// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Features shared by parsing and pre-parsing scanners. #ifndef V8_PARSING_SCANNER_H_ #define V8_PARSING_SCANNER_H_ #include "src/allocation.h" #include "src/base/hashmap.h" #include "src/base/logging.h" #include "src/char-predicates.h" #include "src/collector.h" #include "src/globals.h" #include "src/list.h" #include "src/messages.h" #include "src/parsing/token.h" #include "src/unicode-decoder.h" #include "src/unicode.h" namespace v8 { namespace internal { class AstRawString; class AstValueFactory; class ParserRecorder; class UnicodeCache; // --------------------------------------------------------------------- // Buffered stream of UTF-16 code units, using an internal UTF-16 buffer. // A code unit is a 16 bit value representing either a 16 bit code point // or one part of a surrogate pair that make a single 21 bit code point. class Utf16CharacterStream { public: Utf16CharacterStream() : pos_(0) { } virtual ~Utf16CharacterStream() { } // Returns and advances past the next UTF-16 code unit in the input // stream. If there are no more code units, it returns a negative // value. inline uc32 Advance() { if (buffer_cursor_ < buffer_end_ || ReadBlock()) { pos_++; return static_cast<uc32>(*(buffer_cursor_++)); } // Note: currently the following increment is necessary to avoid a // parser problem! The scanner treats the final kEndOfInput as // a code unit with a position, and does math relative to that // position. pos_++; return kEndOfInput; } // Return the current position in the code unit stream. // Starts at zero. inline size_t pos() const { return pos_; } // Skips forward past the next code_unit_count UTF-16 code units // in the input, or until the end of input if that comes sooner. // Returns the number of code units actually skipped. If less // than code_unit_count, inline size_t SeekForward(size_t code_unit_count) { size_t buffered_chars = buffer_end_ - buffer_cursor_; if (code_unit_count <= buffered_chars) { buffer_cursor_ += code_unit_count; pos_ += code_unit_count; return code_unit_count; } return SlowSeekForward(code_unit_count); } // Pushes back the most recently read UTF-16 code unit (or negative // value if at end of input), i.e., the value returned by the most recent // call to Advance. // Must not be used right after calling SeekForward. virtual void PushBack(int32_t code_unit) = 0; virtual bool SetBookmark(); virtual void ResetToBookmark(); protected: static const uc32 kEndOfInput = -1; // Ensures that the buffer_cursor_ points to the code_unit at // position pos_ of the input, if possible. If the position // is at or after the end of the input, return false. If there // are more code_units available, return true. virtual bool ReadBlock() = 0; virtual size_t SlowSeekForward(size_t code_unit_count) = 0; const uint16_t* buffer_cursor_; const uint16_t* buffer_end_; size_t pos_; }; // --------------------------------------------------------------------- // DuplicateFinder discovers duplicate symbols. class DuplicateFinder { public: explicit DuplicateFinder(UnicodeCache* constants) : unicode_constants_(constants), backing_store_(16), map_(&Match) { } int AddOneByteSymbol(Vector<const uint8_t> key, int value); int AddTwoByteSymbol(Vector<const uint16_t> key, int value); // Add a a number literal by converting it (if necessary) // to the string that ToString(ToNumber(literal)) would generate. // and then adding that string with AddOneByteSymbol. // This string is the actual value used as key in an object literal, // and the one that must be different from the other keys. int AddNumber(Vector<const uint8_t> key, int value); private: int AddSymbol(Vector<const uint8_t> key, bool is_one_byte, int value); // Backs up the key and its length in the backing store. // The backup is stored with a base 127 encoding of the // length (plus a bit saying whether the string is one byte), // followed by the bytes of the key. uint8_t* BackupKey(Vector<const uint8_t> key, bool is_one_byte); // Compare two encoded keys (both pointing into the backing store) // for having the same base-127 encoded lengths and representation. // and then having the same 'length' bytes following. static bool Match(void* first, void* second); // Creates a hash from a sequence of bytes. static uint32_t Hash(Vector<const uint8_t> key, bool is_one_byte); // Checks whether a string containing a JS number is its canonical // form. static bool IsNumberCanonical(Vector<const uint8_t> key); // Size of buffer. Sufficient for using it to call DoubleToCString in // from conversions.h. static const int kBufferSize = 100; UnicodeCache* unicode_constants_; // Backing store used to store strings used as hashmap keys. SequenceCollector<unsigned char> backing_store_; base::HashMap map_; // Buffer used for string->number->canonical string conversions. char number_buffer_[kBufferSize]; }; // ---------------------------------------------------------------------------- // LiteralBuffer - Collector of chars of literals. const int kMaxAscii = 127; class LiteralBuffer { public: LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { } ~LiteralBuffer() { backing_store_.Dispose(); } INLINE(void AddChar(char code_unit)) { if (position_ >= backing_store_.length()) ExpandBuffer(); DCHECK(is_one_byte_); DCHECK(0 <= code_unit && code_unit <= kMaxAscii); backing_store_[position_] = static_cast<byte>(code_unit); position_ += kOneByteSize; return; } INLINE(void AddChar(uc32 code_unit)) { if (position_ >= backing_store_.length()) ExpandBuffer(); if (is_one_byte_) { if (code_unit <= unibrow::Latin1::kMaxChar) { backing_store_[position_] = static_cast<byte>(code_unit); position_ += kOneByteSize; return; } ConvertToTwoByte(); } if (code_unit <= unibrow::Utf16::kMaxNonSurrogateCharCode) { *reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit; position_ += kUC16Size; } else { *reinterpret_cast<uint16_t*>(&backing_store_[position_]) = unibrow::Utf16::LeadSurrogate(code_unit); position_ += kUC16Size; if (position_ >= backing_store_.length()) ExpandBuffer(); *reinterpret_cast<uint16_t*>(&backing_store_[position_]) = unibrow::Utf16::TrailSurrogate(code_unit); position_ += kUC16Size; } } bool is_one_byte() const { return is_one_byte_; } bool is_contextual_keyword(Vector<const char> keyword) const { return is_one_byte() && keyword.length() == position_ && (memcmp(keyword.start(), backing_store_.start(), position_) == 0); } Vector<const uint16_t> two_byte_literal() const { DCHECK(!is_one_byte_); DCHECK((position_ & 0x1) == 0); return Vector<const uint16_t>( reinterpret_cast<const uint16_t*>(backing_store_.start()), position_ >> 1); } Vector<const uint8_t> one_byte_literal() const { DCHECK(is_one_byte_); return Vector<const uint8_t>( reinterpret_cast<const uint8_t*>(backing_store_.start()), position_); } int length() const { return is_one_byte_ ? position_ : (position_ >> 1); } void ReduceLength(int delta) { position_ -= delta * (is_one_byte_ ? kOneByteSize : kUC16Size); } void Reset() { position_ = 0; is_one_byte_ = true; } Handle<String> Internalize(Isolate* isolate) const; void CopyFrom(const LiteralBuffer* other) { if (other == nullptr) { Reset(); } else { is_one_byte_ = other->is_one_byte_; position_ = other->position_; if (position_ < backing_store_.length()) { std::copy(other->backing_store_.begin(), other->backing_store_.begin() + position_, backing_store_.begin()); } else { backing_store_.Dispose(); backing_store_ = other->backing_store_.Clone(); } } } private: static const int kInitialCapacity = 16; static const int kGrowthFactory = 4; static const int kMinConversionSlack = 256; static const int kMaxGrowth = 1 * MB; inline int NewCapacity(int min_capacity) { int capacity = Max(min_capacity, backing_store_.length()); int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth); return new_capacity; } void ExpandBuffer() { Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity)); MemCopy(new_store.start(), backing_store_.start(), position_); backing_store_.Dispose(); backing_store_ = new_store; } void ConvertToTwoByte() { DCHECK(is_one_byte_); Vector<byte> new_store; int new_content_size = position_ * kUC16Size; if (new_content_size >= backing_store_.length()) { // Ensure room for all currently read code units as UC16 as well // as the code unit about to be stored. new_store = Vector<byte>::New(NewCapacity(new_content_size)); } else { new_store = backing_store_; } uint8_t* src = backing_store_.start(); uint16_t* dst = reinterpret_cast<uint16_t*>(new_store.start()); for (int i = position_ - 1; i >= 0; i--) { dst[i] = src[i]; } if (new_store.start() != backing_store_.start()) { backing_store_.Dispose(); backing_store_ = new_store; } position_ = new_content_size; is_one_byte_ = false; } bool is_one_byte_; int position_; Vector<byte> backing_store_; DISALLOW_COPY_AND_ASSIGN(LiteralBuffer); }; // ---------------------------------------------------------------------------- // JavaScript Scanner. class Scanner { public: // Scoped helper for literal recording. Automatically drops the literal // if aborting the scanning before it's complete. class LiteralScope { public: explicit LiteralScope(Scanner* self) : scanner_(self), complete_(false) { scanner_->StartLiteral(); } ~LiteralScope() { if (!complete_) scanner_->DropLiteral(); } void Complete() { complete_ = true; } private: Scanner* scanner_; bool complete_; }; // Scoped helper for a re-settable bookmark. class BookmarkScope { public: explicit BookmarkScope(Scanner* scanner) : scanner_(scanner) { DCHECK_NOT_NULL(scanner_); } ~BookmarkScope() { scanner_->DropBookmark(); } bool Set() { return scanner_->SetBookmark(); } void Reset() { scanner_->ResetToBookmark(); } bool HasBeenSet() { return scanner_->BookmarkHasBeenSet(); } bool HasBeenReset() { return scanner_->BookmarkHasBeenReset(); } private: Scanner* scanner_; DISALLOW_COPY_AND_ASSIGN(BookmarkScope); }; // Representation of an interval of source positions. struct Location { Location(int b, int e) : beg_pos(b), end_pos(e) { } Location() : beg_pos(0), end_pos(0) { } bool IsValid() const { return beg_pos >= 0 && end_pos >= beg_pos; } static Location invalid() { return Location(-1, -1); } int beg_pos; int end_pos; }; // -1 is outside of the range of any real source code. static const int kNoOctalLocation = -1; explicit Scanner(UnicodeCache* scanner_contants); void Initialize(Utf16CharacterStream* source); // Returns the next token and advances input. Token::Value Next(); // Returns the token following peek() Token::Value PeekAhead(); // Returns the current token again. Token::Value current_token() { return current_.token; } // Returns the location information for the current token // (the token last returned by Next()). Location location() const { return current_.location; } bool has_error() const { return scanner_error_ != MessageTemplate::kNone; } MessageTemplate::Template error() const { return scanner_error_; } Location error_location() const { return scanner_error_location_; } // Similar functions for the upcoming token. // One token look-ahead (past the token returned by Next()). Token::Value peek() const { return next_.token; } Location peek_location() const { return next_.location; } bool literal_contains_escapes() const { return LiteralContainsEscapes(current_); } bool next_literal_contains_escapes() const { return LiteralContainsEscapes(next_); } bool is_literal_contextual_keyword(Vector<const char> keyword) { DCHECK_NOT_NULL(current_.literal_chars); return current_.literal_chars->is_contextual_keyword(keyword); } bool is_next_contextual_keyword(Vector<const char> keyword) { DCHECK_NOT_NULL(next_.literal_chars); return next_.literal_chars->is_contextual_keyword(keyword); } const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory); const AstRawString* NextSymbol(AstValueFactory* ast_value_factory); const AstRawString* CurrentRawSymbol(AstValueFactory* ast_value_factory); double DoubleValue(); bool ContainsDot(); bool LiteralMatches(const char* data, int length, bool allow_escapes = true) { if (is_literal_one_byte() && literal_length() == length && (allow_escapes || !literal_contains_escapes())) { const char* token = reinterpret_cast<const char*>(literal_one_byte_string().start()); return !strncmp(token, data, length); } return false; } inline bool UnescapedLiteralMatches(const char* data, int length) { return LiteralMatches(data, length, false); } void IsGetOrSet(bool* is_get, bool* is_set) { if (is_literal_one_byte() && literal_length() == 3 && !literal_contains_escapes()) { const char* token = reinterpret_cast<const char*>(literal_one_byte_string().start()); *is_get = strncmp(token, "get", 3) == 0; *is_set = !*is_get && strncmp(token, "set", 3) == 0; } } int FindSymbol(DuplicateFinder* finder, int value); UnicodeCache* unicode_cache() { return unicode_cache_; } // Returns the location of the last seen octal literal. Location octal_position() const { return octal_pos_; } void clear_octal_position() { octal_pos_ = Location::invalid(); } // Returns the location of the last seen decimal literal with a leading zero. Location decimal_with_leading_zero_position() const { return decimal_with_leading_zero_pos_; } void clear_decimal_with_leading_zero_position() { decimal_with_leading_zero_pos_ = Location::invalid(); } // Returns the value of the last smi that was scanned. int smi_value() const { return current_.smi_value_; } // Seek forward to the given position. This operation does not // work in general, for instance when there are pushed back // characters, but works for seeking forward until simple delimiter // tokens, which is what it is used for. void SeekForward(int pos); // Returns true if there was a line terminator before the peek'ed token, // possibly inside a multi-line comment. bool HasAnyLineTerminatorBeforeNext() const { return has_line_terminator_before_next_ || has_multiline_comment_before_next_; } bool HasAnyLineTerminatorAfterNext() { Token::Value ensure_next_next = PeekAhead(); USE(ensure_next_next); return has_line_terminator_after_next_; } // Scans the input as a regular expression pattern, previous // character(s) must be /(=). Returns true if a pattern is scanned. bool ScanRegExpPattern(bool seen_equal); // Scans the input as regular expression flags. Returns the flags on success. Maybe<RegExp::Flags> ScanRegExpFlags(); // Scans the input as a template literal Token::Value ScanTemplateStart(); Token::Value ScanTemplateContinuation(); const LiteralBuffer* source_url() const { return &source_url_; } const LiteralBuffer* source_mapping_url() const { return &source_mapping_url_; } bool IdentifierIsFutureStrictReserved(const AstRawString* string) const; bool FoundHtmlComment() const { return found_html_comment_; } #define DECLARE_ACCESSORS(name) \ inline bool allow_##name() const { return allow_##name##_; } \ inline void set_allow_##name(bool allow) { allow_##name##_ = allow; } DECLARE_ACCESSORS(harmony_exponentiation_operator) #undef ACCESSOR private: // The current and look-ahead token. struct TokenDesc { Token::Value token; Location location; LiteralBuffer* literal_chars; LiteralBuffer* raw_literal_chars; int smi_value_; }; static const int kCharacterLookaheadBufferSize = 1; // Scans octal escape sequence. Also accepts "\0" decimal escape sequence. template <bool capture_raw> uc32 ScanOctalEscape(uc32 c, int length); // Call this after setting source_ to the input. void Init() { // Set c0_ (one character ahead) STATIC_ASSERT(kCharacterLookaheadBufferSize == 1); Advance(); // Initialize current_ to not refer to a literal. current_.literal_chars = NULL; current_.raw_literal_chars = NULL; next_next_.token = Token::UNINITIALIZED; found_html_comment_ = false; scanner_error_ = MessageTemplate::kNone; } // Support BookmarkScope functionality. bool SetBookmark(); void ResetToBookmark(); bool BookmarkHasBeenSet(); bool BookmarkHasBeenReset(); void DropBookmark(); static void CopyTokenDesc(TokenDesc* to, TokenDesc* from); void ReportScannerError(const Location& location, MessageTemplate::Template error) { if (has_error()) return; scanner_error_ = error; scanner_error_location_ = location; } void ReportScannerError(int pos, MessageTemplate::Template error) { if (has_error()) return; scanner_error_ = error; scanner_error_location_ = Location(pos, pos + 1); } // Literal buffer support inline void StartLiteral() { LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer0_) ? &literal_buffer1_ : (current_.literal_chars == &literal_buffer1_) ? &literal_buffer2_ : &literal_buffer0_; free_buffer->Reset(); next_.literal_chars = free_buffer; } inline void StartRawLiteral() { LiteralBuffer* free_buffer = (current_.raw_literal_chars == &raw_literal_buffer0_) ? &raw_literal_buffer1_ : (current_.raw_literal_chars == &raw_literal_buffer1_) ? &raw_literal_buffer2_ : &raw_literal_buffer0_; free_buffer->Reset(); next_.raw_literal_chars = free_buffer; } INLINE(void AddLiteralChar(uc32 c)) { DCHECK_NOT_NULL(next_.literal_chars); next_.literal_chars->AddChar(c); } INLINE(void AddLiteralChar(char c)) { DCHECK_NOT_NULL(next_.literal_chars); next_.literal_chars->AddChar(c); } INLINE(void AddRawLiteralChar(uc32 c)) { DCHECK_NOT_NULL(next_.raw_literal_chars); next_.raw_literal_chars->AddChar(c); } INLINE(void ReduceRawLiteralLength(int delta)) { DCHECK_NOT_NULL(next_.raw_literal_chars); next_.raw_literal_chars->ReduceLength(delta); } // Stops scanning of a literal and drop the collected characters, // e.g., due to an encountered error. inline void DropLiteral() { next_.literal_chars = NULL; next_.raw_literal_chars = NULL; } inline void AddLiteralCharAdvance() { AddLiteralChar(c0_); Advance(); } // Low-level scanning support. template <bool capture_raw = false, bool check_surrogate = true> void Advance() { if (capture_raw) { AddRawLiteralChar(c0_); } c0_ = source_->Advance(); if (check_surrogate) HandleLeadSurrogate(); } void HandleLeadSurrogate() { if (unibrow::Utf16::IsLeadSurrogate(c0_)) { uc32 c1 = source_->Advance(); if (!unibrow::Utf16::IsTrailSurrogate(c1)) { source_->PushBack(c1); } else { c0_ = unibrow::Utf16::CombineSurrogatePair(c0_, c1); } } } void PushBack(uc32 ch) { if (c0_ > static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) { source_->PushBack(unibrow::Utf16::TrailSurrogate(c0_)); source_->PushBack(unibrow::Utf16::LeadSurrogate(c0_)); } else { source_->PushBack(c0_); } c0_ = ch; } inline Token::Value Select(Token::Value tok) { Advance(); return tok; } inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) { Advance(); if (c0_ == next) { Advance(); return then; } else { return else_; } } // Returns the literal string, if any, for the current token (the // token last returned by Next()). The string is 0-terminated. // Literal strings are collected for identifiers, strings, numbers as well // as for template literals. For template literals we also collect the raw // form. // These functions only give the correct result if the literal was scanned // when a LiteralScope object is alive. Vector<const uint8_t> literal_one_byte_string() { DCHECK_NOT_NULL(current_.literal_chars); return current_.literal_chars->one_byte_literal(); } Vector<const uint16_t> literal_two_byte_string() { DCHECK_NOT_NULL(current_.literal_chars); return current_.literal_chars->two_byte_literal(); } bool is_literal_one_byte() { DCHECK_NOT_NULL(current_.literal_chars); return current_.literal_chars->is_one_byte(); } int literal_length() const { DCHECK_NOT_NULL(current_.literal_chars); return current_.literal_chars->length(); } // Returns the literal string for the next token (the token that // would be returned if Next() were called). Vector<const uint8_t> next_literal_one_byte_string() { DCHECK_NOT_NULL(next_.literal_chars); return next_.literal_chars->one_byte_literal(); } Vector<const uint16_t> next_literal_two_byte_string() { DCHECK_NOT_NULL(next_.literal_chars); return next_.literal_chars->two_byte_literal(); } bool is_next_literal_one_byte() { DCHECK_NOT_NULL(next_.literal_chars); return next_.literal_chars->is_one_byte(); } Vector<const uint8_t> raw_literal_one_byte_string() { DCHECK_NOT_NULL(current_.raw_literal_chars); return current_.raw_literal_chars->one_byte_literal(); } Vector<const uint16_t> raw_literal_two_byte_string() { DCHECK_NOT_NULL(current_.raw_literal_chars); return current_.raw_literal_chars->two_byte_literal(); } bool is_raw_literal_one_byte() { DCHECK_NOT_NULL(current_.raw_literal_chars); return current_.raw_literal_chars->is_one_byte(); } template <bool capture_raw, bool unicode = false> uc32 ScanHexNumber(int expected_length); // Scan a number of any length but not bigger than max_value. For example, the // number can be 000000001, so it's very long in characters but its value is // small. template <bool capture_raw> uc32 ScanUnlimitedLengthHexNumber(int max_value, int beg_pos); // Scans a single JavaScript token. void Scan(); bool SkipWhiteSpace(); Token::Value SkipSingleLineComment(); Token::Value SkipSourceURLComment(); void TryToParseSourceURLComment(); Token::Value SkipMultiLineComment(); // Scans a possible HTML comment -- begins with '<!'. Token::Value ScanHtmlComment(); void ScanDecimalDigits(); Token::Value ScanNumber(bool seen_period); Token::Value ScanIdentifierOrKeyword(); Token::Value ScanIdentifierSuffix(LiteralScope* literal, bool escaped); Token::Value ScanString(); // Scans an escape-sequence which is part of a string and adds the // decoded character to the current literal. Returns true if a pattern // is scanned. template <bool capture_raw, bool in_template_literal> bool ScanEscape(); // Decodes a Unicode escape-sequence which is part of an identifier. // If the escape sequence cannot be decoded the result is kBadChar. uc32 ScanIdentifierUnicodeEscape(); // Helper for the above functions. template <bool capture_raw> uc32 ScanUnicodeEscape(); Token::Value ScanTemplateSpan(); // Return the current source position. int source_pos() { return static_cast<int>(source_->pos()) - kCharacterLookaheadBufferSize; } static bool LiteralContainsEscapes(const TokenDesc& token) { Location location = token.location; int source_length = (location.end_pos - location.beg_pos); if (token.token == Token::STRING) { // Subtract delimiters. source_length -= 2; } return token.literal_chars->length() != source_length; } UnicodeCache* unicode_cache_; // Buffers collecting literal strings, numbers, etc. LiteralBuffer literal_buffer0_; LiteralBuffer literal_buffer1_; LiteralBuffer literal_buffer2_; // Values parsed from magic comments. LiteralBuffer source_url_; LiteralBuffer source_mapping_url_; // Buffer to store raw string values LiteralBuffer raw_literal_buffer0_; LiteralBuffer raw_literal_buffer1_; LiteralBuffer raw_literal_buffer2_; TokenDesc current_; // desc for current token (as returned by Next()) TokenDesc next_; // desc for next token (one token look-ahead) TokenDesc next_next_; // desc for the token after next (after PeakAhead()) // Variables for Scanner::BookmarkScope and the *Bookmark implementation. // These variables contain the scanner state when a bookmark is set. // // We will use bookmark_c0_ as a 'control' variable, where: // - bookmark_c0_ >= 0: A bookmark has been set and this contains c0_. // - bookmark_c0_ == -1: No bookmark has been set. // - bookmark_c0_ == -2: The bookmark has been applied (ResetToBookmark). // // Which state is being bookmarked? The parser state is distributed over // several variables, roughly like this: // ... 1234 + 5678 ..... [character stream] // [current_] [next_] c0_ | [scanner state] // So when the scanner is logically at the beginning of an expression // like "1234 + 4567", then: // - current_ contains "1234" // - next_ contains "+" // - c0_ contains ' ' (the space between "+" and "5678", // - the source_ character stream points to the beginning of "5678". // To be able to restore this state, we will keep copies of current_, next_, // and c0_; we'll ask the stream to bookmark itself, and we'll copy the // contents of current_'s and next_'s literal buffers to bookmark_*_literal_. static const uc32 kNoBookmark = -1; static const uc32 kBookmarkWasApplied = -2; uc32 bookmark_c0_; TokenDesc bookmark_current_; TokenDesc bookmark_next_; LiteralBuffer bookmark_current_literal_; LiteralBuffer bookmark_current_raw_literal_; LiteralBuffer bookmark_next_literal_; LiteralBuffer bookmark_next_raw_literal_; // Input stream. Must be initialized to an Utf16CharacterStream. Utf16CharacterStream* source_; // Last-seen positions of potentially problematic tokens. Location octal_pos_; Location decimal_with_leading_zero_pos_; // One Unicode character look-ahead; c0_ < 0 at the end of the input. uc32 c0_; // Whether there is a line terminator whitespace character after // the current token, and before the next. Does not count newlines // inside multiline comments. bool has_line_terminator_before_next_; // Whether there is a multi-line comment that contains a // line-terminator after the current token, and before the next. bool has_multiline_comment_before_next_; bool has_line_terminator_after_next_; // Whether this scanner encountered an HTML comment. bool found_html_comment_; bool allow_harmony_exponentiation_operator_; MessageTemplate::Template scanner_error_; Location scanner_error_location_; }; } // namespace internal } // namespace v8 #endif // V8_PARSING_SCANNER_H_