on_success); } TextNode* TextNode::CreateForSurrogatePair(Zone* zone, CharacterRange lead, CharacterRange trail, bool read_backward, RegExpNode* on_success) { ZoneList<CharacterRange>* lead_ranges = CharacterRange::List(zone, lead); ZoneList<CharacterRange>* trail_ranges = CharacterRange::List(zone, trail); ZoneList<TextElement>* elms = new (zone) ZoneList<TextElement>(2, zone); elms->Add(TextElement::CharClass( new (zone) RegExpCharacterClass(lead_ranges, false)), zone); elms->Add(TextElement::CharClass( new (zone) RegExpCharacterClass(trail_ranges, false)), zone); return new (zone) TextNode(elms, read_backward, on_success); } // This generates the code to match a text node. A text node can contain // straight character sequences (possibly to be matched in a case-independent // way) and character classes. For efficiency we do not do this in a single // pass from left to right. Instead we pass over the text node several times, // emitting code for some character positions every time. See the comment on // TextEmitPass for details. void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { compiler->SetRegExpTooBig(); return; } if (compiler->one_byte()) { int dummy = 0; TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy); } bool first_elt_done = false; int bound_checked_to = trace->cp_offset() - 1; bound_checked_to += trace->bound_checked_up_to(); // If a character is preloaded into the current character register then // check that now. if (trace->characters_preloaded() == 1) { for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { if (!SkipPass(pass, compiler->ignore_case())) { TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), true, trace, false, &bound_checked_to); } } first_elt_done = true; } for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { if (!SkipPass(pass, compiler->ignore_case())) { TextEmitPass(compiler, static_cast<TextEmitPassType>(pass), false, trace, first_elt_done, &bound_checked_to); } } Trace successor_trace(*trace); // If we advance backward, we may end up at the start. successor_trace.AdvanceCurrentPositionInTrace( read_backward() ? -Length() : Length(), compiler); successor_trace.set_at_start(read_backward() ? Trace::UNKNOWN : Trace::FALSE_VALUE); RecursionCheck rc(compiler); on_success()->Emit(compiler, &successor_trace); } void Trace::InvalidateCurrentCharacter() { characters_preloaded_ = 0; } void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { // We don't have an instruction for shifting the current character register // down or for using a shifted value for anything so lets just forget that // we preloaded any characters into it. characters_preloaded_ = 0; // Adjust the offsets of the quick check performed information. This // information is used to find out what we already determined about the // characters by means of mask and compare. quick_check_performed_.Advance(by, compiler->one_byte()); cp_offset_ += by; if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { compiler->SetRegExpTooBig(); cp_offset_ = 0; } bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); } void TextNode::MakeCaseIndependent(Isolate* isolate, bool is_one_byte) { int element_count = elements()->length(); for (int i = 0; i < element_count; i++) { TextElement elm = elements()->at(i); if (elm.text_type() == TextElement::CHAR_CLASS) { RegExpCharacterClass* cc = elm.char_class(); // None of the standard character classes is different in the case // independent case and it slows us down if we don't know that. if (cc->is_standard(zone())) continue; ZoneList<CharacterRange>* ranges = cc->ranges(zone()); CharacterRange::AddCaseEquivalents(isolate, zone(), ranges, is_one_byte); } } } int TextNode::GreedyLoopTextLength() { return Length(); } RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( RegExpCompiler* compiler) { if (read_backward()) return NULL; if (elements()->length() != 1) return NULL; TextElement elm = elements()->at(0); if (elm.text_type() != TextElement::CHAR_CLASS) return NULL; RegExpCharacterClass* node = elm.char_class(); ZoneList<CharacterRange>* ranges = node->ranges(zone()); CharacterRange::Canonicalize(ranges); if (node->is_negated()) { return ranges->length() == 0 ? on_success() : NULL; } if (ranges->length() != 1) return NULL; uint32_t max_char; if (compiler->one_byte()) { max_char = String::kMaxOneByteCharCode; } else { max_char = String::kMaxUtf16CodeUnit; } return ranges->at(0).IsEverything(max_char) ? on_success() : NULL; } // Finds the fixed match length of a sequence of nodes that goes from // this alternative and back to this choice node. If there are variable // length nodes or other complications in the way then return a sentinel // value indicating that a greedy loop cannot be constructed. int ChoiceNode::GreedyLoopTextLengthForAlternative( GuardedAlternative* alternative) { int length = 0; RegExpNode* node = alternative->node(); // Later we will generate code for all these text nodes using recursion // so we have to limit the max number. int recursion_depth = 0; while (node != this) { if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { return kNodeIsTooComplexForGreedyLoops; } int node_length = node->GreedyLoopTextLength(); if (node_length == kNodeIsTooComplexForGreedyLoops) { return kNodeIsTooComplexForGreedyLoops; } length += node_length; SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node); node = seq_node->on_success(); } return read_backward() ? -length : length; } void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { DCHECK_NULL(loop_node_); AddAlternative(alt); loop_node_ = alt.node(); } void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { DCHECK_NULL(continue_node_); AddAlternative(alt); continue_node_ = alt.node(); } void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); if (trace->stop_node() == this) { // Back edge of greedy optimized loop node graph. int text_length = GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); DCHECK(text_length != kNodeIsTooComplexForGreedyLoops); // Update the counter-based backtracking info on the stack. This is an // optimization for greedy loops (see below). DCHECK(trace->cp_offset() == text_length); macro_assembler->AdvanceCurrentPosition(text_length); macro_assembler->GoTo(trace->loop_label()); return; } DCHECK_NULL(trace->stop_node()); if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } ChoiceNode::Emit(compiler, trace); } int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least) { int preload_characters = Min(4, eats_at_least); if (compiler->macro_assembler()->CanReadUnaligned()) { bool one_byte = compiler->one_byte(); if (one_byte) { if (preload_characters > 4) preload_characters = 4; // We can't preload 3 characters because there is no machine instruction // to do that. We can't just load 4 because we could be reading // beyond the end of the string, which could cause a memory fault. if (preload_characters == 3) preload_characters = 2; } else { if (preload_characters > 2) preload_characters = 2; } } else { if (preload_characters > 1) preload_characters = 1; } return preload_characters; } // This class is used when generating the alternatives in a choice node. It // records the way the alternative is being code generated. class AlternativeGeneration: public Malloced { public: AlternativeGeneration() : possible_success(), expects_preload(false), after(), quick_check_details() { } Label possible_success; bool expects_preload; Label after; QuickCheckDetails quick_check_details; }; // Creates a list of AlternativeGenerations. If the list has a reasonable // size then it is on the stack, otherwise the excess is on the heap. class AlternativeGenerationList { public: AlternativeGenerationList(int count, Zone* zone) : alt_gens_(count, zone) { for (int i = 0; i < count && i < kAFew; i++) { alt_gens_.Add(a_few_alt_gens_ + i, zone); } for (int i = kAFew; i < count; i++) { alt_gens_.Add(new AlternativeGeneration(), zone); } } ~AlternativeGenerationList() { for (int i = kAFew; i < alt_gens_.length(); i++) { delete alt_gens_[i]; alt_gens_[i] = NULL; } } AlternativeGeneration* at(int i) { return alt_gens_[i]; } private: static const int kAFew = 10; ZoneList<AlternativeGeneration*> alt_gens_; AlternativeGeneration a_few_alt_gens_[kAFew]; }; static const uc32 kRangeEndMarker = 0x110000; // The '2' variant is has inclusive from and exclusive to. // This covers \s as defined in ECMA-262 5.1, 15.10.2.12, // which include WhiteSpace (7.2) or LineTerminator (7.3) values. static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, 0xFEFF, 0xFF00, kRangeEndMarker}; static const int kSpaceRangeCount = arraysize(kSpaceRanges); static const int kWordRanges[] = { '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, kRangeEndMarker}; static const int kWordRangeCount = arraysize(kWordRanges); static const int kDigitRanges[] = {'0', '9' + 1, kRangeEndMarker}; static const int kDigitRangeCount = arraysize(kDigitRanges); static const int kSurrogateRanges[] = { kLeadSurrogateStart, kLeadSurrogateStart + 1, kRangeEndMarker}; static const int kSurrogateRangeCount = arraysize(kSurrogateRanges); static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, kRangeEndMarker}; static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges); void BoyerMoorePositionInfo::Set(int character) { SetInterval(Interval(character, character)); } void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval); w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval); surrogate_ = AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval); if (interval.to() - interval.from() >= kMapSize - 1) { if (map_count_ != kMapSize) { map_count_ = kMapSize; for (int i = 0; i < kMapSize; i++) map_->at(i) = true; } return; } for (int i = interval.from(); i <= interval.to(); i++) { int mod_character = (i & kMask); if (!map_->at(mod_character)) { map_count_++; map_->at(mod_character) = true; } if (map_count_ == kMapSize) return; } } void BoyerMoorePositionInfo::SetAll() { s_ = w_ = d_ = kLatticeUnknown; if (map_count_ != kMapSize) { map_count_ = kMapSize; for (int i = 0; i < kMapSize; i++) map_->at(i) = true; } } BoyerMooreLookahead::BoyerMooreLookahead( int length, RegExpCompiler* compiler, Zone* zone) : length_(length), compiler_(compiler) { if (compiler->one_byte()) { max_char_ = String::kMaxOneByteCharCode; } else { max_char_ = String::kMaxUtf16CodeUnit; } bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone); for (int i = 0; i < length; i++) { bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone); } } // Find the longest range of lookahead that has the fewest number of different // characters that can occur at a given position. Since we are optimizing two // different parameters at once this is a tradeoff. bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { int biggest_points = 0; // If more than 32 characters out of 128 can occur it is unlikely that we can // be lucky enough to step forwards much of the time. const int kMaxMax = 32; for (int max_number_of_chars = 4; max_number_of_chars < kMaxMax; max_number_of_chars *= 2) { biggest_points = FindBestInterval(max_number_of_chars, biggest_points, from, to); } if (biggest_points == 0) return false; return true; } // Find the highest-points range between 0 and length_ where the character // information is not too vague. 'Too vague' means that there are more than // max_number_of_chars that can occur at this position. Calculates the number // of points as the product of width-of-the-range and // probability-of-finding-one-of-the-characters, where the probability is // calculated using the frequency distribution of the sample subject string. int BoyerMooreLookahead::FindBestInterval( int max_number_of_chars, int old_biggest_points, int* from, int* to) { int biggest_points = old_biggest_points; static const int kSize = RegExpMacroAssembler::kTableSize; for (int i = 0; i < length_; ) { while (i < length_ && Count(i) > max_number_of_chars) i++; if (i == length_) break; int remembered_from = i; bool union_map[kSize]; for (int j = 0; j < kSize; j++) union_map[j] = false; while (i < length_ && Count(i) <= max_number_of_chars) { BoyerMoorePositionInfo* map = bitmaps_->at(i); for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j); i++; } int frequency = 0; for (int j = 0; j < kSize; j++) { if (union_map[j]) { // Add 1 to the frequency to give a small per-character boost for // the cases where our sampling is not good enough and many // characters have a frequency of zero. This means the frequency // can theoretically be up to 2*kSize though we treat it mostly as // a fraction of kSize. frequency += compiler_->frequency_collator()->Frequency(j) + 1; } } // We use the probability of skipping times the distance we are skipping to // judge the effectiveness of this. Actually we have a cut-off: By // dividing by 2 we switch off the skipping if the probability of skipping // is less than 50%. This is because the multibyte mask-and-compare // skipping in quickcheck is more likely to do well on this case. bool in_quickcheck_range = ((i - remembered_from < 4) || (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); // Called 'probability' but it is only a rough estimate and can actually // be outside the 0-kSize range. int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; int points = (i - remembered_from) * probability; if (points > biggest_points) { *from = remembered_from; *to = i - 1; biggest_points = points; } } return biggest_points; } // Take all the characters that will not prevent a successful match if they // occur in the subject string in the range between min_lookahead and // max_lookahead (inclusive) measured from the current position. If the // character at max_lookahead offset is not one of these characters, then we // can safely skip forwards by the number of characters in the range. int BoyerMooreLookahead::GetSkipTable(int min_lookahead, int max_lookahead, Handle<ByteArray> boolean_skip_table) { const int kSize = RegExpMacroAssembler::kTableSize; const int kSkipArrayEntry = 0; const int kDontSkipArrayEntry = 1; for (int i = 0; i < kSize; i++) { boolean_skip_table->set(i, kSkipArrayEntry); } int skip = max_lookahead + 1 - min_lookahead; for (int i = max_lookahead; i >= min_lookahead; i--) { BoyerMoorePositionInfo* map = bitmaps_->at(i); for (int j = 0; j < kSize; j++) { if (map->at(j)) { boolean_skip_table->set(j, kDontSkipArrayEntry); } } } return skip; } // See comment above on the implementation of GetSkipTable. void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { const int kSize = RegExpMacroAssembler::kTableSize; int min_lookahead = 0; int max_lookahead = 0; if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return; bool found_single_character = false; int single_character = 0; for (int i = max_lookahead; i >= min_lookahead; i--) { BoyerMoorePositionInfo* map = bitmaps_->at(i); if (map->map_count() > 1 || (found_single_character && map->map_count() != 0)) { found_single_character = false; break; } for (int j = 0; j < kSize; j++) { if (map->at(j)) { found_single_character = true; single_character = j; break; } } } int lookahead_width = max_lookahead + 1 - min_lookahead; if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { // The mask-compare can probably handle this better. return; } if (found_single_character) { Label cont, again; masm->Bind(&again); masm->LoadCurrentCharacter(max_lookahead, &cont, true); if (max_char_ > kSize) { masm->CheckCharacterAfterAnd(single_character, RegExpMacroAssembler::kTableMask, &cont); } else { masm->CheckCharacter(single_character, &cont); } masm->AdvanceCurrentPosition(lookahead_width); masm->GoTo(&again); masm->Bind(&cont); return; } Factory* factory = masm->isolate()->factory(); Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED); int skip_distance = GetSkipTable( min_lookahead, max_lookahead, boolean_skip_table); DCHECK(skip_distance != 0); Label cont, again; masm->Bind(&again); masm->LoadCurrentCharacter(max_lookahead, &cont, true); masm->CheckBitInTable(boolean_skip_table, &cont); masm->AdvanceCurrentPosition(skip_distance); masm->GoTo(&again); masm->Bind(&cont); } /* Code generation for choice nodes. * * We generate quick checks that do a mask and compare to eliminate a * choice. If the quick check succeeds then it jumps to the continuation to * do slow checks and check subsequent nodes. If it fails (the common case) * it falls through to the next choice. * * Here is the desired flow graph. Nodes directly below each other imply * fallthrough. Alternatives 1 and 2 have quick checks. Alternative * 3 doesn't have a quick check so we have to call the slow check. * Nodes are marked Qn for quick checks and Sn for slow checks. The entire * regexp continuation is generated directly after the Sn node, up to the * next GoTo if we decide to reuse some already generated code. Some * nodes expect preload_characters to be preloaded into the current * character register. R nodes do this preloading. Vertices are marked * F for failures and S for success (possible success in the case of quick * nodes). L, V, < and > are used as arrow heads. * * ----------> R * | * V * Q1 -----> S1 * | S / * F| / * | F/ * | / * | R * | / * V L * Q2 -----> S2 * | S / * F| / * | F/ * | / * | R * | / * V L * S3 * | * F| * | * R * | * backtrack V * <----------Q4 * \ F | * \ |S * \ F V * \-----S4 * * For greedy loops we push the current position, then generate the code that * eats the input specially in EmitGreedyLoop. The other choice (the * continuation) is generated by the normal code in EmitChoices, and steps back * in the input to the starting position when it fails to match. The loop code * looks like this (U is the unwind code that steps back in the greedy loop). * * _____ * / \ * V | * ----------> S1 | * /| | * / |S | * F/ \_____/ * / * |<----- * | \ * V |S * Q2 ---> U----->backtrack * | F / * S| / * V F / * S2--/ */ GreedyLoopState::GreedyLoopState(bool not_at_start) { counter_backtrack_trace_.set_backtrack(&label_); if (not_at_start) counter_backtrack_trace_.set_at_start(Trace::FALSE_VALUE); } void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) { #ifdef DEBUG int choice_count = alternatives_->length(); for (int i = 0; i < choice_count - 1; i++) { GuardedAlternative alternative = alternatives_->at(i); ZoneList<Guard*>* guards = alternative.guards(); int guard_count = (guards == NULL) ? 0 : guards->length(); for (int j = 0; j < guard_count; j++) { DCHECK(!trace->mentions_reg(guards->at(j)->reg())); } } #endif } void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, Trace* current_trace, PreloadState* state) { if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) { // Save some time by looking at most one machine word ahead. state->eats_at_least_ = EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget, current_trace->at_start() == Trace::FALSE_VALUE); } state->preload_characters_ = CalculatePreloadCharacters(compiler, state->eats_at_least_); state->preload_is_current_ = (current_trace->characters_preloaded() == state->preload_characters_); state->preload_has_checked_bounds_ = state->preload_is_current_; } void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { int choice_count = alternatives_->length(); if (choice_count == 1 && alternatives_->at(0).guards() == NULL) { alternatives_->at(0).node()->Emit(compiler, trace); return; } AssertGuardsMentionRegisters(trace); LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for // other choice nodes we only flush if we are out of code size budget. if (trace->flush_budget() == 0 && trace->actions() != NULL) { trace->Flush(compiler, this); return; } RecursionCheck rc(compiler); PreloadState preload; preload.init(); GreedyLoopState greedy_loop_state(not_at_start()); int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0)); AlternativeGenerationList alt_gens(choice_count, zone()); if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { trace = EmitGreedyLoop(compiler, trace, &alt_gens, &preload, &greedy_loop_state, text_length); } else { // TODO(erikcorry): Delete this. We don't need this label, but it makes us // match the traces produced pre-cleanup. Label second_choice; compiler->macro_assembler()->Bind(&second_choice); preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace); EmitChoices(compiler, &alt_gens, 0, trace, &preload); } // At this point we need to generate slow checks for the alternatives where // the quick check was inlined. We can recognize these because the associated // label was bound. int new_flush_budget = trace->flush_budget() / choice_count; for (int i = 0; i < choice_count; i++) { AlternativeGeneration* alt_gen = alt_gens.at(i); Trace new_trace(*trace); // If there are actions to be flushed we have to limit how many times // they are flushed. Take the budget of the parent trace and distribute // it fairly amongst the children. if (new_trace.actions() != NULL) { new_trace.set_flush_budget(new_flush_budget); } bool next_expects_preload = i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload; EmitOutOfLineContinuation(compiler, &new_trace, alternatives_->at(i), alt_gen, preload.preload_characters_, next_expects_preload); } } Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, Trace* trace, AlternativeGenerationList* alt_gens, PreloadState* preload, GreedyLoopState* greedy_loop_state, int text_length) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); // Here we have special handling for greedy loops containing only text nodes // and other simple nodes. These are handled by pushing the current // position on the stack and then incrementing the current position each // time around the switch. On backtrack we decrement the current position // and check it against the pushed value. This avoids pushing backtrack // information for each iteration of the loop, which could take up a lot of // space. DCHECK(trace->stop_node() == NULL); macro_assembler->PushCurrentPosition(); Label greedy_match_failed; Trace greedy_match_trace; if (not_at_start()) greedy_match_trace.set_at_start(Trace::FALSE_VALUE); greedy_match_trace.set_backtrack(&greedy_match_failed); Label loop_label; macro_assembler->Bind(&loop_label); greedy_match_trace.set_stop_node(this); greedy_match_trace.set_loop_label(&loop_label); alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); macro_assembler->Bind(&greedy_match_failed); Label second_choice; // For use in greedy matches. macro_assembler->Bind(&second_choice); Trace* new_trace = greedy_loop_state->counter_backtrack_trace(); EmitChoices(compiler, alt_gens, 1, new_trace, preload); macro_assembler->Bind(greedy_loop_state->label()); // If we have unwound to the bottom then backtrack. macro_assembler->CheckGreedyLoop(trace->backtrack()); // Otherwise try the second priority at an earlier position. macro_assembler->AdvanceCurrentPosition(-text_length); macro_assembler->GoTo(&second_choice); return new_trace; } int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace) { int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; if (alternatives_->length() != 2) return eats_at_least; GuardedAlternative alt1 = alternatives_->at(1); if (alt1.guards() != NULL && alt1.guards()->length() != 0) { return eats_at_least; } RegExpNode* eats_anything_node = alt1.node(); if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) { return eats_at_least; } // Really we should be creating a new trace when we execute this function, // but there is no need, because the code it generates cannot backtrack, and // we always arrive here with a trivial trace (since it's the entry to a // loop. That also implies that there are no preloaded characters, which is // good, because it means we won't be violating any assumptions by // overwriting those characters with new load instructions. DCHECK(trace->is_trivial()); RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); Isolate* isolate = macro_assembler->isolate(); // At this point we know that we are at a non-greedy loop that will eat // any character one at a time. Any non-anchored regexp has such a // loop prepended to it in order to find where it starts. We look for // a pattern of the form ...abc... where we can look 6 characters ahead // and step forwards 3 if the character is not one of abc. Abc need // not be atoms, they can be any reasonably limited character class or // small alternation. BoyerMooreLookahead* bm = bm_info(false); if (bm == NULL) { eats_at_least = Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, kRecursionBudget, false)); if (eats_at_least >= 1) { bm = new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); GuardedAlternative alt0 = alternatives_->at(0); alt0.node()->FillInBMInfo(isolate, 0, kRecursionBudget, bm, false); } } if (bm != NULL) { bm->EmitSkipInstructions(macro_assembler); } return eats_at_least; } void ChoiceNode::EmitChoices(RegExpCompiler* compiler, AlternativeGenerationList* alt_gens, int first_choice, Trace* trace, PreloadState* preload) { RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); SetUpPreLoad(compiler, trace, preload); // For now we just call all choices one after the other. The idea ultimately // is to use the Dispatch table to try only the relevant ones. int choice_count = alternatives_->length(); int new_flush_budget = trace->flush_budget() / choice_count; for (int i = first_choice; i < choice_count; i++) { bool is_last = i == choice_count - 1; bool fall_through_on_failure = !is_last; GuardedAlternative alternative = alternatives_->at(i); AlternativeGeneration* alt_gen = alt_gens->at(i); alt_gen->quick_check_details.set_characters(preload->preload_characters_); ZoneList<Guard*>* guards = alternative.guards(); int guard_count = (guards == NULL) ? 0 : guards->length(); Trace new_trace(*trace); new_trace.set_characters_preloaded(preload->preload_is_current_ ? preload->preload_characters_ : 0); if (preload->preload_has_checked_bounds_) { new_trace.set_bound_checked_up_to(preload->preload_characters_); } new_trace.quick_check_performed()->Clear(); if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); if (!is_last) { new_trace.set_backtrack(&alt_gen->after); } alt_gen->expects_preload = preload->preload_is_current_; bool generate_full_check_inline = false; if (compiler->optimize() && try_to_emit_quick_check_for_alternative(i == 0) && alternative.node()->EmitQuickCheck( compiler, trace, &new_trace, preload->preload_has_checked_bounds_, &alt_gen->possible_success, &alt_gen->quick_check_details, fall_through_on_failure)) { // Quick check was generated for this choice. preload->preload_is_current_ = true; preload->preload_has_checked_bounds_ = true; // If we generated the quick check to fall through on possible success, // we now need to generate the full check inline. if (!fall_through_on_failure) { macro_assembler->Bind(&alt_gen->possible_success); new_trace.set_quick_check_performed(&alt_gen->quick_check_details); new_trace.set_characters_preloaded(preload->preload_characters_); new_trace.set_bound_checked_up_to(preload->preload_characters_); generate_full_check_inline = true; } } else if (alt_gen->quick_check_details.cannot_match()) { if (!fall_through_on_failure) { macro_assembler->GoTo(trace->backtrack()); } continue; } else { // No quick check was generated. Put the full code here. // If this is not the first choice then there could be slow checks from // previous cases that go here when they fail. There's no reason to // insist that they preload characters since the slow check we are about // to generate probably can't use it. if (i != first_choice) { alt_gen->expects_preload = false; new_trace.InvalidateCurrentCharacter(); } generate_full_check_inline = true; } if (generate_full_check_inline) { if (new_trace.actions() != NULL) { new_trace.set_flush_budget(new_flush_budget); } for (int j = 0; j < guard_count; j++) { GenerateGuard(macro_assembler, guards->at(j), &new_trace); } alternative.node()->Emit(compiler, &new_trace); preload->preload_is_current_ = false; } macro_assembler->Bind(&alt_gen->after); } } void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, Trace* trace, GuardedAlternative alternative, AlternativeGeneration* alt_gen, int preload_characters, bool next_expects_preload) { if (!alt_gen->possible_success.is_linked()) return; RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); macro_assembler->Bind(&alt_gen->possible_success); Trace out_of_line_trace(*trace); out_of_line_trace.set_characters_preloaded(preload_characters); out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); ZoneList<Guard*>* guards = alternative.guards(); int guard_count = (guards == NULL) ? 0 : guards->length(); if (next_expects_preload) { Label reload_current_char; out_of_line_trace.set_backtrack(&reload_current_char); for (int j = 0; j < guard_count; j++) { GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); } alternative.node()->Emit(compiler, &out_of_line_trace); macro_assembler->Bind(&reload_current_char); // Reload the current character, since the next quick check expects that. // We don't need to check bounds here because we only get into this // code through a quick check which already did the checked load. macro_assembler->LoadCurrentCharacter(trace->cp_offset(), NULL, false, preload_characters); macro_assembler->GoTo(&(alt_gen->after)); } else { out_of_line_trace.set_backtrack(&(alt_gen->after)); for (int j = 0; j < guard_count; j++) { GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); } alternative.node()->Emit(compiler, &out_of_line_trace); } } void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); RecursionCheck rc(compiler); switch (action_type_) { case STORE_POSITION: { Trace::DeferredCapture new_capture(data_.u_position_register.reg, data_.u_position_register.is_capture, trace); Trace new_trace = *trace; new_trace.add_action(&new_capture); on_success()->Emit(compiler, &new_trace); break; } case INCREMENT_REGISTER: { Trace::DeferredIncrementRegister new_increment(data_.u_increment_register.reg); Trace new_trace = *trace; new_trace.add_action(&new_increment); on_success()->Emit(compiler, &new_trace); break; } case SET_REGISTER: { Trace::DeferredSetRegister new_set(data_.u_store_register.reg, data_.u_store_register.value); Trace new_trace = *trace; new_trace.add_action(&new_set); on_success()->Emit(compiler, &new_trace); break; } case CLEAR_CAPTURES: { Trace::DeferredClearCaptures new_capture(Interval(data_.u_clear_captures.range_from, data_.u_clear_captures.range_to)); Trace new_trace = *trace; new_trace.add_action(&new_capture); on_success()->Emit(compiler, &new_trace); break; } case BEGIN_SUBMATCH: if (!trace->is_trivial()) { trace->Flush(compiler, this); } else { assembler->WriteCurrentPositionToRegister( data_.u_submatch.current_position_register, 0); assembler->WriteStackPointerToRegister( data_.u_submatch.stack_pointer_register); on_success()->Emit(compiler, trace); } break; case EMPTY_MATCH_CHECK: { int start_pos_reg = data_.u_empty_match_check.start_register; int stored_pos = 0; int rep_reg = data_.u_empty_match_check.repetition_register; bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { // If we know we haven't advanced and there is no minimum we // can just backtrack immediately. assembler->GoTo(trace->backtrack()); } else if (know_dist && stored_pos < trace->cp_offset()) { // If we know we've advanced we can generate the continuation // immediately. on_success()->Emit(compiler, trace); } else if (!trace->is_trivial()) { trace->Flush(compiler, this); } else { Label skip_empty_check; // If we have a minimum number of repetitions we check the current // number first and skip the empty check if it's not enough. if (has_minimum) { int limit = data_.u_empty_match_check.repetition_limit; assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); } // If the match is empty we bail out, otherwise we fall through // to the on-success continuation. assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, trace->backtrack()); assembler->Bind(&skip_empty_check); on_success()->Emit(compiler, trace); } break; } case POSITIVE_SUBMATCH_SUCCESS: { if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } assembler->ReadCurrentPositionFromRegister( data_.u_submatch.current_position_register); assembler->ReadStackPointerFromRegister( data_.u_submatch.stack_pointer_register); int clear_register_count = data_.u_submatch.clear_register_count; if (clear_register_count == 0) { on_success()->Emit(compiler, trace); return; } int clear_registers_from = data_.u_submatch.clear_register_from; Label clear_registers_backtrack; Trace new_trace = *trace; new_trace.set_backtrack(&clear_registers_backtrack); on_success()->Emit(compiler, &new_trace); assembler->Bind(&clear_registers_backtrack); int clear_registers_to = clear_registers_from + clear_register_count - 1; assembler->ClearRegisters(clear_registers_from, clear_registers_to); DCHECK(trace->backtrack() == NULL); assembler->Backtrack(); return; } default: UNREACHABLE(); } } void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { RegExpMacroAssembler* assembler = compiler->macro_assembler(); if (!trace->is_trivial()) { trace->Flush(compiler, this); return; } LimitResult limit_result = LimitVersions(compiler, trace); if (limit_result == DONE) return; DCHECK(limit_result == CONTINUE); RecursionCheck rc(compiler); DCHECK_EQ(start_reg_ + 1, end_reg_); if (compiler->ignore_case()) { assembler->CheckNotBackReferenceIgnoreCase( start_reg_, read_backward(), compiler->unicode(), trace->backtrack()); } else { assembler->CheckNotBackReference(start_reg_, read_backward(), trace->backtrack()); } // We are going to advance backward, so we may end up at the start. if (read_backward()) trace->set_at_start(Trace::UNKNOWN); // Check that the back reference does not end inside a surrogate pair. if (compiler->unicode() && !compiler->one_byte()) { assembler->CheckNotInSurrogatePair(trace->cp_offset(), trace->backtrack()); } on_success()->Emit(compiler, trace); } // ------------------------------------------------------------------- // Dot/dotty output #ifdef DEBUG class DotPrinter: public NodeVisitor { public: DotPrinter(std::ostream& os, bool ignore_case) // NOLINT : os_(os), ignore_case_(ignore_case) {} void PrintNode(const char* label, RegExpNode* node); void Visit(RegExpNode* node); void PrintAttributes(RegExpNode* from); void PrintOnFailure(RegExpNode* from, RegExpNode* to); #define DECLARE_VISIT(Type) \ virtual void Visit##Type(Type##Node* that); FOR_EACH_NODE_TYPE(DECLARE_VISIT) #undef DECLARE_VISIT private: std::ostream& os_; bool ignore_case_; }; void DotPrinter::PrintNode(const char* label, RegExpNode* node) { os_ << "digraph G {\n graph [label=\""; for (int i = 0; label[i]; i++) { switch (label[i]) { case '\\': os_ << "\\\\"; break; case '"': os_ << "\""; break; default: os_ << label[i]; break; } } os_ << "\"];\n"; Visit(node); os_ << "}" << std::endl; } void DotPrinter::Visit(RegExpNode* node) { if (node->info()->visited) return; node->info()->visited = true; node->Accept(this); } void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n"; Visit(on_failure); } class TableEntryBodyPrinter { public: TableEntryBodyPrinter(std::ostream& os, ChoiceNode* choice) // NOLINT : os_(os), choice_(choice) {} void Call(uc16 from, DispatchTable::Entry entry) { OutSet* out_set = entry.out_set(); for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { if (out_set->Get(i)) { os_ << " n" << choice() << ":s" << from << "o" << i << " -> n" << choice()->alternatives()->at(i).node() << ";\n"; } } } private: ChoiceNode* choice() { return choice_; } std::ostream& os_; ChoiceNode* choice_; }; class TableEntryHeaderPrinter { public: explicit TableEntryHeaderPrinter(std::ostream& os) // NOLINT : first_(true), os_(os) {} void Call(uc16 from, DispatchTable::Entry entry) { if (first_) { first_ = false; } else { os_ << "|"; } os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{"; OutSet* out_set = entry.out_set(); int priority = 0; for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { if (out_set->Get(i)) { if (priority > 0) os_ << "|"; os_ << "<s" << from << "o" << i << "> " << priority; priority++; } } os_ << "}}"; } private: bool first_; std::ostream& os_; }; class AttributePrinter { public: explicit AttributePrinter(std::ostream& os) // NOLINT : os_(os), first_(true) {} void PrintSeparator() { if (first_) { first_ = false; } else { os_ << "|"; } } void PrintBit(const char* name, bool value) { if (!value) return; PrintSeparator(); os_ << "{" << name << "}"; } void PrintPositive(const char* name, int value) { if (value < 0) return; PrintSeparator(); os_ << "{" << name << "|" << value << "}"; } private: std::ostream& os_; bool first_; }; void DotPrinter::PrintAttributes(RegExpNode* that) { os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, " << "margin=0.1, fontsize=10, label=\"{"; AttributePrinter printer(os_); NodeInfo* info = that->info(); printer.PrintBit("NI", info->follows_newline_interest); printer.PrintBit("WI", info->follows_word_interest); printer.PrintBit("SI", info->follows_start_interest); Label* label = that->label(); if (label->is_bound()) printer.PrintPositive("@", label->pos()); os_ << "}\"];\n" << " a" << that << " -> n" << that << " [style=dashed, color=grey, arrowhead=none];\n"; } static const bool kPrintDispatchTable = false; void DotPrinter::VisitChoice(ChoiceNode* that) { if (kPrintDispatchTable) { os_ << " n" << that << " [shape=Mrecord, label=\""; TableEntryHeaderPrinter header_printer(os_); that->GetTable(ignore_case_)->ForEach(&header_printer); os_ << "\"]\n"; PrintAttributes(that); TableEntryBodyPrinter body_printer(os_, that); that->GetTable(ignore_case_)->ForEach(&body_printer); } else { os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n"; for (int i = 0; i < that->alternatives()->length(); i++) { GuardedAlternative alt = that->alternatives()->at(i); os_ << " n" << that << " -> n" << alt.node(); } } for (int i = 0; i < that->alternatives()->length(); i++) { GuardedAlternative alt = that->alternatives()->at(i); alt.node()->Accept(this); } } void DotPrinter::VisitText(TextNode* that) { Zone* zone = that->zone(); os_ << " n" << that << " [label=\""; for (int i = 0; i < that->elements()->length(); i++) { if (i > 0) os_ << " "; TextElement elm = that->elements()->at(i); switch (elm.text_type()) { case TextElement::ATOM: { Vector<const uc16> data = elm.atom()->data(); for (int i = 0; i < data.length(); i++) { os_ << static_cast<char>(data[i]); } break; } case TextElement::CHAR_CLASS: { RegExpCharacterClass* node = elm.char_class(); os_ << "["; if (node->is_negated()) os_ << "^"; for (int j = 0; j < node->ranges(zone)->length(); j++) { CharacterRange range = node->ranges(zone)->at(j); os_ << AsUC16(range.from()) << "-" << AsUC16(range.to()); } os_ << "]"; break; } default: UNREACHABLE(); } } os_ << "\", shape=box, peripheries=2];\n"; PrintAttributes(that); os_ << " n" << that << " -> n" << that->on_success() << ";\n"; Visit(that->on_success()); } void DotPrinter::VisitBackReference(BackReferenceNode* that) { os_ << " n" << that << " [label=\"$" << that->start_register() << "..$" << that->end_register() << "\", shape=doubleoctagon];\n"; PrintAttributes(that); os_ << " n" << that << " -> n" << that->on_success() << ";\n"; Visit(that->on_success()); } void DotPrinter::VisitEnd(EndNode* that) { os_ << " n" << that << " [style=bold, shape=point];\n"; PrintAttributes(that); } void DotPrinter::VisitAssertion(AssertionNode* that) { os_ << " n" << that << " ["; switch (that->assertion_type()) { case AssertionNode::AT_END: os_ << "label=\"$\", shape=septagon"; break; case AssertionNode::AT_START: os_ << "label=\"^\", shape=septagon"; break; case AssertionNode::AT_BOUNDARY: os_ << "label=\"\\b\", shape=septagon"; break; case AssertionNode::AT_NON_BOUNDARY: os_ << "label=\"\\B\", shape=septagon"; break; case AssertionNode::AFTER_NEWLINE: os_ << "label=\"(?<=\\n)\", shape=septagon"; break; } os_ << "];\n"; PrintAttributes(that); RegExpNode* successor = that->on_success(); os_ << " n" << that << " -> n" << successor << ";\n"; Visit(successor); } void DotPrinter::VisitAction(ActionNode* that) { os_ << " n" << that << " ["; switch (that->action_type_) { case ActionNode::SET_REGISTER: os_ << "label=\"$" << that->data_.u_store_register.reg << ":=" << that->data_.u_store_register.value << "\", shape=octagon"; break; case ActionNode::INCREMENT_REGISTER: os_ << "label=\"$" << that->data_.u_increment_register.reg << "++\", shape=octagon"; break; case ActionNode::STORE_POSITION: os_ << "label=\"$" << that->data_.u_position_register.reg << ":=$pos\", shape=octagon"; break; case ActionNode::BEGIN_SUBMATCH: os_ << "label=\"$" << that->data_.u_submatch.current_position_register << ":=$pos,begin\", shape=septagon"; break; case ActionNode::POSITIVE_SUBMATCH_SUCCESS: os_ << "label=\"escape\", shape=septagon"; break; case ActionNode::EMPTY_MATCH_CHECK: os_ << "label=\"$" << that->data_.u_empty_match_check.start_register << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register << "<" << that->data_.u_empty_match_check.repetition_limit << "?\", shape=septagon"; break; case ActionNode::CLEAR_CAPTURES: { os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from << " to $" << that->data_.u_clear_captures.range_to << "\", shape=septagon"; break; } } os_ << "];\n"; PrintAttributes(that); RegExpNode* successor = that->on_success(); os_ << " n" << that << " -> n" << successor << ";\n"; Visit(successor); } class DispatchTableDumper { public: explicit DispatchTableDumper(std::ostream& os) : os_(os) {} void Call(uc16 key, DispatchTable::Entry entry); private: std::ostream& os_; }; void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) { os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {"; OutSet* set = entry.out_set(); bool first = true; for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { if (set->Get(i)) { if (first) { first = false; } else { os_ << ", "; } os_ << i; } } os_ << "}\n"; } void DispatchTable::Dump() { OFStream os(stderr); DispatchTableDumper dumper(os); tree()->ForEach(&dumper); } void RegExpEngine::DotPrint(const char* label, RegExpNode* node, bool ignore_case) { OFStream os(stdout); DotPrinter printer(os, ignore_case); printer.PrintNode(label, node); } #endif // DEBUG // ------------------------------------------------------------------- // Tree to graph conversion RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { ZoneList<TextElement>* elms = new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone()); elms->Add(TextElement::Atom(this), compiler->zone()); return new (compiler->zone()) TextNode(elms, compiler->read_backward(), on_success); } RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return new (compiler->zone()) TextNode(elements(), compiler->read_backward(), on_success); } static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, const int* special_class, int length) { length--; // Remove final marker. DCHECK(special_class[length] == kRangeEndMarker); DCHECK(ranges->length() != 0); DCHECK(length != 0); DCHECK(special_class[0] != 0); if (ranges->length() != (length >> 1) + 1) { return false; } CharacterRange range = ranges->at(0); if (range.from() != 0) { return false; } for (int i = 0; i < length; i += 2) { if (special_class[i] != (range.to() + 1)) { return false; } range = ranges->at((i >> 1) + 1); if (special_class[i+1] != range.from()) { return false; } } if (range.to() != String::kMaxCodePoint) { return false; } return true; } static bool CompareRanges(ZoneList<CharacterRange>* ranges, const int* special_class, int length) { length--; // Remove final marker. DCHECK(special_class[length] == kRangeEndMarker); if (ranges->length() * 2 != length) { return false; } for (int i = 0; i < length; i += 2) { CharacterRange range = ranges->at(i >> 1); if (range.from() != special_class[i] || range.to() != special_class[i + 1] - 1) { return false; } } return true; } bool RegExpCharacterClass::is_standard(Zone* zone) { // TODO(lrn): Remove need for this function, by not throwing away information // along the way. if (is_negated_) { return false; } if (set_.is_standard()) { return true; } if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { set_.set_standard_set_type('s'); return true; } if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { set_.set_standard_set_type('S'); return true; } if (CompareInverseRanges(set_.ranges(zone), kLineTerminatorRanges, kLineTerminatorRangeCount)) { set_.set_standard_set_type('.'); return true; } if (CompareRanges(set_.ranges(zone), kLineTerminatorRanges, kLineTerminatorRangeCount)) { set_.set_standard_set_type('n'); return true; } if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { set_.set_standard_set_type('w'); return true; } if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { set_.set_standard_set_type('W'); return true; } return false; } UnicodeRangeSplitter::UnicodeRangeSplitter(Zone* zone, ZoneList<CharacterRange>* base) : zone_(zone), table_(zone), bmp_(nullptr), lead_surrogates_(nullptr), trail_surrogates_(nullptr), non_bmp_(nullptr) { // The unicode range splitter categorizes given character ranges into: // - Code points from the BMP representable by one code unit. // - Code points outside the BMP that need to be split into surrogate pairs. // - Lone lead surrogates. // - Lone trail surrogates. // Lone surrogates are valid code points, even though no actual characters. // They require special matching to make sure we do not split surrogate pairs. // We use the dispatch table to accomplish this. The base range is split up // by the table by the overlay ranges, and the Call callback is used to // filter and collect ranges for each category. for (int i = 0; i < base->length(); i++) { table_.AddRange(base->at(i), kBase, zone_); } // Add overlay ranges. table_.AddRange(CharacterRange::Range(0, kLeadSurrogateStart - 1), kBmpCodePoints, zone_); table_.AddRange(CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd), kLeadSurrogates, zone_); table_.AddRange( CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd), kTrailSurrogates, zone_); table_.AddRange( CharacterRange::Range(kTrailSurrogateEnd + 1, kNonBmpStart - 1), kBmpCodePoints, zone_); table_.AddRange(CharacterRange::Range(kNonBmpStart, kNonBmpEnd), kNonBmpCodePoints, zone_); table_.ForEach(this); } void UnicodeRangeSplitter::Call(uc32 from, DispatchTable::Entry entry) { OutSet* outset = entry.out_set(); if (!outset->Get(kBase)) return; ZoneList<CharacterRange>** target = NULL; if (outset->Get(kBmpCodePoints)) { target = &bmp_; } else if (outset->Get(kLeadSurrogates)) { target = &lead_surrogates_; } else if (outset->Get(kTrailSurrogates)) { target = &trail_surrogates_; } else { DCHECK(outset->Get(kNonBmpCodePoints)); target = &non_bmp_; } if (*target == NULL) *target = new (zone_) ZoneList<CharacterRange>(2, zone_); (*target)->Add(CharacterRange::Range(entry.from(), entry.to()), zone_); } void AddBmpCharacters(RegExpCompiler* compiler, ChoiceNode* result, RegExpNode* on_success, UnicodeRangeSplitter* splitter) { ZoneList<CharacterRange>* bmp = splitter->bmp(); if (bmp == nullptr) return; result->AddAlternative(GuardedAlternative(TextNode::CreateForCharacterRanges( compiler->zone(), bmp, compiler->read_backward(), on_success))); } void AddNonBmpSurrogatePairs(RegExpCompiler* compiler, ChoiceNode* result, RegExpNode* on_success, UnicodeRangeSplitter* splitter) { ZoneList<CharacterRange>* non_bmp = splitter->non_bmp(); if (non_bmp == nullptr) return; DCHECK(compiler->unicode()); DCHECK(!compiler->one_byte()); Zone* zone = compiler->zone(); CharacterRange::Canonicalize(non_bmp); for (int i = 0; i < non_bmp->length(); i++) { // Match surrogate pair. // E.g. [\u10005-\u11005] becomes // \ud800[\udc05-\udfff]| // [\ud801-\ud803][\udc00-\udfff]| // \ud804[\udc00-\udc05] uc32 from = non_bmp->at(i).from(); uc32 to = non_bmp->at(i).to(); uc16 from_l = unibrow::Utf16::LeadSurrogate(from); uc16 from_t = unibrow::Utf16::TrailSurrogate(from); uc16 to_l = unibrow::Utf16::LeadSurrogate(to); uc16 to_t = unibrow::Utf16::TrailSurrogate(to); if (from_l == to_l) { // The lead surrogate is the same. result->AddAlternative( GuardedAlternative(TextNode::CreateForSurrogatePair( zone, CharacterRange::Singleton(from_l), CharacterRange::Range(from_t, to_t), compiler->read_backward(), on_success))); } else { if (from_t != kTrailSurrogateStart) { // Add [from_l][from_t-\udfff] result->AddAlternative( GuardedAlternative(TextNode::CreateForSurrogatePair( zone, CharacterRange::Singleton(from_l), CharacterRange::Range(from_t, kTrailSurrogateEnd), compiler->read_backward(), on_success))); from_l++; } if (to_t != kTrailSurrogateEnd) { // Add [to_l][\udc00-to_t] result->AddAlternative( GuardedAlternative(TextNode::CreateForSurrogatePair( zone, CharacterRange::Singleton(to_l), CharacterRange::Range(kTrailSurrogateStart, to_t), compiler->read_backward(), on_success))); to_l--; } if (from_l <= to_l) { // Add [from_l-to_l][\udc00-\udfff] result->AddAlternative( GuardedAlternative(TextNode::CreateForSurrogatePair( zone, CharacterRange::Range(from_l, to_l), CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd), compiler->read_backward(), on_success))); } } } } RegExpNode* NegativeLookaroundAgainstReadDirectionAndMatch( RegExpCompiler* compiler, ZoneList<CharacterRange>* lookbehind, ZoneList<CharacterRange>* match, RegExpNode* on_success, bool read_backward) { Zone* zone = compiler->zone(); RegExpNode* match_node = TextNode::CreateForCharacterRanges( zone, match, read_backward, on_success); int stack_register = compiler->UnicodeLookaroundStackRegister(); int position_register = compiler->UnicodeLookaroundPositionRegister(); RegExpLookaround::Builder lookaround(false, match_node, stack_register, position_register); RegExpNode* negative_match = TextNode::CreateForCharacterRanges( zone, lookbehind, !read_backward, lookaround.on_match_success()); return lookaround.ForMatch(negative_match); } RegExpNode* MatchAndNegativeLookaroundInReadDirection( RegExpCompiler* compiler, ZoneList<CharacterRange>* match, ZoneList<CharacterRange>* lookahead, RegExpNode* on_success, bool read_backward) { Zone* zone = compiler->zone(); int stack_register = compiler->UnicodeLookaroundStackRegister(); int position_register = compiler->UnicodeLookaroundPositionRegister(); RegExpLookaround::Builder lookaround(false, on_success, stack_register, position_register); RegExpNode* negative_match = TextNode::CreateForCharacterRanges( zone, lookahead, read_backward, lookaround.on_match_success()); return TextNode::CreateForCharacterRanges( zone, match, read_backward, lookaround.ForMatch(negative_match)); } void AddLoneLeadSurrogates(RegExpCompiler* compiler, ChoiceNode* result, RegExpNode* on_success, UnicodeRangeSplitter* splitter) { ZoneList<CharacterRange>* lead_surrogates = splitter->lead_surrogates(); if (lead_surrogates == nullptr) return; Zone* zone = compiler->zone(); // E.g. \ud801 becomes \ud801(?![\udc00-\udfff]). ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List( zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd)); RegExpNode* match; if (compiler->read_backward()) { // Reading backward. Assert that reading forward, there is no trail // surrogate, and then backward match the lead surrogate. match = NegativeLookaroundAgainstReadDirectionAndMatch( compiler, trail_surrogates, lead_surrogates, on_success, true); } else { // Reading forward. Forward match the lead surrogate and assert that // no trail surrogate follows. match = MatchAndNegativeLookaroundInReadDirection( compiler, lead_surrogates, trail_surrogates, on_success, false); } result->AddAlternative(GuardedAlternative(match)); } void AddLoneTrailSurrogates(RegExpCompiler* compiler, ChoiceNode* result, RegExpNode* on_success, UnicodeRangeSplitter* splitter) { ZoneList<CharacterRange>* trail_surrogates = splitter->trail_surrogates(); if (trail_surrogates == nullptr) return; Zone* zone = compiler->zone(); // E.g. \udc01 becomes (?<![\ud800-\udbff])\udc01 ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List( zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd)); RegExpNode* match; if (compiler->read_backward()) { // Reading backward. Backward match the trail surrogate and assert that no // lead surrogate precedes it. match = MatchAndNegativeLookaroundInReadDirection( compiler, trail_surrogates, lead_surrogates, on_success, true); } else { // Reading forward. Assert that reading backward, there is no lead // surrogate, and then forward match the trail surrogate. match = NegativeLookaroundAgainstReadDirectionAndMatch( compiler, lead_surrogates, trail_surrogates, on_success, false); } result->AddAlternative(GuardedAlternative(match)); } RegExpNode* UnanchoredAdvance(RegExpCompiler* compiler, RegExpNode* on_success) { // This implements ES2015 21.2.5.2.3, AdvanceStringIndex. DCHECK(!compiler->read_backward()); Zone* zone = compiler->zone(); // Advance any character. If the character happens to be a lead surrogate and // we advanced into the middle of a surrogate pair, it will work out, as // nothing will match from there. We will have to advance again, consuming // the associated trail surrogate. ZoneList<CharacterRange>* range = CharacterRange::List( zone, CharacterRange::Range(0, String::kMaxUtf16CodeUnit)); return TextNode::CreateForCharacterRanges(zone, range, false, on_success); } void AddUnicodeCaseEquivalents(RegExpCompiler* compiler, ZoneList<CharacterRange>* ranges) { #ifdef V8_I18N_SUPPORT // Use ICU to compute the case fold closure over the ranges. DCHECK(compiler->unicode()); DCHECK(compiler->ignore_case()); USet* set = uset_openEmpty(); for (int i = 0; i < ranges->length(); i++) { uset_addRange(set, ranges->at(i).from(), ranges->at(i).to()); } ranges->Clear(); uset_closeOver(set, USET_CASE_INSENSITIVE); // Full case mapping map single characters to multiple characters. // Those are represented as strings in the set. Remove them so that // we end up with only simple and common case mappings. uset_removeAllStrings(set); int item_count = uset_getItemCount(set); int item_result = 0; UErrorCode ec = U_ZERO_ERROR; Zone* zone = compiler->zone(); for (int i = 0; i < item_count; i++) { uc32 start = 0; uc32 end = 0; item_result += uset_getItem(set, i, &start, &end, nullptr, 0, &ec); ranges->Add(CharacterRange::Range(start, end), zone); } // No errors and everything we collected have been ranges. DCHECK_EQ(U_ZERO_ERROR, ec); DCHECK_EQ(0, item_result); uset_close(set); #else // Fallback if ICU is not included. CharacterRange::AddCaseEquivalents(compiler->isolate(), compiler->zone(), ranges, compiler->one_byte()); #endif // V8_I18N_SUPPORT CharacterRange::Canonicalize(ranges); } RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { set_.Canonicalize(); Zone* zone = compiler->zone(); ZoneList<CharacterRange>* ranges = this->ranges(zone); if (compiler->unicode() && compiler->ignore_case()) { AddUnicodeCaseEquivalents(compiler, ranges); } if (compiler->unicode() && !compiler->one_byte()) { if (is_negated()) { ZoneList<CharacterRange>* negated = new (zone) ZoneList<CharacterRange>(2, zone); CharacterRange::Negate(ranges, negated, zone); ranges = negated; } if (ranges->length() == 0) { ranges->Add(CharacterRange::Everything(), zone); RegExpCharacterClass* fail = new (zone) RegExpCharacterClass(ranges, true); return new (zone) TextNode(fail, compiler->read_backward(), on_success); } if (standard_type() == '*') { return UnanchoredAdvance(compiler, on_success); } else { ChoiceNode* result = new (zone) ChoiceNode(2, zone); UnicodeRangeSplitter splitter(zone, ranges); AddBmpCharacters(compiler, result, on_success, &splitter); AddNonBmpSurrogatePairs(compiler, result, on_success, &splitter); AddLoneLeadSurrogates(compiler, result, on_success, &splitter); AddLoneTrailSurrogates(compiler, result, on_success, &splitter); return result; } } else { return new (zone) TextNode(this, compiler->read_backward(), on_success); } } int CompareFirstChar(RegExpTree* const* a, RegExpTree* const* b) { RegExpAtom* atom1 = (*a)->AsAtom(); RegExpAtom* atom2 = (*b)->AsAtom(); uc16 character1 = atom1->data().at(0); uc16 character2 = atom2->data().at(0); if (character1 < character2) return -1; if (character1 > character2) return 1; return 0; } static unibrow::uchar Canonical( unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize, unibrow::uchar c) { unibrow::uchar chars[unibrow::Ecma262Canonicalize::kMaxWidth]; int length = canonicalize->get(c, '\0', chars); DCHECK_LE(length, 1); unibrow::uchar canonical = c; if (length == 1) canonical = chars[0]; return canonical; } int CompareFirstCharCaseIndependent( unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize, RegExpTree* const* a, RegExpTree* const* b) { RegExpAtom* atom1 = (*a)->AsAtom(); RegExpAtom* atom2 = (*b)->AsAtom(); unibrow::uchar character1 = atom1->data().at(0); unibrow::uchar character2 = atom2->data().at(0); if (character1 == character2) return 0; if (character1 >= 'a' || character2 >= 'a') { character1 = Canonical(canonicalize, character1); character2 = Canonical(canonicalize, character2); } return static_cast<int>(character1) - static_cast<int>(character2); } // We can stable sort runs of atoms, since the order does not matter if they // start with different characters. // Returns true if any consecutive atoms were found. bool RegExpDisjunction::SortConsecutiveAtoms(RegExpCompiler* compiler) { ZoneList<RegExpTree*>* alternatives = this->alternatives(); int length = alternatives->length(); bool found_consecutive_atoms = false; for (int i = 0; i < length; i++) { while (i < length) { RegExpTree* alternative = alternatives->at(i); if (alternative->IsAtom()) break; i++; } // i is length or it is the index of an atom. if (i == length) break; int first_atom = i; i++; while (i < length) { RegExpTree* alternative = alternatives->at(i); if (!alternative->IsAtom()) break; i++; } // Sort atoms to get ones with common prefixes together. // This step is more tricky if we are in a case-independent regexp, // because it would change /is|I/ to /I|is/, and order matters when // the regexp parts don't match only disjoint starting points. To fix // this we have a version of CompareFirstChar that uses case- // independent character classes for comparison. DCHECK_LT(first_atom, alternatives->length()); DCHECK_LE(i, alternatives->length()); DCHECK_LE(first_atom, i); if (compiler->ignore_case()) { unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = compiler->isolate()->regexp_macro_assembler_canonicalize(); auto compare_closure = [canonicalize](RegExpTree* const* a, RegExpTree* const* b) { return CompareFirstCharCaseIndependent(canonicalize, a, b); }; alternatives->StableSort(compare_closure, first_atom, i - first_atom); } else { alternatives->StableSort(CompareFirstChar, first_atom, i - first_atom); } if (i - first_atom > 1) found_consecutive_atoms = true; } return found_consecutive_atoms; } // Optimizes ab|ac|az to a(?:b|c|d). void RegExpDisjunction::RationalizeConsecutiveAtoms(RegExpCompiler* compiler) { Zone* zone = compiler->zone(); ZoneList<RegExpTree*>* alternatives = this->alternatives(); int length = alternatives->length(); int write_posn = 0; int i = 0; while (i < length) { RegExpTree* alternative = alternatives->at(i); if (!alternative->IsAtom()) { alternatives->at(write_posn++) = alternatives->at(i); i++; continue; } RegExpAtom* atom = alternative->AsAtom(); unibrow::uchar common_prefix = atom->data().at(0); int first_with_prefix = i; int prefix_length = atom->length(); i++; while (i < length) { alternative = alternatives->at(i); if (!alternative->IsAtom()) break; atom = alternative->AsAtom(); unibrow::uchar new_prefix = atom->data().at(0); if (new_prefix != common_prefix) { if (!compiler->ignore_case()) break; unibrow::Mapping<unibrow::Ecma262Canonicalize>* canonicalize = compiler->isolate()->regexp_macro_assembler_canonicalize(); new_prefix = Canonical(canonicalize, new_prefix); common_prefix = Canonical(canonicalize, common_prefix); if (new_prefix != common_prefix) break; } prefix_length = Min(prefix_length, atom->length()); i++; } if (i > first_with_prefix + 2) { // Found worthwhile run of alternatives with common prefix of at least one // character. The sorting function above did not sort on more than one // character for reasons of correctness, but there may still be a longer // common prefix if the terms were similar or presorted in the input. // Find out how long the common prefix is. int run_length = i - first_with_prefix; atom = alternatives->at(first_with_prefix)->AsAtom(); for (int j = 1; j < run_length && prefix_length > 1; j++) { RegExpAtom* old_atom = alternatives->at(j + first_with_prefix)->AsAtom(); for (int k = 1; k < prefix_length; k++) { if (atom->data().at(k) != old_atom->data().at(k)) { prefix_length = k; break; } } } RegExpAtom* prefix = new (zone) RegExpAtom(atom->data().SubVector(0, prefix_length)); ZoneList<RegExpTree*>* pair = new (zone) ZoneList<RegExpTree*>(2, zone); pair->Add(prefix, zone); ZoneList<RegExpTree*>* suffixes = new (zone) ZoneList<RegExpTree*>(run_length, zone); for (int j = 0; j < run_length; j++) { RegExpAtom* old_atom = alternatives->at(j + first_with_prefix)->AsAtom(); int len = old_atom->length(); if (len == prefix_length) { suffixes->Add(new (zone) RegExpEmpty(), zone); } else { RegExpTree* suffix = new (zone) RegExpAtom( old_atom->data().SubVector(prefix_length, old_atom->length())); suffixes->Add(suffix, zone); } } pair->Add(new (zone) RegExpDisjunction(suffixes), zone); alternatives->at(write_posn++) = new (zone) RegExpAlternative(pair); } else { // Just copy any non-worthwhile alternatives. for (int j = first_with_prefix; j < i; j++) { alternatives->at(write_posn++) = alternatives->at(j); } } } alternatives->Rewind(write_posn); // Trim end of array. } // Optimizes b|c|z to [bcz]. void RegExpDisjunction::FixSingleCharacterDisjunctions( RegExpCompiler* compiler) { Zone* zone = compiler->zone(); ZoneList<RegExpTree*>* alternatives = this->alternatives(); int length = alternatives->length(); int write_posn = 0; int i = 0; while (i < length) { RegExpTree* alternative = alternatives->at(i); if (!alternative->IsAtom()) { alternatives->at(write_posn++) = alternatives->at(i); i++; continue; } RegExpAtom* atom = alternative->AsAtom(); if (atom->length() != 1) { alternatives->at(write_posn++) = alternatives->at(i); i++; continue; } int first_in_run = i; i++; while (i < length) { alternative = alternatives->at(i); if (!alternative->IsAtom()) break; atom = alternative->AsAtom(); if (atom->length() != 1) break; i++; } if (i > first_in_run + 1) { // Found non-trivial run of single-character alternatives. int run_length = i - first_in_run; ZoneList<CharacterRange>* ranges = new (zone) ZoneList<CharacterRange>(2, zone); for (int j = 0; j < run_length; j++) { RegExpAtom* old_atom = alternatives->at(j + first_in_run)->AsAtom(); DCHECK_EQ(old_atom->length(), 1); ranges->Add(CharacterRange::Singleton(old_atom->data().at(0)), zone); } alternatives->at(write_posn++) = new (zone) RegExpCharacterClass(ranges, false); } else { // Just copy any trivial alternatives. for (int j = first_in_run; j < i; j++) { alternatives->at(write_posn++) = alternatives->at(j); } } } alternatives->Rewind(write_posn); // Trim end of array. } RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { ZoneList<RegExpTree*>* alternatives = this->alternatives(); if (alternatives->length() > 2) { bool found_consecutive_atoms = SortConsecutiveAtoms(compiler); if (found_consecutive_atoms) RationalizeConsecutiveAtoms(compiler); FixSingleCharacterDisjunctions(compiler); if (alternatives->length() == 1) { return alternatives->at(0)->ToNode(compiler, on_success); } } int length = alternatives->length(); ChoiceNode* result = new(compiler->zone()) ChoiceNode(length, compiler->zone()); for (int i = 0; i < length; i++) { GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler, on_success)); result->AddAlternative(alternative); } return result; } RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return ToNode(min(), max(), is_greedy(), body(), compiler, on_success); } // Scoped object to keep track of how much we unroll quantifier loops in the // regexp graph generator. class RegExpExpansionLimiter { public: static const int kMaxExpansionFactor = 6; RegExpExpansionLimiter(RegExpCompiler* compiler, int factor) : compiler_(compiler), saved_expansion_factor_(compiler->current_expansion_factor()), ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { DCHECK(factor > 0); if (ok_to_expand_) { if (factor > kMaxExpansionFactor) { // Avoid integer overflow of the current expansion factor. ok_to_expand_ = false; compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); } else { int new_factor = saved_expansion_factor_ * factor; ok_to_expand_ = (new_factor <= kMaxExpansionFactor); compiler->set_current_expansion_factor(new_factor); } } } ~RegExpExpansionLimiter() { compiler_->set_current_expansion_factor(saved_expansion_factor_); } bool ok_to_expand() { return ok_to_expand_; } private: RegExpCompiler* compiler_; int saved_expansion_factor_; bool ok_to_expand_; DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter); }; RegExpNode* RegExpQuantifier::ToNode(int min, int max, bool is_greedy, RegExpTree* body, RegExpCompiler* compiler, RegExpNode* on_success, bool not_at_start) { // x{f, t} becomes this: // // (r++)<-. // | ` // | (x) // v ^ // (r=0)-->(?)---/ [if r < t] // | // [if r >= f] \----> ... // // 15.10.2.5 RepeatMatcher algorithm. // The parser has already eliminated the case where max is 0. In the case // where max_match is zero the parser has removed the quantifier if min was // > 0 and removed the atom if min was 0. See AddQuantifierToAtom. // If we know that we cannot match zero length then things are a little // simpler since we don't need to make the special zero length match check // from step 2.1. If the min and max are small we can unroll a little in // this case. static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} if (max == 0) return on_success; // This can happen due to recursion. bool body_can_be_empty = (body->min_match() == 0); int body_start_reg = RegExpCompiler::kNoRegister; Interval capture_registers = body->CaptureRegisters(); bool needs_capture_clearing = !capture_registers.is_empty(); Zone* zone = compiler->zone(); if (body_can_be_empty) { body_start_reg = compiler->AllocateRegister(); } else if (compiler->optimize() && !needs_capture_clearing) { // Only unroll if there are no captures and the body can't be // empty. { RegExpExpansionLimiter limiter( compiler, min + ((max != min) ? 1 : 0)); if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { int new_max = (max == kInfinity) ? max : max - min; // Recurse once to get the loop or optional matches after the fixed // ones. RegExpNode* answer = ToNode( 0, new_max, is_greedy, body, compiler, on_success, true); // Unroll the forced matches from 0 to min. This can cause chains of // TextNodes (which the parser does not generate). These should be // combined if it turns out they hinder good code generation. for (int i = 0; i < min; i++) { answer = body->ToNode(compiler, answer); } return answer; } } if (max <= kMaxUnrolledMaxMatches && min == 0) { DCHECK(max > 0); // Due to the 'if' above. RegExpExpansionLimiter limiter(compiler, max); if (limiter.ok_to_expand()) { // Unroll the optional matches up to max. RegExpNode* answer = on_success; for (int i = 0; i < max; i++) { ChoiceNode* alternation = new(zone) ChoiceNode(2, zone); if (is_greedy) { alternation->AddAlternative( GuardedAlternative(body->ToNode(compiler, answer))); alternation->AddAlternative(GuardedAlternative(on_success)); } else { alternation->AddAlternative(GuardedAlternative(on_success)); alternation->AddAlternative( GuardedAlternative(body->ToNode(compiler, answer))); } answer = alternation; if (not_at_start && !compiler->read_backward()) { alternation->set_not_at_start(); } } return answer; } } } bool has_min = min > 0; bool has_max = max < RegExpTree::kInfinity; bool needs_counter = has_min || has_max; int reg_ctr = needs_counter ? compiler->AllocateRegister() : RegExpCompiler::kNoRegister; LoopChoiceNode* center = new (zone) LoopChoiceNode(body->min_match() == 0, compiler->read_backward(), zone); if (not_at_start && !compiler->read_backward()) center->set_not_at_start(); RegExpNode* loop_return = needs_counter ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center)) : static_cast<RegExpNode*>(center); if (body_can_be_empty) { // If the body can be empty we need to check if it was and then // backtrack. loop_return = ActionNode::EmptyMatchCheck(body_start_reg, reg_ctr, min, loop_return); } RegExpNode* body_node = body->ToNode(compiler, loop_return); if (body_can_be_empty) { // If the body can be empty we need to store the start position // so we can bail out if it was empty. body_node = ActionNode::StorePosition(body_start_reg, false, body_node); } if (needs_capture_clearing) { // Before entering the body of this loop we need to clear captures. body_node = ActionNode::ClearCaptures(capture_registers, body_node); } GuardedAlternative body_alt(body_node); if (has_max) { Guard* body_guard = new(zone) Guard(reg_ctr, Guard::LT, max); body_alt.AddGuard(body_guard, zone); } GuardedAlternative rest_alt(on_success); if (has_min) { Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min); rest_alt.AddGuard(rest_guard, zone); } if (is_greedy) { center->AddLoopAlternative(body_alt); center->AddContinueAlternative(rest_alt); } else { center->AddContinueAlternative(rest_alt); center->AddLoopAlternative(body_alt); } if (needs_counter) { return ActionNode::SetRegister(reg_ctr, 0, center); } else { return center; } } RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { NodeInfo info; Zone* zone = compiler->zone(); switch (assertion_type()) { case START_OF_LINE: return AssertionNode::AfterNewline(on_success); case START_OF_INPUT: return AssertionNode::AtStart(on_success); case BOUNDARY: return AssertionNode::AtBoundary(on_success); case NON_BOUNDARY: return AssertionNode::AtNonBoundary(on_success); case END_OF_INPUT: return AssertionNode::AtEnd(on_success); case END_OF_LINE: { // Compile $ in multiline regexps as an alternation with a positive // lookahead in one side and an end-of-input on the other side. // We need two registers for the lookahead. int stack_pointer_register = compiler->AllocateRegister(); int position_register = compiler->AllocateRegister(); // The ChoiceNode to distinguish between a newline and end-of-input. ChoiceNode* result = new(zone) ChoiceNode(2, zone); // Create a newline atom. ZoneList<CharacterRange>* newline_ranges = new(zone) ZoneList<CharacterRange>(3, zone); CharacterRange::AddClassEscape('n', newline_ranges, zone); RegExpCharacterClass* newline_atom = new (zone) RegExpCharacterClass('n'); TextNode* newline_matcher = new (zone) TextNode( newline_atom, false, ActionNode::PositiveSubmatchSuccess( stack_pointer_register, position_register, 0, // No captures inside. -1, // Ignored if no captures. on_success)); // Create an end-of-input matcher. RegExpNode* end_of_line = ActionNode::BeginSubmatch( stack_pointer_register, position_register, newline_matcher); // Add the two alternatives to the ChoiceNode. GuardedAlternative eol_alternative(end_of_line); result->AddAlternative(eol_alternative); GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success)); result->AddAlternative(end_alternative); return result; } default: UNREACHABLE(); } return on_success; } RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return new (compiler->zone()) BackReferenceNode(RegExpCapture::StartRegister(index()), RegExpCapture::EndRegister(index()), compiler->read_backward(), on_success); } RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return on_success; } RegExpLookaround::Builder::Builder(bool is_positive, RegExpNode* on_success, int stack_pointer_register, int position_register, int capture_register_count, int capture_register_start) : is_positive_(is_positive), on_success_(on_success), stack_pointer_register_(stack_pointer_register), position_register_(position_register) { if (is_positive_) { on_match_success_ = ActionNode::PositiveSubmatchSuccess( stack_pointer_register, position_register, capture_register_count, capture_register_start, on_success_); } else { Zone* zone = on_success_->zone(); on_match_success_ = new (zone) NegativeSubmatchSuccess( stack_pointer_register, position_register, capture_register_count, capture_register_start, zone); } } RegExpNode* RegExpLookaround::Builder::ForMatch(RegExpNode* match) { if (is_positive_) { return ActionNode::BeginSubmatch(stack_pointer_register_, position_register_, match); } else { Zone* zone = on_success_->zone(); // We use a ChoiceNode to represent the negative lookaround. The first // alternative is the negative match. On success, the end node backtracks. // On failure, the second alternative is tried and leads to success. // NegativeLookaheadChoiceNode is a special ChoiceNode that ignores the // first exit when calculating quick checks. ChoiceNode* choice_node = new (zone) NegativeLookaroundChoiceNode( GuardedAlternative(match), GuardedAlternative(on_success_), zone); return ActionNode::BeginSubmatch(stack_pointer_register_, position_register_, choice_node); } } RegExpNode* RegExpLookaround::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { int stack_pointer_register = compiler->AllocateRegister(); int position_register = compiler->AllocateRegister(); const int registers_per_capture = 2; const int register_of_first_capture = 2; int register_count = capture_count_ * registers_per_capture; int register_start = register_of_first_capture + capture_from_ * registers_per_capture; RegExpNode* result; bool was_reading_backward = compiler->read_backward(); compiler->set_read_backward(type() == LOOKBEHIND); Builder builder(is_positive(), on_success, stack_pointer_register, position_register, register_count, register_start); RegExpNode* match = body_->ToNode(compiler, builder.on_match_success()); result = builder.ForMatch(match); compiler->set_read_backward(was_reading_backward); return result; } RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { return ToNode(body(), index(), compiler, on_success); } RegExpNode* RegExpCapture::ToNode(RegExpTree* body, int index, RegExpCompiler* compiler, RegExpNode* on_success) { DCHECK_NOT_NULL(body); int start_reg = RegExpCapture::StartRegister(index); int end_reg = RegExpCapture::EndRegister(index); if (compiler->read_backward()) std::swap(start_reg, end_reg); RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); RegExpNode* body_node = body->ToNode(compiler, store_end); return ActionNode::StorePosition(start_reg, true, body_node); } RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, RegExpNode* on_success) { ZoneList<RegExpTree*>* children = nodes(); RegExpNode* current = on_success; if (compiler->read_backward()) { for (int i = 0; i < children->length(); i++) { current = children->at(i)->ToNode(compiler, current); } } else { for (int i = children->length() - 1; i >= 0; i--) { current = children->at(i)->ToNode(compiler, current); } } return current; } static void AddClass(const int* elmv, int elmc, ZoneList<CharacterRange>* ranges, Zone* zone) { elmc--; DCHECK(elmv[elmc] == kRangeEndMarker); for (int i = 0; i < elmc; i += 2) { DCHECK(elmv[i] < elmv[i + 1]); ranges->Add(CharacterRange::Range(elmv[i], elmv[i + 1] - 1), zone); } } static void AddClassNegated(const int *elmv, int elmc, ZoneList<CharacterRange>* ranges, Zone* zone) { elmc--; DCHECK(elmv[elmc] == kRangeEndMarker); DCHECK(elmv[0] != 0x0000); DCHECK(elmv[elmc - 1] != String::kMaxCodePoint); uc16 last = 0x0000; for (int i = 0; i < elmc; i += 2) { DCHECK(last <= elmv[i] - 1); DCHECK(elmv[i] < elmv[i + 1]); ranges->Add(CharacterRange::Range(last, elmv[i] - 1), zone); last = elmv[i + 1]; } ranges->Add(CharacterRange::Range(last, String::kMaxCodePoint), zone); } void CharacterRange::AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges, Zone* zone) { switch (type) { case 's': AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone); break; case 'S': AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone); break; case 'w': AddClass(kWordRanges, kWordRangeCount, ranges, zone); break; case 'W': AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone); break; case 'd': AddClass(kDigitRanges, kDigitRangeCount, ranges, zone); break; case 'D': AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone); break; case '.': AddClassNegated(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges, zone); break; // This is not a character range as defined by the spec but a // convenient shorthand for a character class that matches any // character. case '*': ranges->Add(CharacterRange::Everything(), zone); break; // This is the set of characters matched by the $ and ^ symbols // in multiline mode. case 'n': AddClass(kLineTerminatorRanges, kLineTerminatorRangeCount, ranges, zone); break; default: UNREACHABLE(); } } Vector<const int> CharacterRange::GetWordBounds() { return Vector<const int>(kWordRanges, kWordRangeCount - 1); } void CharacterRange::AddCaseEquivalents(Isolate* isolate, Zone* zone, ZoneList<CharacterRange>* ranges, bool is_one_byte) { CharacterRange::Canonicalize(ranges); int range_count = ranges->length(); for (int i = 0; i < range_count; i++) { CharacterRange range = ranges->at(i); uc32 bottom = range.from(); if (bottom > String::kMaxUtf16CodeUnit) return; uc32 top = Min(range.to(), String::kMaxUtf16CodeUnit); // Nothing to be done for surrogates. if (bottom >= kLeadSurrogateStart && top <= kTrailSurrogateEnd) return; if (is_one_byte && !RangeContainsLatin1Equivalents(range)) { if (bottom > String::kMaxOneByteCharCode) return; if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode; } unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; if (top == bottom) { // If this is a singleton we just expand the one character. int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars); for (int i = 0; i < length; i++) { uc32 chr = chars[i]; if (chr != bottom) { ranges->Add(CharacterRange::Singleton(chars[i]), zone); } } } else { // If this is a range we expand the characters block by block, expanding // contiguous subranges (blocks) one at a time. The approach is as // follows. For a given start character we look up the remainder of the // block that contains it (represented by the end point), for instance we // find 'z' if the character is 'c'. A block is characterized by the // property that all characters uncanonicalize in the same way, except // that each entry in the result is incremented by the distance from the // first element. So a-z is a block because 'a' uncanonicalizes to ['a', // 'A'] and the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. Once // we've found the end point we look up its uncanonicalization and // produce a range for each element. For instance for [c-f] we look up // ['z', 'Z'] and produce [c-f] and [C-F]. We then only add a range if // it is not already contained in the input, so [c-f] will be skipped but // [C-F] will be added. If this range is not completely contained in a // block we do this for all the blocks covered by the range (handling // characters that is not in a block as a "singleton block"). unibrow::uchar equivalents[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int pos = bottom; while (pos <= top) { int length = isolate->jsregexp_canonrange()->get(pos, '\0', equivalents); uc32 block_end; if (length == 0) { block_end = pos; } else { DCHECK_EQ(1, length); block_end = equivalents[0]; } int end = (block_end > top) ? top : block_end; length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', equivalents); for (int i = 0; i < length; i++) { uc32 c = equivalents[i]; uc32 range_from = c - (block_end - pos); uc32 range_to = c - (block_end - end); if (!(bottom <= range_from && range_to <= top)) { ranges->Add(CharacterRange::Range(range_from, range_to), zone); } } pos = end + 1; } } } } bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) { DCHECK_NOT_NULL(ranges); int n = ranges->length(); if (n <= 1) return true; int max = ranges->at(0).to(); for (int i = 1; i < n; i++) { CharacterRange next_range = ranges->at(i); if (next_range.from() <= max + 1) return false; max = next_range.to(); } return true; } ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) { if (ranges_ == NULL) { ranges_ = new(zone) ZoneList<CharacterRange>(2, zone); CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone); } return ranges_; } // Move a number of elements in a zonelist to another position // in the same list. Handles overlapping source and target areas. static void MoveRanges(ZoneList<CharacterRange>* list, int from, int to, int count) { // Ranges are potentially overlapping. if (from < to) { for (int i = count - 1; i >= 0; i--) { list->at(to + i) = list->at(from + i); } } else { for (int i = 0; i < count; i++) { list->at(to + i) = list->at(from + i); } } } static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, int count, CharacterRange insert) { // Inserts a range into list[0..count[, which must be sorted // by from value and non-overlapping and non-adjacent, using at most // list[0..count] for the result. Returns the number of resulting // canonicalized ranges. Inserting a range may collapse existing ranges into // fewer ranges, so the return value can be anything in the range 1..count+1. uc32 from = insert.from(); uc32 to = insert.to(); int start_pos = 0; int end_pos = count; for (int i = count - 1; i >= 0; i--) { CharacterRange current = list->at(i); if (current.from() > to + 1) { end_pos = i; } else if (current.to() + 1 < from) { start_pos = i + 1; break; } } // Inserted range overlaps, or is adjacent to, ranges at positions // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are // not affected by the insertion. // If start_pos == end_pos, the range must be inserted before start_pos. // if start_pos < end_pos, the entire range from start_pos to end_pos // must be merged with the insert range. if (start_pos == end_pos) { // Insert between existing ranges at position start_pos. if (start_pos < count) { MoveRanges(list, start_pos, start_pos + 1, count - start_pos); } list->at(start_pos) = insert; return count + 1; } if (start_pos + 1 == end_pos) { // Replace single existing range at position start_pos. CharacterRange to_replace = list->at(start_pos); int new_from = Min(to_replace.from(), from); int new_to = Max(to_replace.to(), to); list->at(start_pos) = CharacterRange::Range(new_from, new_to); return count; } // Replace a number of existing ranges from start_pos to end_pos - 1. // Move the remaining ranges down. int new_from = Min(list->at(start_pos).from(), from); int new_to = Max(list->at(end_pos - 1).to(), to); if (end_pos < count) { MoveRanges(list, end_pos, start_pos + 1, count - end_pos); } list->at(start_pos) = CharacterRange::Range(new_from, new_to); return count - (end_pos - start_pos) + 1; } void CharacterSet::Canonicalize() { // Special/default classes are always considered canonical. The result // of calling ranges() will be sorted. if (ranges_ == NULL) return; CharacterRange::Canonicalize(ranges_); } void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) { if (character_ranges->length() <= 1) return; // Check whether ranges are already canonical (increasing, non-overlapping, // non-adjacent). int n = character_ranges->length(); int max = character_ranges->at(0).to(); int i = 1; while (i < n) { CharacterRange current = character_ranges->at(i); if (current.from() <= max + 1) { break; } max = current.to(); i++; } // Canonical until the i'th range. If that's all of them, we are done. if (i == n) return; // The ranges at index i and forward are not canonicalized. Make them so by // doing the equivalent of insertion sort (inserting each into the previous // list, in order). // Notice that inserting a range can reduce the number of ranges in the // result due to combining of adjacent and overlapping ranges. int read = i; // Range to insert. int num_canonical = i; // Length of canonicalized part of list. do { num_canonical = InsertRangeInCanonicalList(character_ranges, num_canonical, character_ranges->at(read)); read++; } while (read < n); character_ranges->Rewind(num_canonical); DCHECK(CharacterRange::IsCanonical(character_ranges)); } void CharacterRange::Negate(ZoneList<CharacterRange>* ranges, ZoneList<CharacterRange>* negated_ranges, Zone* zone) { DCHECK(CharacterRange::IsCanonical(ranges)); DCHECK_EQ(0, negated_ranges->length()); int range_count = ranges->length(); uc32 from = 0; int i = 0; if (range_count > 0 && ranges->at(0).from() == 0) { from = ranges->at(0).to() + 1; i = 1; } while (i < range_count) { CharacterRange range = ranges->at(i); negated_ranges->Add(CharacterRange::Range(from, range.from() - 1), zone); from = range.to() + 1; i++; } if (from < String::kMaxCodePoint) { negated_ranges->Add(CharacterRange::Range(from, String::kMaxCodePoint), zone); } } // ------------------------------------------------------------------- // Splay tree OutSet* OutSet::Extend(unsigned value, Zone* zone) { if (Get(value)) return this; if (successors(zone) != NULL) { for (int i = 0; i < successors(zone)->length(); i++) { OutSet* successor = successors(zone)->at(i); if (successor->Get(value)) return successor; } } else { successors_ = new(zone) ZoneList<OutSet*>(2, zone); } OutSet* result = new(zone) OutSet(first_, remaining_); result->Set(value, zone); successors(zone)->Add(result, zone); return result; } void OutSet::Set(unsigned value, Zone *zone) { if (value < kFirstLimit) { first_ |= (1 << value); } else { if (remaining_ == NULL) remaining_ = new(zone) ZoneList<unsigned>(1, zone); if (remaining_->is_empty() || !remaining_->Contains(value)) remaining_->Add(value, zone); } } bool OutSet::Get(unsigned value) const { if (value < kFirstLimit) { return (first_ & (1 << value)) != 0; } else if (remaining_ == NULL) { return false; } else { return remaining_->Contains(value); } } const uc32 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar; void DispatchTable::AddRange(CharacterRange full_range, int value, Zone* zone) { CharacterRange current = full_range; if (tree()->is_empty()) { // If this is the first range we just insert into the table. ZoneSplayTree<Config>::Locator loc; bool inserted = tree()->Insert(current.from(), &loc); DCHECK(inserted); USE(inserted); loc.set_value(Entry(current.from(), current.to(), empty()->Extend(value, zone))); return; } // First see if there is a range to the left of this one that // overlaps. ZoneSplayTree<Config>::Locator loc; if (tree()->FindGreatestLessThan(current.from(), &loc)) { Entry* entry = &loc.value(); // If we've found a range that overlaps with this one, and it // starts strictly to the left of this one, we have to fix it // because the following code only handles ranges that start on // or after the start point of the range we're adding. if (entry->from() < current.from() && entry->to() >= current.from()) { // Snap the overlapping range in half around the start point of // the range we're adding. CharacterRange left = CharacterRange::Range(entry->from(), current.from() - 1); CharacterRange right = CharacterRange::Range(current.from(), entry->to()); // The left part of the overlapping range doesn't overlap. // Truncate the whole entry to be just the left part. entry->set_to(left.to()); // The right part is the one that overlaps. We add this part // to the map and let the next step deal with merging it with // the range we're adding. ZoneSplayTree<Config>::Locator loc; bool inserted = tree()->Insert(right.from(), &loc); DCHECK(inserted); USE(inserted); loc.set_value(Entry(right.from(), right.to(), entry->out_set())); } } while (current.is_valid()) { if (tree()->FindLeastGreaterThan(current.from(), &loc) && (loc.value().from() <= current.to()) && (loc.value().to() >= current.from())) { Entry* entry = &loc.value(); // We have overlap. If there is space between the start point of // the range we're adding and where the overlapping range starts // then we have to add a range covering just that space. if (current.from() < entry->from()) { ZoneSplayTree<Config>::Locator ins; bool inserted = tree()->Insert(current.from(), &ins); DCHECK(inserted); USE(inserted); ins.set_value(Entry(current.from(), entry->from() - 1, empty()->Extend(value, zone))); current.set_from(entry->from()); } DCHECK_EQ(current.from(), entry->from()); // If the overlapping range extends beyond the one we want to add // we have to snap the right part off and add it separately. if (entry->to() > current.to()) { ZoneSplayTree<Config>::Locator ins; bool inserted = tree()->Insert(current.to() + 1, &ins); DCHECK(inserted); USE(inserted); ins.set_value(Entry(current.to() + 1, entry->to(), entry->out_set())); entry->set_to(current.to()); } DCHECK(entry->to() <= current.to()); // The overlapping range is now completely contained by the range // we're adding so we can just update it and move the start point // of the range we're adding just past it. entry->AddValue(value, zone); DCHECK(entry->to() + 1 > current.from()); current.set_from(entry->to() + 1); } else { // There is no overlap so we can just add the range ZoneSplayTree<Config>::Locator ins; bool inserted = tree()->Insert(current.from(), &ins); DCHECK(inserted); USE(inserted); ins.set_value(Entry(current.from(), current.to(), empty()->Extend(value, zone))); break; } } } OutSet* DispatchTable::Get(uc32 value) { ZoneSplayTree<Config>::Locator loc; if (!tree()->FindGreatestLessThan(value, &loc)) return empty(); Entry* entry = &loc.value(); if (value <= entry->to()) return entry->out_set(); else return empty(); } // ------------------------------------------------------------------- // Analysis void Analysis::EnsureAnalyzed(RegExpNode* that) { StackLimitCheck check(isolate()); if (check.HasOverflowed()) { fail("Stack overflow"); return; } if (that->info()->been_analyzed || that->info()->being_analyzed) return; that->info()->being_analyzed = true; that->Accept(this); that->info()->being_analyzed = false; that->info()->been_analyzed = true; } void Analysis::VisitEnd(EndNode* that) { // nothing to do } void TextNode::CalculateOffsets() { int element_count = elements()->length(); // Set up the offsets of the elements relative to the start. This is a fixed // quantity since a TextNode can only contain fixed-width things. int cp_offset = 0; for (int i = 0; i < element_count; i++) { TextElement& elm = elements()->at(i); elm.set_cp_offset(cp_offset); cp_offset += elm.length(); } } void Analysis::VisitText(TextNode* that) { if (ignore_case()) { that->MakeCaseIndependent(isolate(), is_one_byte_); } EnsureAnalyzed(that->on_success()); if (!has_failed()) { that->CalculateOffsets(); } } void Analysis::VisitAction(ActionNode* that) { RegExpNode* target = that->on_success(); EnsureAnalyzed(target); if (!has_failed()) { // If the next node is interested in what it follows then this node // has to be interested too so it can pass the information on. that->info()->AddFromFollowing(target->info()); } } void Analysis::VisitChoice(ChoiceNode* that) { NodeInfo* info = that->info(); for (int i = 0; i < that->alternatives()->length(); i++) { RegExpNode* node = that->alternatives()->at(i).node(); EnsureAnalyzed(node); if (has_failed()) return; // Anything the following nodes need to know has to be known by // this node also, so it can pass it on. info->AddFromFollowing(node->info()); } } void Analysis::VisitLoopChoice(LoopChoiceNode* that) { NodeInfo* info = that->info(); for (int i = 0; i < that->alternatives()->length(); i++) { RegExpNode* node = that->alternatives()->at(i).node(); if (node != that->loop_node()) { EnsureAnalyzed(node); if (has_failed()) return; info->AddFromFollowing(node->info()); } } // Check the loop last since it may need the value of this node // to get a correct result. EnsureAnalyzed(that->loop_node()); if (!has_failed()) { info->AddFromFollowing(that->loop_node()->info()); } } void Analysis::VisitBackReference(BackReferenceNode* that) { EnsureAnalyzed(that->on_success()); } void Analysis::VisitAssertion(AssertionNode* that) { EnsureAnalyzed(that->on_success()); } void BackReferenceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { // Working out the set of characters that a backreference can match is too // hard, so we just say that any character can match. bm->SetRest(offset); SaveBMInfo(bm, not_at_start, offset); } STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == RegExpMacroAssembler::kTableSize); void ChoiceNode::FillInBMInfo(Isolate* isolate, int offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { ZoneList<GuardedAlternative>* alts = alternatives(); budget = (budget - 1) / alts->length(); for (int i = 0; i < alts->length(); i++) { GuardedAlternative& alt = alts->at(i); if (alt.guards() != NULL && alt.guards()->length() != 0) { bm->SetRest(offset); // Give up trying to fill in info. SaveBMInfo(bm, not_at_start, offset); return; } alt.node()->FillInBMInfo(isolate, offset, budget, bm, not_at_start); } SaveBMInfo(bm, not_at_start, offset); } void TextNode::FillInBMInfo(Isolate* isolate, int initial_offset, int budget, BoyerMooreLookahead* bm, bool not_at_start) { if (initial_offset >= bm->length()) return; int offset = initial_offset; int max_char = bm->max_char(); for (int i = 0; i < elements()->length(); i++) { if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return; } TextElement text = elements()->at(i); if (text.text_type() == TextElement::ATOM) { RegExpAtom* atom = text.atom(); for (int j = 0; j < atom->length(); j++, offset++) { if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return; } uc16 character = atom->data()[j]; if (bm->compiler()->ignore_case()) { unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length = GetCaseIndependentLetters( isolate, character, bm->max_char() == String::kMaxOneByteCharCode, chars); for (int j = 0; j < length; j++) { bm->Set(offset, chars[j]); } } else { if (character <= max_char) bm->Set(offset, character); } } } else { DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type()); RegExpCharacterClass* char_class = text.char_class(); ZoneList<CharacterRange>* ranges = char_class->ranges(zone()); if (char_class->is_negated()) { bm->SetAll(offset); } else { for (int k = 0; k < ranges->length(); k++) { CharacterRange& range = ranges->at(k); if (range.from() > max_char) continue; int to = Min(max_char, static_cast<int>(range.to())); bm->SetInterval(offset, Interval(range.from(), to)); } } offset++; } } if (offset >= bm->length()) { if (initial_offset == 0) set_bm_info(not_at_start, bm); return; } on_success()->FillInBMInfo(isolate, offset, budget - 1, bm, true); // Not at start after a text node. if (initial_offset == 0) set_bm_info(not_at_start, bm); } // ------------------------------------------------------------------- // Dispatch table construction void DispatchTableConstructor::VisitEnd(EndNode* that) { AddRange(CharacterRange::Everything()); } void DispatchTableConstructor::BuildTable(ChoiceNode* node) { node->set_being_calculated(true); ZoneList<GuardedAlternative>* alternatives = node->alternatives(); for (int i = 0; i < alternatives->length(); i++) { set_choice_index(i); alternatives->at(i).node()->Accept(this); } node->set_being_calculated(false); } class AddDispatchRange { public: explicit AddDispatchRange(DispatchTableConstructor* constructor) : constructor_(constructor) { } void Call(uc32 from, DispatchTable::Entry entry); private: DispatchTableConstructor* constructor_; }; void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) { constructor_->AddRange(CharacterRange::Range(from, entry.to())); } void DispatchTableConstructor::VisitChoice(ChoiceNode* node) { if (node->being_calculated()) return; DispatchTable* table = node->GetTable(ignore_case_); AddDispatchRange adder(this); table->ForEach(&adder); } void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) { // TODO(160): Find the node that we refer back to and propagate its start // set back to here. For now we just accept anything. AddRange(CharacterRange::Everything()); } void DispatchTableConstructor::VisitAssertion(AssertionNode* that) { RegExpNode* target = that->on_success(); target->Accept(this); } static int CompareRangeByFrom(const CharacterRange* a, const CharacterRange* b) { return Compare<uc16>(a->from(), b->from()); } void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) { ranges->Sort(CompareRangeByFrom); uc16 last = 0; for (int i = 0; i < ranges->length(); i++) { CharacterRange range = ranges->at(i); if (last < range.from()) AddRange(CharacterRange::Range(last, range.from() - 1)); if (range.to() >= last) { if (range.to() == String::kMaxCodePoint) { return; } else { last = range.to() + 1; } } } AddRange(CharacterRange::Range(last, String::kMaxCodePoint)); } void DispatchTableConstructor::VisitText(TextNode* that) { TextElement elm = that->elements()->at(0); switch (elm.text_type()) { case TextElement::ATOM: { uc16 c = elm.atom()->data()[0]; AddRange(CharacterRange::Range(c, c)); break; } case TextElement::CHAR_CLASS: { RegExpCharacterClass* tree = elm.char_class(); ZoneList<CharacterRange>* ranges = tree->ranges(that->zone()); if (tree->is_negated()) { AddInverse(ranges); } else { for (int i = 0; i < ranges->length(); i++) AddRange(ranges->at(i)); } break; } default: { UNIMPLEMENTED(); } } } void DispatchTableConstructor::VisitAction(ActionNode* that) { RegExpNode* target = that->on_success(); target->Accept(this); } RegExpNode* OptionallyStepBackToLeadSurrogate(RegExpCompiler* compiler, RegExpNode* on_success) { // If the regexp matching starts within a surrogate pair, step back // to the lead surrogate and start matching from there. DCHECK(!compiler->read_backward()); Zone* zone = compiler->zone(); ZoneList<CharacterRange>* lead_surrogates = CharacterRange::List( zone, CharacterRange::Range(kLeadSurrogateStart, kLeadSurrogateEnd)); ZoneList<CharacterRange>* trail_surrogates = CharacterRange::List( zone, CharacterRange::Range(kTrailSurrogateStart, kTrailSurrogateEnd)); ChoiceNode* optional_step_back = new (zone) ChoiceNode(2, zone); int stack_register = compiler->UnicodeLookaroundStackRegister(); int position_register = compiler->UnicodeLookaroundPositionRegister(); RegExpNode* step_back = TextNode::CreateForCharacterRanges( zone, lead_surrogates, true, on_success); RegExpLookaround::Builder builder(true, step_back, stack_register, position_register); RegExpNode* match_trail = TextNode::CreateForCharacterRanges( zone, trail_surrogates, false, builder.on_match_success()); optional_step_back->AddAlternative( GuardedAlternative(builder.ForMatch(match_trail))); optional_step_back->AddAlternative(GuardedAlternative(on_success)); return optional_step_back; } RegExpEngine::CompilationResult RegExpEngine::Compile( Isolate* isolate, Zone* zone, RegExpCompileData* data, JSRegExp::Flags flags, Handle<String> pattern, Handle<String> sample_subject, bool is_one_byte) { if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { return IrregexpRegExpTooBig(isolate); } bool ignore_case = flags & JSRegExp::kIgnoreCase; bool is_sticky = flags & JSRegExp::kSticky; bool is_global = flags & JSRegExp::kGlobal; bool is_unicode = flags & JSRegExp::kUnicode; RegExpCompiler compiler(isolate, zone, data->capture_count, flags, is_one_byte); if (compiler.optimize()) compiler.set_optimize(!TooMuchRegExpCode(pattern)); // Sample some characters from the middle of the string. static const int kSampleSize = 128; sample_subject = String::Flatten(sample_subject); int chars_sampled = 0; int half_way = (sample_subject->length() - kSampleSize) / 2; for (int i = Max(0, half_way); i < sample_subject->length() && chars_sampled < kSampleSize; i++, chars_sampled++) { compiler.frequency_collator()->CountCharacter(sample_subject->Get(i)); } // Wrap the body of the regexp in capture #0. RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, 0, &compiler, compiler.accept()); RegExpNode* node = captured_body; bool is_end_anchored = data->tree->IsAnchoredAtEnd(); bool is_start_anchored = data->tree->IsAnchoredAtStart(); int max_length = data->tree->max_match(); if (!is_start_anchored && !is_sticky) { // Add a .*? at the beginning, outside the body capture, unless // this expression is anchored at the beginning or sticky. RegExpNode* loop_node = RegExpQuantifier::ToNode( 0, RegExpTree::kInfinity, false, new (zone) RegExpCharacterClass('*'), &compiler, captured_body, data->contains_anchor); if (data->contains_anchor) { // Unroll loop once, to take care of the case that might start // at the start of input. ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone); first_step_node->AddAlternative(GuardedAlternative(captured_body)); first_step_node->AddAlternative(GuardedAlternative(new (zone) TextNode( new (zone) RegExpCharacterClass('*'), false, loop_node))); node = first_step_node; } else { node = loop_node; } } if (is_one_byte) { node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case); // Do it again to propagate the new nodes to places where they were not // put because they had not been calculated yet. if (node != NULL) { node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case); } } else if (compiler.unicode() && (is_global || is_sticky)) { node = OptionallyStepBackToLeadSurrogate(&compiler, node); } if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone); data->node = node; Analysis analysis(isolate, flags, is_one_byte); analysis.EnsureAnalyzed(node); if (analysis.has_failed()) { const char* error_message = analysis.error_message(); return CompilationResult(isolate, error_message); } // Create the correct assembler for the architecture. #ifndef V8_INTERPRETED_REGEXP // Native regexp implementation. NativeRegExpMacroAssembler::Mode mode = is_one_byte ? NativeRegExpMacroAssembler::LATIN1 : NativeRegExpMacroAssembler::UC16; #if V8_TARGET_ARCH_IA32 RegExpMacroAssemblerIA32 macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_X64 RegExpMacroAssemblerX64 macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_ARM RegExpMacroAssemblerARM macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_ARM64 RegExpMacroAssemblerARM64 macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_S390 RegExpMacroAssemblerS390 macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_PPC RegExpMacroAssemblerPPC macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_MIPS RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_MIPS64 RegExpMacroAssemblerMIPS macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #elif V8_TARGET_ARCH_X87 RegExpMacroAssemblerX87 macro_assembler(isolate, zone, mode, (data->capture_count + 1) * 2); #else #error "Unsupported architecture" #endif #else // V8_INTERPRETED_REGEXP // Interpreted regexp implementation. EmbeddedVector<byte, 1024> codes; RegExpMacroAssemblerIrregexp macro_assembler(isolate, codes, zone); #endif // V8_INTERPRETED_REGEXP macro_assembler.set_slow_safe(TooMuchRegExpCode(pattern)); // Inserted here, instead of in Assembler, because it depends on information // in the AST that isn't replicated in the Node structure. static const int kMaxBacksearchLimit = 1024; if (is_end_anchored && !is_start_anchored && max_length < kMaxBacksearchLimit) { macro_assembler.SetCurrentPositionFromEnd(max_length); } if (is_global) { RegExpMacroAssembler::GlobalMode mode = RegExpMacroAssembler::GLOBAL; if (data->tree->min_match() > 0) { mode = RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK; } else if (is_unicode) { mode = RegExpMacroAssembler::GLOBAL_UNICODE; } macro_assembler.set_global_mode(mode); } return compiler.Assemble(¯o_assembler, node, data->capture_count, pattern); } bool RegExpEngine::TooMuchRegExpCode(Handle<String> pattern) { Heap* heap = pattern->GetHeap(); bool too_much = pattern->length() > RegExpImpl::kRegExpTooLargeToOptimize; if (heap->total_regexp_code_generated() > RegExpImpl::kRegExpCompiledLimit && heap->memory_allocator()->SizeExecutable() > RegExpImpl::kRegExpExecutableMemoryLimit) { too_much = true; } return too_much; } Object* RegExpResultsCache::Lookup(Heap* heap, String* key_string, Object* key_pattern, FixedArray** last_match_cache, ResultsCacheType type) { FixedArray* cache; if (!key_string->IsInternalizedString()) return Smi::FromInt(0); if (type == STRING_SPLIT_SUBSTRINGS) { DCHECK(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0); cache = heap->string_split_cache(); } else { DCHECK(type == REGEXP_MULTIPLE_INDICES); DCHECK(key_pattern->IsFixedArray()); cache = heap->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) != key_string || cache->get(index + kPatternOffset) != key_pattern) { index = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index + kStringOffset) != key_string || cache->get(index + kPatternOffset) != key_pattern) { return Smi::FromInt(0); } } *last_match_cache = FixedArray::cast(cache->get(index + kLastMatchOffset)); return cache->get(index + kArrayOffset); } void RegExpResultsCache::Enter(Isolate* isolate, Handle<String> key_string, Handle<Object> key_pattern, Handle<FixedArray> value_array, Handle<FixedArray> last_match_cache, ResultsCacheType type) { Factory* factory = isolate->factory(); Handle<FixedArray> cache; if (!key_string->IsInternalizedString()) return; if (type == STRING_SPLIT_SUBSTRINGS) { DCHECK(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return; cache = factory->string_split_cache(); } else { DCHECK(type == REGEXP_MULTIPLE_INDICES); DCHECK(key_pattern->IsFixedArray()); cache = factory->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) == Smi::FromInt(0)) { cache->set(index + kStringOffset, *key_string); cache->set(index + kPatternOffset, *key_pattern); cache->set(index + kArrayOffset, *value_array); cache->set(index + kLastMatchOffset, *last_match_cache); } else { uint32_t index2 = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) { cache->set(index2 + kStringOffset, *key_string); cache->set(index2 + kPatternOffset, *key_pattern); cache->set(index2 + kArrayOffset, *value_array); cache->set(index2 + kLastMatchOffset, *last_match_cache); } else { cache->set(index2 + kStringOffset, Smi::FromInt(0)); cache->set(index2 + kPatternOffset, Smi::FromInt(0)); cache->set(index2 + kArrayOffset, Smi::FromInt(0)); cache->set(index2 + kLastMatchOffset, Smi::FromInt(0)); cache->set(index + kStringOffset, *key_string); cache->set(index + kPatternOffset, *key_pattern); cache->set(index + kArrayOffset, *value_array); cache->set(index + kLastMatchOffset, *last_match_cache); } } // If the array is a reasonably short list of substrings, convert it into a // list of internalized strings. if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) { for (int i = 0; i < value_array->length(); i++) { Handle<String> str(String::cast(value_array->get(i)), isolate); Handle<String> internalized_str = factory->InternalizeString(str); value_array->set(i, *internalized_str); } } // Convert backing store to a copy-on-write array. value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map()); } void RegExpResultsCache::Clear(FixedArray* cache) { for (int i = 0; i < kRegExpResultsCacheSize; i++) { cache->set(i, Smi::FromInt(0)); } } } // namespace internal } // namespace v8